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Reynolds and Chilton-Colburn analogies

So, for this particular case we could assume that C f into Re L by 2 equal to equal to g 1

x star comma Re L, now note that this is only when Prandtl number and Schmidt number

almost equal to 1.

(Refer Slide Time: 00:19)

So, we can rewrite this as C f by 2 equal to Nu by Re L equal to Sherwood number by Re

L and because we assume this could be 1, we could also rewrite this as Nu by Schmidt

number. Simply because we assume Prandtl and Schmidt is almost equal to 1. So, this

specific case of Prandtl and Schmidt equal to 1, this provide an idea as to what should be

the relationship between the different characterizing numbers in these three boundary

layer. So,  this  number  once  again  this  these  3  put  together  is  called  as  the  Stanton

number for heat transport and these 3 put together is what is called Stanton number for

mass transport, this is Stanton s t a n.

So, you will start seeing all kinds of dimension list numbers that you will start propping

up here after you are not expected to remember all the expressions for these dimension

list numbers, but what would be useful is if you attempt to understand what does these of



each  of  these  numbers  signifies.  For  example,  Nusselt  number  is  the  resistance  to

conduction the fluid divided by convection resistance to convection across the interface.

Similarly Prandtl number is the ratio of momentum diffusivity to thermal diffusivity So,

if you know what, if you understand what these different numbers characterized that is

good enough we should actually be able to systematically find out what is the expression

for each of these dimension list quantity.

So, this relationship that C f by 2 friction coefficient equal to the heat transport Stanton

number equal to the mass transport Stanton number is what is called as the Reynolds

analogy, called the Reynolds boundary layer analogy or simply Reynolds analogy. So,

this is very very commonly used in different types of heat mass and momentum transport

calculations  because  it  is  very  handy.  If  you  know  you  are  able  to  measure  the

momentum boundary layer properties and are able to find the friction coefficient you are

done. 

You know the Stanton number, you know the mass transport Stanton number and all you

need to know is Reynolds and Prandtl you are don. Your heat transport coefficient and

mass  transport  coefficient  also  free  because  Reynolds  number  depends  upon  the

properties of the fluid and the properties or the length of the plate that you looking at and

Prandtl number and Schmidt number essentially properties of the fluid. If you know the

properties and if are able to measure either of these 3, anyone of these 3 the other 2

comes for free.

So, this provides a powerful method for calculating the heat transport coefficient and

mass  transport  coefficient.  Moment  you  know what  is  Nusselt  number  and  what  is

Sherwood number. So,  remember  that  these two are characterizing  numbers  for heat

transport coefficient and mass transport coefficient. So, if you know Nusselt number if

you know Sherwood number you done. You found the heat transport  coefficient  you

found the mass transport coefficient.

Remember we have not solved the equations yet, we have not even solved the equation.

Without solving all of these three equations if you know one of them if you are able to

even experimentally measure them, let us say we do not even solve the equations able to

experimentally measure either of these three quantities you are done the others come for

free. So, that is a very very powerful method. In fact, that is the power of these analogy.



Now, remember that this Reynolds analogy is valid only when Prandtl and Schmidt are

equal to approximately equal to 1. So, the question is real system for; obviously, not the

case Prandtl and Schmidt are; obviously, not 1 because we are not always looking at

dilute gases we are looking at other system too.

(Refer Slide Time: 05:09)

So,  that  required  next  that  takes  us  directly  to  the  next  topic  which  is  the modified

Reynolds analogy or it is also called as the Chilton-Colburn analogy, also called as the

Chilton-Colburn analogy where the analogy assumes that Prandtl number is not equal to

Schmidt number and obviously, it not equal to 1. So, there is no analytical way of finding

out what is the equivalence between the 3 transport mechanisms in the boundary layer, if

this  is  the case where the Prandtl  number is  not equal  to Schmidt  number. But then

observing the functional form you look at the functional form and then one can define

what is called the Colburn factors. So, the functional form helps in deciding and this is

valid for. So, this is what is called the Chilton-Colburn analogy or modified Reynolds

analogy.

So, what Chilton and Colburn independently did is they took the Reynolds analogy, the

functional  dependence  of  this  friction  coefficient  and  these  Stanton  numbers  and

observing that the, observing that Nusselt number goes as g 1 something into Prandtl to

the power of n. So, the now the question is what does n gives. So, they found and these



were done by all kinds of experimental studies and correlations where they look found

out that is n actually goes as 2 by 3.

Now not just that we are also going to find, this is the analogy Prandtl number to the

power of 2 by 3 multiplied by Stanton number gives you what is called the Colburn

factor. So, this j is called the, these are called the Colburn factor, these two are called the

Colburn factors.

So, if you know the friction coefficient then you should be able to estimate what the

Colburn factors are and once again if you know the Colburn factors you done. So, this is

for a real system with certain range of validity for Prandtl and Schmidt number which

sort of encompasses most of the systems that you would probably experience on the real

system ok. One second, yeah what is your question?

Student: (Refer Time: 08:33).

Right, right.

Student: (Refer Time: 08:38).

We going to see that, we going to see what is the functional form of Nusselt number very

soon, there you will see that it actually scale as 1 by 2 and sometime its actually scales a

0.4, 0.33 and 0.4 we going to see that in a short while. Mostly in the next lecture, alright. 

(Refer Slide Time: 09:03)



We said that Lewis number, the Lewis number is the ratio of Schmidt number to Prandtl

number Nu by D AB thank you, into Nu by alpha oops alpha by nu, so that alpha by D

AB and ok

So, now we said that Nusselt number divided by Prandtl to the power of n that should be

equal  to  Sherwood  by  Schmidt  number  to  the  power  of  n  and  that  has  the  same

functional form that has the same functional form. So, if I open up the expressions here

Nusselt  number is h into L by k f that is the heat transport coefficient multiplied by

length of the plate divided by the corresponding conductivity that is equal to h m into L

by D AB into Pr by Sc to the power of n right.

Now, from here h m which is the mass transport coefficient divided by heat transport

coefficient that ratio is now given by D AB by k f into Lewis number to the power of n.

We know that Lewis number estimate by Prandtl and so that simply gives you that D AB

by k f into Lewis number to the power of n.

(Refer Slide Time: 10:48)

So, h m by h now Lewis number is defined as alpha by D AB right, so now we can

multiply and divide by rho C p D AB by alpha right all I have done is I found k f by rho

C p. So, alpha is conductivity divided by rho C p that gives you thermal diffusivity. So, I

have introduced a definition into Lewis number to the power of n. But we also know that

Lewis number is alpha by D AB right, from the expression that we have written there.



So, that will be rho C p Lewis number to the power of n minus 1, 1 minus n, n minus 1.

So, again right nothing is wrong should be 1 by rho C p oh sorry. 

So, ratio of heat transport coefficient and mass transport coefficient is Lewis number to

the power of n minus 1 by rho C p that is an important observation. So, Lewis number is

alpha by D AB and rho C p these are the properties of the fluid because of the analogy

you see that the ratio is now going to remain constant. It is going to be only a function of

the properties of the fluid not just that supposing if I look at the average mass transport

coefficient and average heat transport coefficient, what is a definition of average mass

transport coefficient for a flat plate? 1 by L, integral 0 to L h m d x divided by 1 by L h

into dx. 

Now we can use this expression for local heat and mass transport coefficient and. So, we

can rewrite this as Lewis number to the power of n minus 1 by rho C p into integral 0 to

L h dx, h dx also that will be by rho C p right So, that is an important observation.

Not just that the loc ratio of local mass and heat transfer coefficient depends only on the

properties  and  constant  and  that  is  also  equal  to  the  ratio  of  average  heat  transport

coefficient and mass transport coefficient. So, that is an important observation. So, if you

know the local quantities then you should be able to relate  the ratios of the average

quantities now this we have shown for a flat plate case you could actually shows similar

expressions for other geometrics too. So, if you know the local ratio of the local heat

mass and heat transport coefficient you should be able to find out what is the ratio of

average heat transport coefficient and average mass transport coefficient.



(Refer Slide Time: 14:18)

So, when we define these average mass transport and heat transport coefficient I briefly

alluded to the fact that what is really important from practical point of view is these

average quantities. Although we are trying to estimate all the local heat transport and

mass transport coefficient, but ultimately what you would be using in your experiments

which  is  some  of  you  have  already  done  in  your  laminar  flow  and  turbulent  flow

experiments and others who do that through the rest of the semester in your lab course is

that what you would actually be using is actually the average heat transport and mass

transport  coefficient.  The  reason  why  you  would  use  the  average  is  what  you  can

measure supposing, if you have a double pipe heat exchanger they have concentric pipes

there is fluid flowing through the inside pipe and there is fluid flowing between the two

pipes and there is heat exchange between them.

So, what you would actually measure the temperature of the fluid that is inlet to both

these  streams  and  outlet  to  both  these  streams.  You  really  cannot  measure  the

temperature at every local point inside. So, what is of real practical importance are these

average quantities. So, ultimately what we will see over and over again many number of

times  is  how  to  find  average  mass  transport  coefficient  and  average  heat  transport

coefficient. But we said that the local heat transport coefficient we need to find Nusselt

number and if you want to find the local mass transport coefficient you will have to find

the Sherwood number. 



Therefore, we will have to define Nusselt number and Sherwood number based on these

average quantities. So, if you want to find average heat transport coefficient then you

need to know what is the average Nusselt number and that is given by h bar L by k f and

similarly you will require the average Sherwood number which is average mass transport

coefficient divided by multiplied by L divided by the corresponding diffusivity. So, that

is what you will have to find. So, for all the different geometry is that we will discuss in

the next several lectures the ultimate goal is to find out this average Nusselt number and

average Sherwood number.

So, with this we sort of finish the basic boundary layer approximation and analogies and

we going to move into the specific different geometries and this is where we are going to

attempt to solve some of these model  equations.  Remember  that  so far we have not

solved any of them, we have only look at the functional form structure of the equations

and some intuition that we use for boundary layer of approximation, based on that we are

able to get all kinds of insights and information about the processes that recurring in

boundary layer.


