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 (Refer Slide Time: 00:15)

So, suppose I take a flat plate ok. So, I said that is going to be a boundary layer. So, let us

look  at  the  momentum  boundary  layer.  So,  this  has  been  dealt  with  the  to  quite

extensively in your fluid mechanic course. So, ill just briefly outline and will not go into

the details of explaining all aspects of the momentum boundary layer. So, what happens

is that the fluid which is coming pass this object. So, let us say the free stream velocity is

u infinity. So, suddenly at y equal to 0 and x equal to 0 the fluid will suddenly come to

rest at this location here so, but because of continuity. So, note that it is a continuous

stream. 

So, so the fluid which has come to rest here it is now going to retard the fluid particle

which has actually go a flowing above it supposing we take a fluid particle here. So, that

fluid particle before it it is felt by the flat plate it is moving at a velocity of u infinity, but

then as soon as it sees the flat plate, the fluid particles below it has come to rest. So, now,

because of continuity it is going to retard the fluid particle which has actually placed

above it.  So, therefore,  you going to see here a temperature gradient  and I am sorry



velocity  gradient  and velocity  profile in the boundary layer. So,  this  is the boundary

layer.

So, therefore, d u if u is the x component velocity. So, d u by d y is not equal to 0. So,

before the plate. So, for y less than 0 d u by d y is 0, cases very important because we

assume that it  is a flat velocity profile and. So, the velocity of every fluid particle is

actually exactly the same and. So, there is no gradient in the y direction. But as soon as it

sees the flat plate, now suddenly there is going to be a gradient in the y direction.

Student: Sir why does (Refer Time: 02:44).

Why does.

Student: (Refer Time: 02:46).

Oh I am sorry thanks you thank you very much x less than 0 that is right. So, for x less

than 0 there is going to be a gradient of the x component velocity in the y direction 0

gradient, but when x is greater than 0, there is going to be a finite gradient and that is

because the fluid particles which is at the surface, they have come to rest and because of

continuity they retard the fluid particles above it ok.

Student: (Refer Time: 03:15).

Fluid is not.

Student: (Refer Time: 03:17).

That is true it has a viscous shear we going to talk about shear stress very soon, but note

that it has viscous effects, now what happens is that because of viscous effect you will

see that the gradient is going to come in both directions and. In fact, the retardation why

does it retard because there is a definite viscosity and so, you when there is one fluid

particle which is at rest, the other fluid particle is now trying to flow at a certain velocity

whether it is going to offer a retardation because of the viscosity right so.

Student: (Refer Time: 03:51).

But if it if it is not continuous right.

Student: Sir if (Refer Time: 03:54). 



If you assume the fluid to be non viscous.

Student: But is there.

But is there a fluid which is not viscous.

Student: (Refer Time: 04:09).

It does not make sense because at the boundary viscous forces are the ones, which play

dominant role even if the viscosity is very small.

Student: At the boundary.

No at the interface excuse me.

Student: at the interface it, it not the (Refer Time: 04:22).

Why in the boundary layer it is not viscous forces?

Student: Viscous forces are the forces (Refer Time: 04:29) molecule.

Yeah. So, supposing I take a section here.

Student: Not there the out.

Here it is 0.

Student: That is what.

At the boundary at the interface it is 0.

Student: (Refer Time: 04:41).

But we are talking about retardation in the boundary layer right. So, so we are talking

about the element  which is  present here,  I mean it  could be here this  element  could

influencibly be very close to surface it does not matter only that monolayer of that fluid

particle which is in touch with the surface has 0 velocity, and because the velocity is

different the viscosity is now going to viscous forces are going to retard the fluid from

flowing in the same velocity above it the velocity cannot be the same because the viscous

forces are playing a role. But if there is no continuity then that is not going to propagate



up to the boundary layer. So, because the fluid stream is continuous, that is why the

gradient is propagating all the way up to the boundary layer otherwise it is not going to

propagate. So, continuity is an important assumption here if the system is not continuous,

then everything is going to crash right at the monolayer. 

So,  it  is  very important  continuity  plays  an  important  role  here  and because  of  this

gradient,  you  also  going  to  have  a  gradient  in  the  x  direction  right  because  of  the

continuity equation you going to see that in a short while. So, now, this thickness is what

is called the boundary layer thickness and this is obviously, a function of position this is;

obviously, a function of position and. So, the boundary layer thickness is defined note

that it is a definition. So, boundary layer thickness is defined as. So, the location where

boundary layer thickness is defined as that location, where the u of y u at delta y delta x.

So, delta is the height of the boundary layer at any x location. So, u at delta y is equal to

0.99 times u infinity ok.

So, that is the 99 percent of energy transport is already accounted for that is what is

called  the  boundary  layer  thickness,  and  then  you  have  something  called  a  fully

developed regime what is a fully developed regime how is how can we identify what is

fully developed regime what is it mean?

Must have been taught you in fluid mechanics no

Student: Boundary layer (Refer Time: 07:31).

Oh I see. So, what happens is supposing this is the this is the profile that you will seen

now at some location x 1, let us say this is x 1 at some location x 1 or let say at any x

greater than x 1, you will see that the profile d u by d x will become 0. Now what is it

mean it means that. 



(Refer Slide Time: 08:06)

So, suppose I zoom up this flat plate here, at some location what happens is that you will

have a will have a velocity profile, but then the profile will be maintained. So, this arrow

distance tells you what is the velocity of the fluid at that location and. So, there at the

intense or there velocity of each of the fluid particles across y direction, would actually

be maintained if you actually go in any x direction. So, which means that if let us say

that the velocity profile is u of y. So, if I call this as u 1 of y that is the velocity profile at

x 1 direction. So, x 1 location and let us say this is x 2 then the velocity profile will

continue to remain the same which means that the boundary layer thickness will remind

this thing after the location x 1. So, that is what this regime is what is called as a fully

developed regime. So, the regime before is called developing regime and after x 1 is

called the fully developed regime. 

So, now the properties in this boundary layer is actually characterized by what is called

the  friction  coefficient.  So,  it  is  the  friction  which is  causing  these  kind  of  velocity

profiles. So, it is characterized by friction coefficient, C f is the symbol that is given for

friction coefficient and that is given by the shear stress at wall shear stress at y equal to 0

divided by infinity by 2. 

So,  that  is  the  friction  coefficient  and so,  this  characterize  the  shear  stress  which is

present at the interface between the flat plate and the fluid. So, that will be mu into d u

by d y at y equal to 0 divided by infinity by 2. So, that is the friction coefficient shear



stress is  given by viscosity  multiplied by the velocity  gradient  x component  velocity

gradient at y equal to 0. So, now, similarly very similar to the momentum boundary layer,

if we want to characterize heat and mass transport in the boundary layer, note that at the

near the inter near the interface of these two phases, it is the boundary layer which is

controlling all the transport processes.

(Refer Slide Time: 11:18)

So, therefore, the there has to be something called thermal boundary layer, very close to

the interface there will be a thermal boundary layer. So, supposing if the temperature of

the flat plate is let us say T s and the temperature of the free stream fluid is T infinity,

now there is going to be a boundary layer. So, that is the thermal boundary layer. If I

assume that T s is greater than T infinity what will be the temperature profile. 

Student: (Refer Time: 12:03).

 In the.

Yes it will.

Student: (Refer Time: 12:06).

So T a T infinity is the temperature of the free stream fluid which is above the boundary

layer and. So, the temperature profile will be asked fluid particles which is close to this

surface, would actually quickly reach equilibrium with that flat plate and the temperature



of that will  be very close to or equal  to the temperature of the flat  plate  itself.  And

therefore, there will be a gradual decrease in the temperature till the boundary layer. So,

that is the temperature profile that you would expect and similarly you can draw this at

different location. So, one could define thermal boundary layer thickness. So, this height

is called thermal boundary layer thickness, which is again a function of the x direction

and. So, this is defined as is very similar to how the momentum boundary layer was

defined, we said 99 percent velocity, similarly here we can definebT s minus T by T s

minus T infinity should be equal to 0.99. 

So, note that here the temperature of the surface plays an important role unlike in the

case of momentum boundary layer, the flat plate is not moving. So, the velocity of that

surface is 0 right. So, here everything depends upon the temperature of the flat plate and

therefore, everything has to be scaled with respect to the measurable quantities T s minus

T infinity. So, note that  the measurable quantity  has already copped in here,  and we

going to see a lot  more of these when we discuss all kinds of aspects of convection

alright. So, now, we need to simulate a friction coefficient, we need to define what is

called the heat transport coefficient. How do we find this can we make a comparison. So,

I said momentum heat and mass transport they are all similar processes, how do we get

the friction coefficient. The shear stress divided by what is rho u u infinity by 2.

Yeah.

What is rho u square by 2. 

Student: Inertia.

It inertia right. So, it is shear stress divided by inertia what should be the equivalent here

flux divided by. So, the way to see that is suppose I assume the interface. So, this is my

interface. So, I have a fluid particle which is on top of that surface, now I write a an

energy balance in  the fluid phase at  the interface.  So,  whatever  heat  that  is  actually

transported from the flat plate to the fluid is transported via conduction right we said that

the velocity of these particles as 0. So, essentially the transport is occurring because of

conduction. So, therefore, the flux at that location this is Newton’s law of cooling h into

T s minus T infinity should be equal to what is the diffusive flux. Whatever flux of heat

that be leaves the surface and goes to the fluid should be equal to the amount of heat that

is actually diffusing at that location right what is that.



Student: (Refer Time: 00:00).

Be careful minus k into sign is very important here, minus k into d T by d y at y equal to

0.

Student: (Refer Time: 16:09). 

That is if you assume that there are things are not moving right because now it is a two

dimensional problem, where the gradients of temperature in both direction. So, it is not

just that it is simply being heating the fluid, but the temp the fluid is also moving.

Student: (Refer Time:16:36).

So, it is also convicted. So, it is not only leading to just heating the fluid and increasing

the  temperature,  unlike  what  we  considered  for  a  case  of  a  solid,  where  it  is  pure

conduction here the temp the fluid is also moving. So, therefore, in the fluid stream there

is a temperature gradient in both directions.

So, you cannot assume that whatever the heat that is being transported is simply being

used for heating of the fluid that is not a correct  assumption because there is  also a

convection which is playing a role here. It is not pure increase in the capacity of the of

the  fluid.  So,  therefore,  the  local  flux  h  into  T s  minus  this  balance  is  only  at  the

boundary where the velocity is 0 only at the interface, at the interface the velocity is 0 we

are able to do this simply because of the observation that there is no slip between the

particles which is sitting right at the interface of the solid and the fluid. So, we are not

neglecting convection note that I said it y equal to 0 right. So, not neglecting convection

here only saying that the particles are at rest therefore, convection is not playing any role

here. So, therefore, 

Student: (Refer Time: 17:38).

Correct because of the pumping of the fluid there is a bulk motion and that is actually

leading  to  convective  mode  of  heat  transport  and.  In  fact,  that  is  leading  to  the

temperature gradient. So, therefore, from here heat transport coefficient can be written as

k f. So, note that this is the conductivity of the fluid not the solid we are looking at heat

transport from the solid at the boundary, and it is carried because of diffusion in the fluid

phase at the interface.  So, this is diffusive flux at the interface.  So, note that is very



important  to  appreciate  this.  So,  this  is  the  diffusive  flux  in  the  fluid  phase  at  the

interface. 

Student: (Refer Time: 18:38).

Yeah if I write a balance for the flux inside the solid that is correct, because you will say

minus k solid d T by d y should be equal to the heat transport coefficient  times the

temperature gradient.

Student: (Refer Time: 19:06).

Right, but that is if you assume that it is not uniform I know how to maintain a uniform

temperature inside the flat plate that is not arise.

Student: (Refer Time: 19:18).

But if it is not uniform yes you should consider the gradients inside

Student: (Refer Time: 19:19) how was the how was the flux (Refer Time: 19:20).

 They are equal this will be equal to minus k into d T by d y in the solid phase it will be

equal.

Student: The gradient,

The gradients will be different be careful the conductivities are different.

Student: (Refer Time: 19:25).

So, the gradients will be different, but the flux will be equal.

Student: So, I (Refer Time: 19:29).

No no gradiance will not be equal because these are completely different object if I said

that sorry. So, gradients are not equal in two different phases because their properties are

different the conductivities are different. So, the gradients cannot be equal if they are in

contact with each other their properties are different and. So, the gradients cannot be

equal  it  will  be  the  flux  which  will  be  equal.  So,  whatever  is  the  difference  in  the

conductivities will be offset by the gradient for the flux to be equal to each other. So,



therefore,  based on this heat balance at the interface,  we can write the heat transport

coefficient as.

(Refer Slide Time: 20:05)

 T s minus T infinity. So, that is the definition for heat transport coefficient. So, so far we

liberally  use  heat  transport  coefficient,  but  this  is  the  correct  way  to  find  the  heat

transport  coefficient.  It  is  the  conductivity  of  the  fluid  remember  that  it  is  the

conductivity of the fluid and not conductivity of the solid. So, it is the we are equating

the heat transport flux, flux of heat that leaves the solid and goes into the fluid phase

with the flux that is actually conducted by the fluid because of diffusion at the interface

because the velocity is 0. 

Student: (Refer Time: 20:53).

Oh sure steady state does not mean that it is not flowing you can have a steady velocity

right where the fluids are moving at a same bulk velocity. So, remember that even for a

simple one d slab in a steady state we had a linear profile the temperature is not constant.

So,  steady state  does  not  mean temperature  is  constant  it  is  the  temperature  profile,

which is constant. So, therefore, gradients are not necessarily 0, when the when it is a

steady state of course, there can be a system where gradient is 0, but that is not always

the case any other question. So, one could actually make a parallel to mass transport in a

similar fashion where we define concentration boundary layer.  



(Refer Slide Time: 21:43)

So, suppose I have a flat plate where concentration of some species is CAS and you have

a bulk stream, the fluid velocity is u infinity and the concentration of the species is c a

infinity  and you have a concentration boundary and the profiles are very similar if I

assume that CAS is greater than CA infinity. So, that is the kind of profile concentration

profile that you would expect in the boundary layer that is the kind of concentration

profile. 

So, you can immediately see that lot of things that we talk in heat transport are very

similar. Simply because the profile is similar the therefore, the gradient is similar and

therefore, the process itself is similar. So, we can define boundary layer thickness if I call

it as delta c. So, delta c is defined as that location where CAS minus CA, CAS CA

infinity is 0.99 same definition nothing different and if I write a mass balance at the

interface. So, I can define heat transport coefficient.



(Refer Slide Time: 23:12)

 h m as what will be the equivalent? 

Yeah what will be this expression?

Student: (Refer Time: 23:27).

Diffusion it is minus d. So, that is the equimolar counter diffusion. So, I said there are

two species that is going and one of the species can be in excess. So, it  will  be the

equimolar counter diffusivity of a b multiplied by d CA by d y at y equal to 0 divided by

CAS minus CA infinity. So,  that  is  the definition  for mass  transport  coefficient.  So,

important message that we have learned today is that the heat transport and the mass

transport processes are actually very similar if the transport is occurring across from one

phase to another phase where one of the phases is moving right. 

So,  there is  convection  in  one of  the  phases  and.  So,  the heat  transporter  and mass

transport process is a very similar to each other and. In fact, you will see when we write

model equations in the next lecture you will see that it will see the model equations are

actually very similar to each other and therefore, the characterization process also will be

very similar.


