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Flow through pipes III

We have been looking at internal flows.

(Refer Slide Time: 00:15)

So,  we  observed  it  that,  there  is  no  reference  velocity  and  there  is  no  reference

temperature.  So, we defined the mean or cup mixing temperature is given by 2 by r

naught  square  integral  0  to  r  naught,  u  r  d  r.  And similarly  we defined cup mixing

temperature which is anyone remember 2 by 2 by U m r naught square integral 0 to r

naught u times T time r d r.

So, that is the cup mixing temperature or the cross sectional average temperature and that

is be cup mixing or the cross sectional average velocity. Now we said that there is a the

temperature profile is similar. So, we going to show today what is meant by similar and

how to see it how to see that the profiles or the temperature profile the fully developed

regime is similar. So, we said fully developed regime temperature profile is similar ok.



(Refer Slide Time: 01:44)

So,  suppose  here  is  a  tube.  So,  for  both  the  cases  by  we  can  make  a  general

representation that the temperature of the exterior surface of the of the tube is T s of x,

where T s is the surface temperature as if it is constant flux when the surface temperature

can  in  principle  vary  with  the  x  position  this  is  x  direction  and  if  it  is  constant

temperature when it does not change with position right. So, now, if I want to find the

temperature distribution I want to find the temperature distribution inside the tube let us

say in the fully developed regime.

So, what will be the general functional form? So, remember the model equation. So,

what are the process is it are supposing here is my fully developed regime. So, what are

the processes which are acting here? You have diffusion and you have connection right is

it linear with respect to temperature we assumed that there is no heat generation heat

generation term is 0. So, it is linear with respect to temperature right. So, what will be the

functional form of the temperature as a function of r and x? This is r direction yeah what

will be the functional form? I am not solving the equations, what will be the functional

form which will get the solution.

Student: (Refer Time: 03:39).

Some function of r and some function of x right. So, it is by separation of variable you

should be able to get a 2 functions, it will be a product of 2 functions will each of these

functions will be 1 will be function of the radial direction 1 will be function of the axial



direction. So, therefore, the general form of the solution with T s of x if you assume that

is heat that is been supplied from the external region to the fluid, or from fluid to the

surface.

So, the general solution will be T s plus or minus some function of x and some function

of the radius right. So, that is the general form of the temperature distribution right. The

upper limit is T s is the heat is being supplied from the surface to the fluid and the lower

limit is T s if it is vice versa. So, that is a function of x position if it is a constant flux

case  and T s  of  x  is  constant  for  constant  temperature  case.  So,  this  is  the  general

functional form, not that we are not solved anything we have just observed what is the

general functional form of the temperature profile. So, from here

Student: (Refer Time: 05:08).

Sure, you can because if there is no heat generation, if you look at the structure of the

equation is linear in temperature. So, you should be able to separate. So, therefore, we

can rewrite the functional form as T of r comma x minus T s equal to plus or minus f of x

into g of r. So, now I want to rewrite this as I just want to rewrite it as, T s minus T equal

to minus plus f of x into g of r. So, all I have done is I have taken T on the other side and

the function on the left  hand side.  So,  once I  do this,  I  can introduce the averaging

property here.

(Refer Slide Time: 06:10)



So, now, if I we know that Tm which is the average temperature is 2 by r naught square

integral 0 to r naught u T r d r ok.

So, the objective is I want to find the mean temperature, remember I told you that the

mean temperature or the average temperature, and the local temperature there is some

similarity between them and therefore, we can actually see that the temperature profiles

are similar. We are going to see that in little bit more rigorous way as to how it is similar.

So, suppose I want to find out T m from this expression.

So, I can integrate 0 to r naught 2 by r naught square T s of x u into r d r minus integral 0

to r naught T into u into r d r that is equal to minus plus 2 by r naught square integral 0 to

r f of r naught f of r f of x into g of r into u into r d r. So, that is the functional form. So,

some here. So, T s is not a function of the radial position, it is the wall temperature right.

So, I can pull this out from the integral is nothing, but itself is 2 by r naught square is

already there in. So, this is T s of x minus T m of x. Remember that is 2 by r naught

square into integral 0 to r naught u r d r. So, that goes away and the right hand side you

will have minus plus 2 by r naught square f of x is not a function of the radial position.

So, that will be integral r naught g of r u into r d r ok.

So, now if I divide these two expressions, you see there is an expression here which is T

s  minus  T  that  is  the  difference  between  the  surface  temperature  and  the  local

temperature and here is a difference between the surface temperature and the cup mixing

temperature. So, now, if I divide these 2 expressions minus T divided by T s of x minus T

m of x. So, this is both function of r and x right. Now if I divide these 2 expressions what

do you see is something very interesting you see f of x, g of r divided by 2 by r naught

square into f of x into integral 0 to r naught r d r.

So, all I have done is I have just divided these 2 expressions and so, interestingly the

functional form will actually cancel out the x dependence will actually cancel out in this

ratio and therefore, this ratio is not a function of the x position. So, let me explain again

look at the right hand side carefully f of x, g of r divided by 2 by r naught square f of x

comes out and its integral of gr multiplied by u. So, that is the cross sectional average of

the function g.

So, f of x will cancel out. So, you will see that this ratio T s of x, minus T of rx where the

local temperature is now a function of both radial and the axial position, and not just that



the surface temperature and even the cup mixing temperature both of them can be a

function  of  the  axial  position.  But  irrespective  of  that  that  is  an  important  result

irrespective of that this ratio is not going to be a function of the axial position.

So, that is what one means by a similar profile. What it means to say similar profile is

that T s minus T the profile that you will get for T s minus T and that for T s minus T m

would be exactly the same in the x direction. So, the profile that you will get for the

difference in the surface temperature and the local temperature and the difference in the

surface temperature and the mixing cup temperature that difference will be the same for

at any location the fully developed regime. So, as a result this ratio is not a function of

the axial position. So, that is an important result, it is very similar to what we got in the

momentum boundary layer where we said that the velocity profile does not change.

So,  here the correct  statement  is  that  if  I  define a  new variable  new dimension less

temperature, which is T s minus T by T s minus the cup mixing temperature. So, that

dimensionless  temperature  is  now  independent  of  the  axial  position.  So,  this  is  a

fundamental  difference  between  the  momentum  boundary  layer  and  the  thermal

boundary layer, in the in internal flow case. 

So,  it  is  not  the  temperature  profile  which  is  not  changing  its  the  dimensionless

temperature profile, it does not change to the axial position. So, this observation actually

can lead to some really interesting and intuitive results, which is what you will see in a

short while.



(Refer Slide Time: 12:04)

So,  this  means  your  T star  Ts minus T by T s  minus  T m,  I  am just  removing the

functional, but we should always assume that T s is the function of position if it  is a

constant flux condition, and T s is constant if it is a constant temperature condition and.

So, that is not a function of the axial position which means that dT star by dx is 0. So,

that is the first observation.

So, it is the gradient of the dimensionless temperature is 0, and not the gradient of the

actual temperature and in fact, the definitions that we have used in all or to this course

we have used a certain form for non dimensionalizing temperature, and that really comes

from this idea. That using such a type of dimensionless quantity for temperature were

actually helps in understanding the problem better and it gives much better insights.

So, supposing now I take d by dr of T star d by dr of T star is that a function of the x

position? No the star is not a function of x position therefore; this is also not a function

of the x position. So, now, dT star by dr is nothing, but minus dT by dr divided by T s

minus Tm. So, all I have done is I have differentiated the dimensionless quantity. So, T s

is  not  a function of radial  position and T s and T m both are  not function of radial

position. So, dT by d T star by dr is nothing, but minus dT by dr divided by T s minus

Tm.

So, that is not a function of the axial position, what is this form, what is this ratio minus

dT by dr  by  T s  minus  T m?  It  is  the  form that  we have  all  seen  a  heat  transport



coefficient has a similar functional form right. So, what is the definition of heat transport

coefficient? Heat transport coefficient is minus k dT by dr at r equal to r naught divided

by T s minus T m right. So, that is the heat transport coefficient by definition right.

So, now, because this ratio is not a function of the axial position, this ratio is also not a

function of the axial position. So, this is also not a function of the axial position as long

as the properties are constant if k is constant. So, you put a subscript f 50 conductivity of

the fluid. So, if kf is constant, then the heat transport coefficient is not a function of the

axial position the fully developed regime. So, that is an important result.

So, we get an important insight. So, that is an important insight into the problem. So, not

that  we have  not  solved the  equations,  we have  only  looked  at  the  structure  of  the

equations and we have made we have looked at what is going to be the profile of the

dimensionless quantity and from that we are able to look derive an interesting insight

that the heat transport coefficient in the fully developed regime. So, is not going to be a

function of the axial position.

(Refer Slide Time: 15:52)

So, which means that h by k is not a function of the axial position. So, this provides an

excellent framework oh k f this provides an excellent framework for actually comparing

the  transport  properties  for  different  fluids.  The  conductivity  of  different  fluids  are

different.



So, this provides a very nice framework for comparing the properties of heat transport

for different fluid which will have different conductivity. As a result if I draw a plot of x

versus the heat  transport  coefficient  for a fixed kf.  So,  supposing if  this  is  my fully

developed regime fully developed regime starts at that location. 

So, the heat transport coefficient is constant the product function of the axial position

what about this region? It will be higher or lower, what would you guess? We will see

will see the little bit more rigorous way what will be the nature of the heat transport

coefficient in that location, but what would you guess it will be higher or lower? So, I

give you a hint.

So, q the flux of heat transport the local flux of heat transport defined as h into T s minus

T m right. So, the surface temperature minus the reference temperature i; so, that is the

definition now can you guess. So, let us take constant flux condition yeah it will be.

Student: (Refer Time: 17:40).

Higher why?

Student: (Refer Time: 17:45).

So the temperature gained will be smaller in the entry region. So, this is what us called

the entry region. So, the temperature gradient is going to be smaller the entry region and

therefore,  in  order to  maintain  constant  flux,  the heat  transport  coefficient  has to  be

higher.  So,  that  is  the  profile  of  heat  transport  coefficient  with  respect  to  the  axial

position with you, we can see this in a much more rigorous way.

So, suppose I want to find out. So, the exercise is now to really find out what is the mean

temperature. So, if I know the mean temperature, the lots of thing that I can actually

estimate. So, before we go and find out what is this mean temperature, let us see if you

can find the relationship between the mean temperature and the actual local temperature.



(Refer Slide Time: 18:48)

Can we is there any relationship between T and T m. Because we say that T m provides a

way  to  scale  the  temperature  which  leads  to  a  one  important  insight  that  the  non

dimensional  temperature  profile  does  not  change with the axial  position  in  the  fully

developed regime.

So, which means that there must be relationship between the two; so, can we find out

what that relationship? So, T star is T s minus T by T s minus Tm. So, remember that we

are not solving the equation you not even attempting to solve the equation as if now.

Without solving what is the maximum piece of insight that we get. 

So, now, if I take the derivative of this with respective x, what is that? That should be

that should be 0 right T star is not a function of the axial position in fully developed

regime and so, that should be equal to 0. So, that will be T s is a function of position T m

is a function of position and T is a function of position and so, we can now write this as 1

by T s minus T m minus 1 into dT by dx.



(Refer Slide Time: 20:34)

So, that is the x derivative with respect to local temperature plus we can take a derivative

with respect to the temperature T s plus the whole square into d T m by dx plus T s minus

T m minus T s minus T divided by T s minus T m the whole square into d T s by dx. And

that should be equal to 0 because the dimensionless temperature is now a independent of

the x position the fully developed regime and therefore, this derivative is 0 and therefore.

So,  that  this  gives  you  an  expression  which  relates  the  gradient  of  the  cup  mixing

temperature and the gradient of the surface temperature, with respect to the gradient of

the local temperature.


