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 (Refer Slide Time: 00:17)

What is the temperature profile at steady state? What is the proper temperature profile?

Quadratic? Linear?

Student: (Refer Time: 00:26).

Yeah.

Student: (Refer Time: 00:28).

A 1 so, you want to try? What is the temperature profile? Linear right? So, you will have

a linear temperature profile. So, supposing I say that T 1 and T 2 are the temperatures at

the either side of the boundary. It is a 1D problem, where you have heat conduction

happening in this direction.

Student: (Refer Time: 00:50).

Yeah, but I can still have a higher temperature.



Student: (Refer Time: 00:55).

Slope is supposed to be right. So, supposing if I have a symmetric condition. So, this is

the kind of profile I will have, right. 

(Refer Slide Time: 01:14)

 

So, supposing if you have a (Refer Time: 01:20) then what you will have is a quadratic

profile right. So, it is not linear. So, how many of you said linear? You should understand

that when you have a flux boundary condition, this is very important to understand this;

when you have a flux boundary condition you should always make sure that the gradient

at that location is 0, very good.

So, supposing so, what I want to look at is, what is the convective rate at the boundary,

right. So, conduction is happening only at that location. So, I want to look at what is the

conductive rate, and I want to know when can I lock the conduction process inside the

solid. So, what should I do? I need to compare the rate of conduction, and the rate of

convection  at  the  boundary,  right.  That  is  what  I  need  to  do.  Because  these  are  2

competing processes. I want to know when can I ignore the conduction process.



(Refer Slide Time: 02:31)

So, what I need to do is, I need to write a energy balance at x equal to L. That is what I

need to do. So, minus k dT by dx at x equal to L should be equal to the amount of heat

that is transported because of convection band. So, that will be T 2 minus T infinity,

right. That is x equal to plus L. So, the flux of heat that is transported via conduction at

the boundary it should be equal to the amount of heat that is actually transported from

the solid to the fluid that is circulating around. Does everyone understand this?

So now supposing I define a variable called z, which is x by L. So now, I scale the

dimensions. So, keep in mind that when I said when you lump it the dimension of the

system plays an important role. So, when you want to compare the 2 rate processes, it is

useful to non dimensionalize the coordinate system. So, let us now divide define a new

variable z, and set x by L is now that quantity. And so, I can put that here it will be minus

k divided by L into dp by dz at z equal to 1; that is equal to h into T 2 minus T infinity.

So, I can do an algebraic manipulation of this. So, dT by dz equal to 1, is given by h into

L by k into T infinity minus T 2. That is clear to everyone?



(Refer Slide Time: 04:50)

So now h L by 2 a equal to dT by dz that divided by, T 2 is nothing but temperature at z

equal to 1. So, this  quantity is what is called Bi number. So, this  is a dimensionless

quantity. What are the units of heat transfer coefficient? Units? Watt per meter square

kelvin.

So,  remember  newtons  law  of  cooling  the  heat  transfer  rate  is  h  times  area  times

temperature difference. The heat transfer rate unit is watts. So, heat transfer coefficient

unit is watt per meter square per kelvin. So, this the units here are watt per meter square

kelvin multiplied by meter divided by watt per meter kelvin. So, this is a dimensionless

quantity. It is called the Bi number. It is written as Biot. It is spelled as Biot, called the Bi

number.

So, we could rewrite this Bi number as L by K A divided by 1 by h A. So, all I have done

is the cross-sectional area at which the heat transport is occurring from the solid to the

fluid. I am just multiplying the area in the numerator and denominator.



(Refer Slide Time: 06:37)

And I  have  just  manipulated  the  expressions.  What  is  L by k?  Is  the  resistance  for

conduction and what is 1 by h A?

Student: Resistance.

Is  a  resistance  for  convection  right.  So,  it  is  important  to  qualify  the  resistance  for

convection,  saying  that  it  is  the  resistance  for  convection  at  the  boundary. It  is  the

resistance for convection at the boundary of the solid and liquid interface.  There is a

reason why I am qualifying this. This must be about 8 to 9 lectures from now. You will

see another dimensionless number, which looks very similar except that the definition of

the resistance is slightly different. And that is why it is important to qualify it by saying

that  it  is  the  resistance  of  convection  at  the  boundary  where  the  heat  transport  is

occurring from solid to the liquid.



(Refer Slide Time: 07:43)

What happens when Bi number is much larger than 1. Which means that resistance to

conduction is much larger than resistance to convection, right at the boundary. When Bi

number is equal to 1, the resistance to conduction is almost equal to if I say almost equal

to 1. Conduction and if Bi number is much smaller than 1, then you will have resistance

to conduction. It is much smaller than resistance to convection. So, suddenly by defining

a  dimensionless  quantity.  We  are  able  to  use  all  the  intrinsic  properties  and  the

dimensions of the system, in order to identify when the lumped capacitance method is

important.

So, when conduction resistance is very large. So, can we use lump capacitance method?

Why? Why cannot we use?

Student: (Refer Time: 08:48).

Right so, when the resistance to conduction is very high. So, you should always translate

resistances to the temperature profile. Whenever the resistance is very large, you cannot

assume  uniform  temperature.  So,  this  means  so,  when  Bi  number  is  larger  than  1,

uniform temperature assumption is not valid. So, when Bi number is much larger than 1,

you cannot  assume a  uniform temperature  inside  the system.  Which means  that  you

cannot use lumped capacitance method. You cannot use the lumped capacitance method

to approximate or to characterize the heat transport process.



So now, it  is  almost easy to read what  happens when Bi is  almost  equal  to 1,  what

happens when Bi is almost equal to 1?

(Refer Slide Time: 10:16)

Can we use  lump capacitance?  Yes?  No? You cannot  use?  Because  you still  cannot

ensure uniform temperature. Keep in mind that the lumped capacitance method works

only when you can assume a uniform temperature distribution. So, when Bi number is

almost equal to 1. So, note that so, supposing if this is the boundary, where you have

solid here, and a fluid here.

So, we said that Bi number if h L by k which is dT by dz at z equal to 1, Divided by T

minus T infinity minus T infinity minus T at z is equal to 1. So, this essentially signifies

the ratio of the temperature gradient at the boundary in the solid, and the temperature

gradient for convection outside the boundary. So, it is not just that it captures a ratio of

resistances, it is also equivalent to the ratio of the gradient temperature gradient inside

and temperature gradient outside.

So, when these 2 resistance to conduction is equal to resistance to convection,  which

means that there will be significant amount of gradient, and these 2 gradients will be

exactly  equal  to each other, right.  When Bi is  equal  to 1,  it  means that  the gradient

temperature gradient in the solid at the boundary and the temperature gradient outside the

boundary will be equal to each other.



(Refer Slide Time: 11:59).

Which simply means that no uniform temperature can be assumed. You cannot assume

uniform temperature inside the solid.

So, which means you cannot use the lumped capacitance method, no lumped capacitance

method is permitted when Bi number is almost equal to 1. So, the third case is where Bi

number is much smaller than 1; this means that the resistance of conduction is much

smaller  than  resistance  to  convection.  So,  what  does  it  mean?  That  the  temperature

gradients inside the solid is going to be very, very small. So, you could neglect. It does

not  mean that  there  is  no temperature  gradient.  All  you can  assume is  that  you can

neglect  the temperature gradients.  It  is  very important  to qualify this. When you say

neglect, it is actually in comparison with something.

So,  you  neglect  temperature  gradient,  relative  to  inside  the  solid  relative  to  radiant

outside.



(Refer Slide Time: 13:22)

So, this is the justification for using the lumped capacitance method. It does not mean

that the temperature gradient is 0. It is an approximation or it is an assumption and it is

valid  only  when  the  Bi  number  is  much  smaller  than  1.  So,  it  is  the  purpose  of

dimensionless  quantities,  as  you  will  see  in  down  this  course;  many  dimensionless

quantities that will be defined in this course. And also, many other courses in, one of the

main purposes is basically to characterize the different ranges of the process.

Characterize what  is  it  going to be the different  features  of the process are  different

values of these constants. So, instead of looking at the heat transport coefficient, length,

and  the  effect  of  conductivity  individually.  It  is  enough  to  look at  the  effect  or  the

variations of the features or properties of the temperature with respect to Bi number.

Which actually captures all the effects that is included in heat transfer, coefficient, length

and the conductivity. So,  this  is  the  elegance  that  you get  by using a  dimensionless

quantity and defining a dimensionless quantity.

Any questions so far? So, let us try to sketch the temperature profile. So, supposing if Bi

number is much larger than 1, which means that the resistance for conduction is going to

be much larger than the resistance for convection,  which means that,  this means that

there will be sharp temperature profile in the solid.



(Refer Slide Time: 15:20)

So, what I am going to sketch now is the time profile of the temp time profile of the

temperature distribution in the solid slab.

So, supposing if I maintain it at same temperature on both sides of the slab. So, I will

have a asymmetric temperature profile. And so, supposing if Ti is the initial temperature

at which the solid is being exposed to the fluid which is surrounding. And let us say the

temperature here is T infinity, then as time passes by sorry. So, because the Bi number is

much larger than 1, and the resistance to conduction is much larger than the resistance to

convection at the boundary.

So, you would expect that the gradient outside the solid is going to be much smaller than

the gradient inside the solid. So, as time passes by. So, this is T greater than 0. So, you

will  start  seeing profiles which will  look like this. So, you will  have sharp gradients

inside the solid, while you will have not so sharp gradients outside the solid. So, this is

we have not solved the equation.  Without solving the equations, simply based on the

intuitive understanding of how the temperature distribution is going to be based on the Bi

number and resistances, we are able to actually sketch the temperature profile. So, this is

very important of course, you will have to write model equations and solve them.

But if you do not know how the or what the model equation is going to give, you do not

know  whether  the  solution  is  right.  So,  it  is  very  important  to  be  able  to  get  an

approximate  temperature  profile  or  sketch  of  the  temperature  profiles  even  before



solving the equations. And using dimensionless quantities and such resistance arguments,

it  actually  helps  you  to  come  up  with  the  what  is  going  to  be  the  approximate

temperature profile.

So, similarly I could draw for Bi much smaller than 1, if Bi is much smaller than 1, what

would you expect it will be what will be the temperature profile inside the solid.

(Refer Slide Time: 18:30)

Student: (Refer Time: 18:08).

It will be almost flat, it will be almost uniform. So, one could sketch the temperature

profile. If Ti is the initial temperature, we will have sharp gradients outside, but you will

have lots of sharp gradients inside. Because you Bi number is much smaller than 1, the

temperature difference for conduct convection outside the solid is expected to be much

larger than the gradient of temperature at the inside of the solid near the boundary. And

so, as time goes by so you will start seeing temperature profiles which are almost flat

inside.

So, this is the 2-different profile, but Bi number is one what will be the profile it will be

somewhere in between these 2 right. So, this is the profile for one extreme, and this is the

profile  for  other  extreme  condition.  And  Bi  number  is  equal  to  1.  You  will  see  a

temperature  profile  where the gradients  are  not  very steep,  but  at  the same time the

gradients outside the solid are also not very steep.



So, they will be equal to each other at the boundary. And so, you will see as temperature

profile which is somewhere in between these 2. So, supposing we next take the actual

system, right. We try to sketch the temperature profile in a slab without writing the model

equation. So, let us now write the model equation. So, supposing you have a slab, and

this is plus L minus L.

(Refer Slide Time: 19:41)

And let us say the temperature here is T 1, and if the fluid which is flowing around the

temperature is T infinity.

So, let us write the model and in fact, we can check whether the temperature profiles that

we actually intuitively guessed what is going to be the profile, that will actually be the

same as what we would predict from the model. So, this is equivalent to a half slab with

adiabatic conditions in one boundary. And the temperature here is T 1. And we have T

infinity is the temperature of the fluid which is flowing past it.



(Refer Slide Time: 20:37)

And so, we can write a model there will be rho C p it will be equal to, note that it is the

partial derivative now.

And the boundary conditions will be dp by dx at x is equal to 0 is 0. And minus k dT by

dx at x equal to L.

(Refer Slide Time: 21:07)

So, if I assume that T 1 is greater than T infinity. So, that will be h into T at x equal to L

minus p infinity. So, that is the boundary condition. And the initial condition will be T at

x comma 0 will be equal to Ti.



So, the initial temperature of the slab is uniformly equal to the temperature Ti. And one

could even as new my certain temperature profile as an initial condition, but let us not

worry about that right now. So, we can solve this equation. I am going to do the math

here it is very similar to the way we did the separation of variables problem in the last

lecture. The solution will be so, the solution is so; if I assume theta as T minus T infinity

by Ti minus T infinity. 

(Refer Slide Time: 21:57)

And the solution will be summation n equal to 1 to infinity C n exponential of minus

lambda and square in to Fo is Fourier number. I will define in a short while.

What are this and z is x by L Fourier number is alpha L by alpha T by L square. What is

the alpha? Thermal diffusivity. So, alpha is k by rho C p this thermal diffusivity. And C n

is given by 4 sin lambda n divided by 2 lambda n plus sin 2 lambda n. And lambda n is

the solution of this equation, lambda n tan lambda n equal to Bi number.

So, lambda n are the roots of this equation. How many solutions are there? For a given

value  of  Bi?  Lambda n tan  lambda  n equal  to  Bi  how many solutions?  How many

solutions? What is the nature of tan? A lot of them, how many?

Student: (Refer Time: 23:43).

Yeah.



Student: (Refer Time: 23:45). 

It is infinite solutions. So, tan is a transcendental function. In fact, the way to see that is

you can actually express it in terms of a plot a graph is one way. You can actually see that

tan is a ratio of exponentials, right is ratio of exponential of imaginary functions, right. It

is ratio of sine and cos.

Student: (Refer Time: 24:06).

So, a sine and cos you can write as exponential. So, you can immediately see that it is

actually infinite number of solutions. So, you have infinite roots and in fact, that is why n

goes from one to infinity here. How do you solve lambda n tan lambda n equal to Bi for

a given value of Bi? Is it linear? It is not linear. So, you cannot get analytical solutions

for the root. So, you have to use a non-linear solver, which non-linear solver? Scilab?

No, no, no. Scilab is just a software.

(Refer Slide Time: 24:54)

So,  what  you  use  is  called  the  newton  Raphson  method.  You  will  see  this  in  your

numerical analysis course. So, you have to use the newton Raphson method to solve this

equation. And in fact, there are subroutines in scilab MATLAB etcetera to do the newton

Raphson method solution of such kind of algebraic equation. 


