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(Refer Slide Time: 16:00)

We need to find dT by dR at r equal to r naught right, that is what tells you what is the

transport coefficient. So, what we want to do is in order to find this, we need to solve the

model  equation,  all  we  have  done.  So,  far  is  we have  only  looked  at  what  are  the

properties? What are the insights that we can get without solving the equation? So, now,

we are going to solve the actual equation and we are going to find out, what is the actual

heat transport coefficient value right.



(Refer Slide Time: 00:51)

So, suppose, we write the ; suppose, we assume that the boundary layer approximations

are valid,  we assume that  the boundary layer  approximations  are  valid  for  the fluid,

which is flowing through the tube and we assume that it is in the fully developed regime,

what is the nature of heat transport coefficient in the fully developed regime

Student: (Refer Time: 01:26).

It does not vary. So, it is the h by k is not a function of the actual position. So, the model

equation for energy balance is u d u by d x plus d dT by dr that is equal to alpha by r ok.

So, that is after you introduce the boundary layer approximation, what is v in this? Fully

developed regime; v 0, because if flow is only in the x direction. So, v is 0 in the fully

developed regime. So, these equation essentially boils down to udT by dx equal to alpha

by r d by dr dT by dr.

So, now how do we solve this equation boundary conditions are easy the dT by dr is, is 0

at r equal to 0 and T is, let us say, if it is constant temperature, it is (Refer Time: 02:56)

Ts. So, let us say, let us say, it is not constant, it is a general boundary condition T equal

to Ts at Ts of x at r equal to r naught ok. So, that is the boundary condition (. How do we

solve this? Note that u u is now a function of the radial position, what is u? u is 2 times

into 1 minus r by r naught the whole square.



(Refer Slide Time: 03:28)

So, separation of variable,  it  will not work, simple separation of variable,  it  will  not

work. So, how do we solve this ok. So, we have to now tap on some of the properties

that, we actually derive without solving the equation. So suppose, I start with a constant

flux condition. So, constant flux condition, we know that dT by dx dTm by dx that is the

constant  ok.  Why is  this?  Because  we said  that  the  temperature  profile  in  the  fully

developed regime is similar at any x location and therefore, dTm by dx and therefore, the

local temperature gradient is x direction remains the constant.

So, now, if we impose that condition here, we can rewrite this equation as 2 u m 1 minus

r by r naught square into dTm by dx, which is a constant flux equal to alpha by r d by dr

dT by dx, simply by using the properties. Now, it is become a solvable equation it is now

only an equation in r direction right, we can solve this equation. Now, there will be T of r

comma x will be 2 u m by alpha multiplied by r square by 4 minus r r power 4 by 16 r

naught square plus C 1 lawn r plus C.

So, that is the solution. So, all I have done is, I have integrated the expressions with

respect to r. I have integrated it twice ok. So, you take r on this side that gives you r

square by 2 and then you have, you get r r square r square by r to the power of 4 by 64

you will get, then you divide by r again, it will be r by 2 and then you integrate it again,

it will be r square by 4. So, every integral in the first term will give you a 1 by 2 and

every integral here will give you a 1 by 4



Student: (Refer Time: 06:10).

DT sorry, that is a dT m by dx thanks right.

So, that be here a, a dTm by dx I forgot to copy this here.

Student: (Refer Time: 06:20).

Which one?

DTm is already a cup mixing temperature.

Student: (Refer Time: 06:24).

It is already there, if we not put in, put in the expression for dTm by dx. Now, that is the

function of x the lower right. So, Tm is already integrated over r. So, Tm is not a function

of radial position anymore.

Student: (Refer Time: 06:37).

Yeah.

Student: (Refer Time: 06:40).

No.

DTm by Tm is a function of x, but dTm by dx is constant and. So, which means Tm is

linear yes, right.

So, Tm is linear and this is nothing, but qs prime into P by m dot CP that is the constant

Student: (Refer Time: 06:58).

No, this is a gradient not Tm be very careful. This is dTm by dx, it is not Tm, Tm goes as

Tm at x equal to 0 plus qs double prime, T into x by m dot (Refer Time: 07:19 ) that is

the expression for Tm, but dTm by dx is a constant.

Student: (Refer Time: 07:24).

dT by dx.



Student: (Refer Time: 07:29).

Yeah.

Student: (Refer Time: 07:31).

From here dT by dx, which will be,

Student: (Refer Time: 07:37).

Yz.

Student: (Refer Time: 07:38).

Dtm by dx, at what r location

Student: (Refer Time: 07:52).

So, let us first put all these constants, we will see that this constant is now going to play a

role, we will see that.

So, now, if I substitute these boundary conditions T of r comma x that should be.

(Refer Slide Time: 08:07)

Equal to Ts at any x location minus 2 u m r naught square by alpha into dTm by dx

multiplied by 3 by 16 plus 1 by 16 r by r naught to the power of 4 minus 1 by 4 r by r



naught to the power of x ok. So, that is the [ex] expression. Now, if I find out, what is

Tm from here ok. So, that is by integrating over the cross section. So, that will be Ts that

remains constant minus, it will be 11 by 48 into u m r naught square by alpha into dTm

by dx ok.

So, that is the expression for Tm and. So, now, we know that Tm dTm by dx is qs double

prime T by m dot dT by substitute that here. So, Tmx minus s that is equal to minus 11

by 48 into, into r naught square by alpha into qs double prime P by m dot CP. All right.

So, now, we know qs prime,  qs prime is defined as,  is  defined as the heat transport

coefficient h into to Tm Ts minus Tm right.

(Refer Slide Time: 10:00)

So, that is the heat transport coefficient ok. So, we can rewrite this as Ts Tmx minus Ts

that is equal to 11 by 48 into r naught square by alpha into h into the perimeter divided

by what is m dot it is rho into u m into the cross sectional area a s sorry cross sectional

area multiplied by CP into Ts minus Tm. So, now, I can this is minus one. So, that is Tm

minus Ts, which is equal to 1 that is equal to 11 by 48 r naught square divided by alpha

into h into P divided by rho u m by d square by 4 or phi r naught square into CP.

So, r naught square goes off and then. So, that will become u m goes off ok. So, what is

alpha rho into CP, what is alpha into rho into CP? Is nothing by k right, conductivity. So,

that will be 11 by 48 into h into P divided by k. What is the perimeter phi into d right into

phi sorry. So, perimeter is 11 by 48 into h into phi into d divided by k into phi ok. So,



now, from here you will see that 1 equal to 11 by 48 into h D by k what is h D by k? Is

Nusselt number, right. So, that will be 11 by 48 into Nusselt number ok.

 (Refer Slide Time: 12:53)

So, from here we find that Nusselt number is 48 by 11. So, Nusselt number is 48 by 11 is

approximately  4.66  ok.  Why are  we  getting  it  constant?  Because  the  heat  transport

coefficient is constant right. So, in a fully developed regime. So, we find that Nusselt

number is also a, a constant in that regime and. So, similarly one should do exercise for

the constant temperature case and one would find that Nusselt  number will  be about

3.66. So, same exercise, you solve the equation, put all the characteristics of the local

temperature gradient and you will find that the Nusselt number is about 3.66. So, it is

consistent with the properties and the characteristics that we observed without solving

the equation.

So,  remember  I  always  told  you  all  through  this  course  that,  before  you  solve  the

equation, you try to get maximum information out of this and you attempt to get insights

of this problem only, that is going to help you to verify whether the solution that you

have got is right, otherwise you have no way to compare the solution that you got with

the actual insight with the problem. So, it is always useful to get the insights first and

intuitively predict what is going to be the nature of the behavior and then you go and get

the actual solution. So, that way, you have a benchmark to compare this ok, all right. So,

now, this is all the story about fully developed regime, but when it comes to like entry



region, where the boundary layer is definitely (Refer Time: 14:44) it turns out that the

entry region, there is no analytical solution possible.

(Refer Slide Time: 14:47)

No analytical solution is possible and therefore, we have to rely upon something, some

of these correlations and. So, if it is a constant surface temperature, if it is a constant

surface temperature.  So, the correlations to find out the Nusselt number, again this is

average  Nusselt  number,  it  is  being  found,  based  on  experiments,  the  empirical

correlations and. So, that will be 3.36 plus 0.6, it is 0668, Prandtl number divided by 1

plus 0.04 into D by L into R e D Prandtl number to the power of 2 by 3. Now, I do not

expect you to remember the correlations for your exams, if it is, if these correlations have

to be used, they will be given to you ok, you do not have to memorize any of them, what

would be useful is  to understand how to use these correlations,  rather than trying to

memorize these correlations ok. So, if at all these correlations are required, it will be

given ok.

Now, there is a general correlation, which is available, called the Sieder Tate. Some of

you may have already heard this name Sieder Tate equation. So, Nusselt number is given

by  1.86  Reynolds  number,  Prandtl  number  1  by  3  one  fourth  and.  So,  here,  this

correlation is valid when Prandtl number is between 0.48 and 1870 and the ratio of mu to

mu s, what is mu? So, viscosity is; obviously, a function of temperature right. So, mu s is



the viscosity of the fluid evaluated at the surface temperature and mu is the viscosity

evaluated at intermediate temperature right.

So, mu by. So, this is valid when mu s is less than 9.75. So, that is a pretty large validity.

So, now, you are going to have a heat transport problem, where the ratio of viscosity is

really going to change more than 9.75 that is too much ok. So, that is a pretty good

equation and. So, the properties are evaluated. So, the properties are evaluated at mean

temperature.

(Refer Slide Time: 18:24)

At mean temperature, which is Tmi o by 2 plus Tmo by 2 plus T mean temperature at the

inlet and the outlet ok. Now, one could actually extend this to a mass transport problem

ok. How do we extend this by boundary layer analogy right. So, we now, that we have

boundary layer analogy. So, Sherwood number is equivalent for Nusselt number in heat

transport.

So,  we  have  mass  transport  and  heat  transport.  So,  Sherwood  number  and  Nusselt

number are  equivalent  to  each other, Schmidt  number and Prandtl  number  are  equal

right. So, you replace Nusselt number with Sherwood and Prandtl with Schmidt, you will

get the corresponding correlations for mass transport. So, just for completeness, we will

write them here, 1.6 Schmidt number divided by L by D 1 by 3, all right. So,. So, the last

piece of the puzzle, for intern flows is the heat transport coefficient, during turbulent

condition ok.



(Refer Slide Time: 19:51)

So, we never talked about Turbulent condition. What is the Reynolds number transition?

 Student: 2100 (Refer Time: 20:00).

2100 for laminar to.

Student: (Refer Time: 20:07).

To, to the transition region and typically 4000 of course, it varies a lot depending upon

the nature of the fluid and the surface of this few. So, approximately 4000, you would

consider that the fluid is actually in a turbulent regime and. So, in those condition also

there  is  no  analytical  solution  available,  analytical  solution  possible.  There  is  no

analytical solution possible as of today and. So, the first correlation is called Colbum

equation, where Nusselt number is given by 0.023 Prandtl number to the power of 1 by 3

4 by 5.

So, remember that you start seeing this product of Renault to Prandtl, because Reynolds

number dependence comes from the flow and the Prandtl number actually comes from

the temperature gradient, that the boundary or the interface between the fluid and the

solid and a general correlation as called the Ditters Bolter equation. So, this is actually

something which is very-very widely used, Ditters Bolter voltage equation is very widely

used and. In fact, you must have seen this in your turbulent flow experiment. Those who



have already performed and the equation is average. So, that will be 0.023 Reg to the

power of 4 by 5 into Prandtl to the power of 10 n

So, the difference between colbum and the Ditters Bolter Equation is that depending

upon, whether the heat is being lost from the fluid or whether, the heat is gained by the

fluid, the exponent n is slight visible ok. So, n is 0.4, if Ts is greater than T, mixing cup

temperature at any cross section. So, which means that there is heat, that is met heat, that

is gained by the fluid and it is 0.3, if Ts is less than Tm ok.

(Refer Slide Time: 22:45)

And of Course there is some range, validity range. So, the validity is, it is 0.7 less than or

equal to Prandtl number 160 and 10000 ok. Those of you who have already performed

the turbulent flow experiments, you been told that the Reynolds number should be about

10000, the reason why that is the case is the validity of the equation, the correlation that

is used is only when the Reynolds number is sufficiently large. So, if you actually have

some of, you have actually done this experiment and have not calculated the Reynolds

number, you should have, if you have not calculated and checked, whether the Renault

number  is  greater  than  10000,  you  will  see  that  there  will  be  a  variation  in  your

prediction, the straight line fit that you are trying to fit your experimental data, it will not

fit your experimental data very well and thus your Reynolds number is sufficiently large,

where the correlation is valid ok. So, that is very important.



So, these validity regions, they actually play a very important role and just like in any

statistics, you cannot apply a fit to the range, which is outside the validity of the fit right.

So, if it is a, if it is a linear regression fit, you cannot apply the fit to any range, which is

outside the validity of that fit.

So,  therefore,  pay  attention  to  these  validity  regimes  depending  upon  the  Reynolds

number and depending upon the properties, you may have to different correlations, once

again of course, I can translate the same thing to mass transport problem by replacing the

Nusselt number with Sherwood and Prandtl number to Schmidt number.


