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Flow past Flat plate II: Correlations for heat & mass transport

So, similarly one can do for the energy balance and the mass balance. So, what you will

you see for energy balance? You can now write energy balance in terms of the modified

or new variable.

(Refer Slide Time: 00:29)

While defining T star as usual as T minus T s by T infinity minus T s i. So, defined this

dimension less temperature, and that I can find that the momentum balance will reduce

to. Sorry the energy balance will reduce to d square T star by d eta square plus Prandtl

number by2 into f into d T star by d eta is equal to 0, and T star at eta is equal to 0 is 0

and T star as eta going to infinity that is equal to 1. So, that is the functional form. And at

once again you can find T star d T star by d eta.

So,  if  you know these two quantities  then we should able  to  find the heat  transport

coefficient.  So,  what  is  important  here,  once  again  is  to  find  the  heat  transport

coefficient. So, what was found is that d T star by d eta at eta equal to 0. So, this scales

has 0.332 into Prandtl number to the power of 1 by 3. So, note that we never knew what



is exponent N is suppose to be. So, by solving the actual equations what has been found,

is that the gradient at the boundary scales as Prandtl number to the power of 1 by 3.

To the scaling for Reynolds number comes from eta, and the scaling for Prandtl number

actually comes from the gradients. So, far I asked to assume what is the functional form,

but actually the correct proof for the functional form is that the gradient scales as Prandtl

number to the power of whatever exponent, and that exponent tends out b 1 by 3. By the

way this is only when Prandtl number is greater than 0.6. So, less than 0.6 you have a

different functional difference. So, this N is going to be different when Prandtl number is

less than 0.6. What is it mean and yeah.

Student: (Refer Time: 02:52).

That is the property, because not that this is the solution of non-linear equation. You

cannot say that you will have a linear dependence on Prandtl number. so; obviously, its

the its the function of.

Student: (Refer Time: 03:03).

That is what I am saying. If it is linear dependence then you could intuitively guess that

it, it is going to have similar functional form with respect to Prandtl number, but then this

exponent 1 by 3, exponent 1 by 3 has been observe only when Prandtl number is greater

than 0.6, and that is not difficult to understand. What is Prandtl number?

Student: (Refer Time: 03:26).

Whats  Prandtl  number. Yes Prandtl  number is  mu over alpha,  it  is  actually  not very

difficult to understand why that’s, because Prandtrl number is mu over alpha.



(Refer Slide Time: 03:39)

So, note that we also said that delta by delta t which is the ratio of the boundary lay,

momentum boundary layer thickness to be thermal boundary layer thickness. So, that is

scales as Prandtl number to the power of n. So, the boundary layer thickness that you are

going to get the momentum and thermal bound rate it this, is now going to be dependent

on the properties of the fluid. So, if the properties of the fluid. So, properties of the fluid

is now going to dictates the delta by delta T fine. So, suppose if delta is greater than delta

t. suppose if delta is greater than delta t, what will be the nature of the Prandtl number.

Student: (Refer Time: 04:38).

Yeah, it will be greater than 1 or less than 1.

Student: Greater than 1.

Greater than 1, but remember there is an exponent 1 fine. So, so if Prandtl number is

greater  than 1. If Prandtl  number is  greater  than 1, you will  always see that delta is

greater than delta c. What does it mean? To be set that the momentum diffusivity in the y

direction that is.

Student: (Refer Time: 05:05).

Oops  sorry  t  that  should  be  thermal  boundary.  So,  the  [ma/momentum]  momentum

transport  depends upon the boundary layer  thickness,  and the heat transport  depends



upon  the  thermal  boundary  layer  thickness.  So,  the  length  scale  of  diffusivity  of

momentum and the thermal boundary layer. I mean thermal diffusivity. These two are

going to strongly depend upon the boundary layer thickness.

Now, suppose if delta is less than delta t. In fact, there are situations where this is the

case. This is true for liquid metals, the place where it is used is, the way aluminum is

extracted as you have a very high temperature process, where the aluminum is actually

manufactured at a molten stage. So, you have a liquid metal which is presents. So, in

those cases, you will see that the Prandtl number is actually much smaller than 1.

So, there the boundary, the heat transport process is completely different, because the

boundary layer thickness of the momentum boundary layer is going to be, it is going to

be smaller than the thermal boundary layer. Therefore, the heat transport properties are

completely different.  In fact,  that  is  why the exponent  is  different.  To this  0.6 is  the

special case where, if you have a liquid metals where you have a very high temperature

process, then the heat transport mechanism is slightly different. And therefore, you will

see there the solution falls out to be different exponent, and we will see that in a short

while, may be not todays lecture. I will give you; what is the expression for the exponent

N when Prandtl number is actually less than 0.6 ok.

So, with this actually we can go and find out what is the heat transport coefficient. So,

the heat transport coefficient is minus k d dou T by dou y at y equal to 0 divided by T s

minus T infinity.



(Refer Slide Time: 06:52)

So, we introduce all the scaling, and that will trun out to be k f into square root of u

infinity by mu into x into d T star by d eta at eta equal to 0 and. So, from here you find

that the Nusselt number is equal to 0.332, Reynolds number to the power of half into

Prandtl number to the power of 1 by 3 ok.

So, this half comes from the scaling that you used for eta, and 1 by 3 comes from the

gradient of temperature at  the boundary. So, the first time you are seeing a complete

functional form for Nusselt number. And similarly you could find out what is the average

Nusselt number. So, that will once again turn out to be 0.664 into R e to the power of

half. This is based on the length of the plate multiplied by Prandtl number to the power

of 1 by 3 ok.

So, he showed that the friction coefficient is given by 0.664 divided by the square root of

Reynolds number, local Reynolds number.



(Refer Slide Time: 08:12)

And we have also  said that  the average  friction  coefficient  is  given by one average

friction coefficient in that location. Then similarly we said that Nusselt number, the local

Nusselt number is given by 0.332 Reynolds number to the power 1 by2 and Prandtl to

the power of 1 by 3. And these scale with power of Reynolds number comes from the

scaling  arguments,  and the  Prandtl  number  to  the  power  of  1  by 3 comes  from the

gradient at the boundary and. So, from this you can see that the average Nusselt number,

till any location is given by twice that of the local Nusselt number.

Can similarly  we could  write  for  the  flaws  transport  problems,  simply  by  using  the

boundary  layer  analysis.  So,  we said  that  this  is  valid  only when Prandtl  number is

greater than 0.6. So, when it is less than 0.6. So, what happens is that the, with thermal

boundary layer  thickness,  is  usually  larger  than.  So,  very small  Prandtl  number. The

thermal boundary layer thickness is much larger than that of the momentum boundary

layer  thickness,  which also implies  that  the velocity  profile  is  insignificant.  So,  it  is

almost like a flat velocity profile.

So, the boundary level velocity profile is completely rid off, not very significant and

therefore,  it  is  not  going  to  affect  the  heat  and  mass  transport  process  and.  So,  the

correlation  corresponding  to  that  would  be.  I  will  copy  from it,  while  d  0.565  and

Reynolds number to the power of 1 by 2 and Prandtl to the power of 1 by 2. So, you get a



different scaling for Prandtl number, because the velocity is now not playing a significant

role in the heat transport process.

Student: (Refer Time: 11:10).

By solving the equations. You have to make an approximation. Do not by you solve the

momentum equations. Now you do not have to solve the momentum equation assuming

that the velocity is constant right, you say it is a flat velocity profile. So, now, for all

values of. So, for any values of P R Prandtl number, a general correlation would be all

values of Prandtl number, and that would be every 0.87 1 by 2 Prandtl 2 the power of 1

by 3.

(Refer Slide Time: 11:32)

And 1 plus. So, remember that here we said that we. So, if you want to use correlation

for any range of Prandtl number.

Now, this becomes important, particularly when you have fluid which is moving of when

you  have  multiphase  systems  where  different  fluids  are  moving,  then  you  have  a

different kind of problem and. So, you need to have affective Prandtl number, which is

based on the affective properties of these two fluids and. So, in those cases you will have

different ranges of Prandtl number and. So, it is important to have a general correlation

which works. Now this is primarily for the purposes of, somebody who is working in an

industry. He doesnt know what we cannot differentiate between Prandtl number of 0.6



less or 0.6 greater than 0.6. So, it is just for a general correlation, which is useful to you,

useful in certain calculation purposes.

But for the course purposes, what is really important is these two individual correlations

which is valid for different ranges of Prandtl number all right. So, one could actually do a

similar exercise for turbulent conditions.

(Refer Slide Time: 13:33)

One could take similar expressions for turbulent conditions. So, the friction coefficient

will be 0.0592 into Reynolds number to the power of minus 1 by 5. So, we assume that

the Reynolds number is between 2 into 10 power 5, and the Nusselts number is given by

0.0296 into R e x 4 by 5 1 by 3.

And similarly. So, that is for the turbulent conditions. So, note that there is no ways to

solve even to get insights into the nature of the problem. So, turbulent conditions, its

impossible to solve them. So, problem even for the asymptotic analytical conditions. So,

to really it just all of these have been a pain by solving the equations, either using series

solutions or numerically in order to obtain these correlations.

Student: (Refer Time: 14:59).

No.

Student: (Refer Time: 15:02) how do you get out the (Refer Time: 15:04).



Some of the approximations do change. So, some of the approximation you make in

laminar flow conditions it would be different in turbulent flow. Suppose I have a flat

plate  where does the fluid which is  flowing after  this  flat  plate,  and you have some

region which is laminar.

(Refer Slide Time: 15:15)

Yes we have laminar conditions here, and then of course, have a transition, and then you

can  have  a  turbulent  regime.  So,  this  is  the  critical  western  at  which  the  Reynolds

number is, what is the Reynolds number

Student: (Refer Time: 15:46) .

Critical Reynolds number

Student: (Refer Time: 15:49).

Yeah.

Student: (Refer Time: 15:52).

2 into 10 power 5. So,  that is  the critical  Reynolds number. So,  one could find.  So,

remember that, what we are interest is only the average heat transport and average past

transport  coefficients.  So,  you  would  really  required  to  calculate  the  average  heat

transport coefficient for the full plate. So, suppose if we assume that the transition region

is very small. Remember that transition region is a flow condition which has not been



characterized,  and  is  not  been  fully  understood  as  to  what  is  the  hydrodynamic

conditions in the transition region. So, if we assume that it is very small. Then want to

define average heat transport coefficient for mixed hydrodynamic condition, that is we

have laminar and turbulent, simply as 0 to x e the x plus x c to l. So, this is laminar heat

transport coefficient, and turbulent heat transport coefficient ok.

So, where the length of the plate is l; that is the length of the plate. So, one could simply

integrate the local heat transport coefficient in laminar conditions up to the critical point,

and integrate the same in the turbulent condition up to the full length of the flat. That will

give you what is the average heat transport coefficient when you have mixed conditions

of both laminar  and turbulent  conditions.  And one could the same exercise for mass

transport  coefficient  as well.  So,  if  we know Nusselts  number  we should be able  to

calculate the heat transport coefficient under laminar conditions. Similarly heat transport

condition under turbulent condition; so plug that in and you can integrate.

So, not going to do the integration here, in spite easy to do this integration, it is not very

hard. It takes about 5 minutes to do the integration. So, you should all do this. So, so the

average Nusselts number, which is defined as h into l by k f that is given by 0.664 into

Reynolds number with critical Reynolds number to the power of 1 by 2 plus 0.037 into

Reynolds number to the power of 4 by 5 minus to the power of 4 by 5 multiplied by

Prandtl number to the power of 1 by 3.

(Refer Slide Time: 18:32)



So, all we have done this, I have taken the expression for Nusselts number, local Nusselts

number that is N u laminar that is 0.332 R e x Prandtl to the power of 1 by 3. So, this is

nothing, but h laminar into x by k f. So, I have found out what is h laminar from this

expression,  and  then  I  integrate  with  respect  to  the  x  coordinates,  up  to  the  critical

location. And then similarly I take the expression of Nusselts number for turbulent flow

that will be, by k f and then you integrate that with respect to x coordinate going from the

critical location to the length of the plate.

And. So, clearly you can see that the second term here, corresponds to the integration in

the turbulent  regime,  and the first term corresponds to the integration in the laminar

regime. You clearly see that there is the 0.664 that is comes here, that is nothing, but the

average Nusselt number in the laminar condition, and this is the average Nusselt number

with the turbulent condition.

Student: (Refer Time: 20:34).

If you assume that the properties are constant they doesnt, but supposing if you say that

the properties change.

Student: (Refer Time: 20:45).

With the hydrodynamic condition.

Student: (Refer Time: 20:46).

No no, but Prandtl number is simply defined as mu or alpha fine. So, now, if he said that

delta by delta T is Prandtl number to the power of n. This N is different for laminar and

turbulent. So, that N takes care of the difference in the height.

Student: (Refer Time: 21:10).

Excuse me.

Student: (Refer Time: 21:11).

Yeah that is true. So, it turns out for flat plate case, it is a same. So, note that it is not just

the hydrodynamic boundary layer which changes, this is the ratio be careful it is a ratio,

it is both the hydrodynamic and the thermal boundary layer actually is changing. Now



when it comes to Prandtl number less than 0.6, the variations that you get in turbulent

flow is very different. So, you will be careful how it is defined. This problem comes only

when the Prandtl number is less than 0.6.


