
Heat Transfer
Prof. Ganesh Viswanathan

Department of Chemical Engineering
Indian Institute of Technology, Bombay

Lecture – 10
Extended surfaces II-Fixed cross-section area

The question is where you want to incorporate the assumption and when you want to

incorporate the assumption. You could incorporate the assumption after you write the

generalized model. Now this generalized model does not include the assumption that the

cross sectional gradient is negligible and this is the way to do that you cannot arbitrarily

neglect.

(Refer Slide Time: 00:36)

The second order derivative in the Laplacian,  because the boundary condition is now

going to be different and the way to see that made to appreciate that is I would probably

urge you all to take a look at the solution of 2 different types of problems. 1 is you take a

diffusion operator and you put 0 boundary conditions Dirichlet or 0 boundary conditions

and you take the same problem put 0 flux boundary condition and you take the same

differential operator and put a 2 flux boundary conditions, like something like this and

you have to convince yourself that the nature of the solution you get in all these 3 are

completely different.



(Refer Slide Time: 01:23)

Particularly in the third case it will be completely different if you want me to state it I

would like you all to convince yourself by solving this problem, you solve d square T by

d x square equal to 0 with 3 types of boundary conditions, you can say T at x equal to 0

equal to T at x equal to 1 equal to 0 that is 1 problem and then you say d T by d x at x

equal to 0 equal to d T by d x at x equal to l equal to 0 that is the second problem. And

the third 1 is d T by d x at x equal to 0 equal to some h into h by k into T at x equal to 0

minus T infinity and d T by d x h by L into T at x equal to L minus T infinity that is the

third  problem.  One  could  in  principle  have  mixed  boundary  conditions  you  should

actually even try to solve that also and you must appreciate that the these 3 classes of

problems have completely different solution.

And in fact, if you understand that that is the reason why you cannot incorporate this

assumption directly into the generalized model and this is the correct way to incorporate

the assumption that the gradients in the radial direction is 0 particularly when you have

this kind of a convection or flux boundary condition.

If you have these 2 types of boundary condition then you would assume you can directly

ignore the gradients and you would not make a mistake because of the nature of the

solution that we will get for these 3 types of problem. I it is a very good exercise all of

you should actually  try to  solve these 3 types  of problems and you will  see these 3



classes  of  problems  in  almost  all  the  engineering  systems  that  you  will  see  in  this

program and also probably elsewhere.

It is a very very common type of differential equation problem that you will see in many

many engineering systems and there are some very good reasons for that I will not get

into the, but there are very good reasons why these classes of problems will appear in

almost all the natural systems that you will try to model. Assuming cross sectional area

temperature to be uniform is not an appropriate and not a realistic thing if the aspect ratio

is  reasonably  good;  if  the  aspect  ratio  is  very  small  then  you  can  assume  that  the

temperature is almost uniform.

Now, of course, you do not have to assume that to be uniform it just makes your life easy

to solve the problem that is all now you could in principle take the full problem and get

the full solution and you will see that the solution that you will get from this equation

will  not be very different,  if  you impose the condition that the temperature is nearly

uniform in the cross section, it does not matter. 

You can go either way it does not matter you can start from the generalized equation and

then you can integrate you will get exactly the same and you can start from you can you

incorporate the assumptions while building the model you will get exactly the same 2

errors it would not matter. And in fact, some of your things about the integral balance is

already incorporated here this is exactly what you do when you write an integral balance

ok.



(Refer Slide Time: 04:39)

So, let us take one of the questions that he asked what happens there A x is constant

before that we should actually go to the boundary conditions of this problem.

So, in principle there are 4 different possible boundary conditions that could have 1 is;

obviously, you can have A flux boundary condition d T by d x at x equal to l will be h T

at x equal to l minus T infinity. So, that is 1 possible boundary condition that you would;

obviously, guess that just like how heat transfer is occurring from this cross sectional

area you would expect that the heat transfer would occur from the other edge of the fin

well.



(Refer Slide Time: 05:24)

Now, the second possible boundary condition is that there is no flux may be that section

is insulated. So, if the boundary is insulated with some insulator, then there is no heat

exchange that is you impose A an adiabatic condition at the other end of the fin, and then

the third 1 is you could impose a constant (Refer Time: 05:52) boundary condition. So,

this is very unlikely, but just for hypothetical case you can assume that T at x equal to L

is some constant temperature there are some example, but they are not that many and the

fourth 1 which is generally used for some standardization purposes.

So, supposing if the fin is infinitely long infinitely long fin what will be the boundary

condition  is  fin is  infinitely  long want  to  try, if  this  fin  is  infinitely  long and if  the

temperature of the fluid is T infinity you what would you expect.

Student: (Refer Time: 06:35). 

T equal to equal to T infinity right, so, you expect that T at x equal to l l tending to

infinity will be equal to T infinity. So, that just for standardization purposes you will

never achieve such an ideal situation; however, long the fin is going to be, but it is just

for standardization purposes such kind of boundary condition has been prescribed all

right. So, next we go to a specific case where.



(Refer Slide Time: 07:09)

So, supposing we assume that the cross sectional area.

Student: (Refer Time: 07:11). 

Is constant which means that the cross sectional area is same and therefore, the curved

surface area is  actually  a  curved surface area of  a cylinder. So,  this  equation  would

simply which means that d A c x by d x is 0 which means that the gradient of the cross

sectional area with respect to x is 0 because it is a constant. And so we can simply reduce

this equation at v square d by d x square that is equal to h by A A c T minus T infinity,

what is d A s by d x for constant cross sectional area it is the it is 2 pi r perimeter right it

is the perimeter. 

So, if p is the perimeter P is the perimeter of the fin that you are considering and that

should be the that should be equal to d A s by d x, the change in the cross sectional

surface area for heat transport is simply the perimeter of that particular fin.

How do I solve this equation is it complete do I need to know something else to solve the

equations, I need to know the boundary conditions right. So, if I specify the boundary

condition that x equal to 0 is the temperature of the base ok.



(Refer Slide Time: 08:50)

So, note that the fin is attached to a base surface and. So, if the temperature of the base

surface is specified. So, that is going to be the boundary condition at x equal to 0 and I

could say that T my if I assume that there is a convection boundary condition. So, if I

specify this boundary condition then we can solve the equation how do we solve this

equation how do we solve this yeah it is not that hard some exponential. So, you say

theta is T minus T infinity you make a substitution and then this will become d square

theta by d x square equal to if I call this m square m square theta and this will be theta at

x equal to 0 is T b minus T infinity which I can call it as theta b right. So, I get it right.

So, T is theta is T minus T infinity right. So, and then minus k d theta by d x at x equal to

l that is equal to h into theta with a pretty easy and you can solve this is an exponential

solution, it is like an Eigen value problem what are the Eigen values of this differential

equation Eigen functions Eigen functions are e power yeah plus m x and minus m x. So,

you can solve the Eigen value problem and substitute the boundary condition I will just

give you the final form.



(Refer Slide Time: 10:51)

So, theta x pi theta b this is the base temperature is given by the ratio cos m L minus x

plus h by m into k into sin hyperbolic m L minus x divided by cos hyperbolic m L plus h

by m k sin hyperbolic m L ok.

So, that is the solution and the profile will be. So, if theta b that is the profile that you

will expect. So, that is the profile that you can expect from this solution. And In fact, you

should go and plot this and see it is sort of obvious to read it out if you know how cosine

hyperbolic and sin hyperbolic functions look like, if you do not know I think it is a good

exercise to go on plot cosine and sin hyperbolic and convince yourself that this is the

solution for this kind of a problem. So, now, we said that when we started this extended

surfaces problem, we said that the purpose of extended surface is essentially to increase

the heat transfer rate right. So, therefore, we need to find out what is the total heat that is

transferred by the fin ok.



(Refer Slide Time: 12:46)

So, that is what that is the quantity of interest which is going to quantify the problem that

you are looking at. So, we need to find out what is the total heat transfer rate.

How do we find this how do we find the total heat transfer rate that is the total amount of

heat that is transported by the fin. So, note that there are 2 processes 1 is it is transferring

by conduction and the heat is being lost from the other end of the fin and while doing

that it is also simultaneously losing heat way of convection. So, how do we find the total

heat transfer rate?

Student: (Refer Time: 13:25). 

Yeah.

Student: (Refer Time: 13:28). 

They are supposed to be.

Student: (Refer Time: 13:31). 

Added how. So, 1 could integrate h into d A s into T minus T infinity across the whole

fin. So, that will give you the total amount of heat that is transferred. So, that is one way

to do that, but. So, note that I always told you that you should use your intuition. So,

there is an intuitively simple way to do this. So, we assume that this system is under

steady state right is that the system is under steady state conditions. 



So, if it is under steady state conditions it means that the temperature profile remains

constant right it does not change the time. So, whatever heat. So, supposing if this is my

fin this is my fin, because I we impose a steady state condition and there is no heat

generation inside. So, whatever heat that is actually transferred to the fin at the base

should be equal to whatever total heat that is being transferred right, it is a very simple

(Refer Time: 14:56) simple thing there are is it clear to everyone.

Whatever is the total amount of heat that is transferred from the base to the fin should be

the total amount of heat that the fin is able to transfer, because I said it is a steady state

condition the temperature profile has to be maintained. So, whatever heat that comes in

should  actually  go  out  otherwise  the  temperature  profile  is  going  to  change  our

assumption is not valid. So, in order to satisfy the assumption that we made that it is

under steady state condition an intuitive way to find the total amount of heat transfer is,

what is the amount of heat that is actually transferred from the base to the fin at x equal

to 0.

In fact, if you integrate you will find that it will be exactly the same and that will be give

will give you the expression. So, that will be minus k. So, the total amount of heat that is

transferred by the fin q f is minus k into cross sectional area into d T by d x at x equal to

0. So, that is the amount of heat that is transferred to the fin at x equal to 0 and that

should be equal to the total amount of heat that is transferred.

(Refer Slide Time: 16:06)



So, that will be equal to and that should be the theta b square root of h P k c k A c into sin

hyperbolic m L plus h by m k into cos hyperbolic m L divided by cos hyperbolic m L

plus h by m k sin hyperbolic m L. So, that is the total amount. So, note that it is the total

amount of heat that is transferred the local heat transfer rate is not constant. 

So, remember the resis when we discussed about the resistances, that the whenever there

is heat generation or heat loss at local location from this from the solid that you are

looking at the total heat there the local heat transfer rate is now going to be a function of

position. In fact, that is part of alluded to in this expression. So, note that the total heat

transport rate is now a function of the length of the fin that you are considering.

If, it well to be constant then irrespective of the length the heat transfer rate should be

exactly the same that is not true so it is a function of the length I mean sort of it is

reflected in the total heat transport rate. So, if you know the length of the fin then you

should  be  able  to  calculate  what  is  the  total  amount  of  heat  that  particular  fin  can,

actually transfer from the base and this is an important design parameter. So, you have if

you want if you know what is the total amount of heat that you want to transfer then you

could use this expression in order to design the length of the fin. So, this is often an

important parameter that you have to find, what is the length of the fin that you have to

use in order to achieve a certain amount of heat transport rate is that clear to everyone

ok.

So, I will just give you the expressions for the other type of boundary conditions, but I

would strongly encourage you to derive them and convince yourself.



(Refer Slide Time: 18:20)

So, supposing if  you use no flux boundary condition.  So, that is  the second type of

boundary condition d T by d x at x equal to L is 0 and the solution will be theta by theta b

is cos h m L minus x divided by cos hyperbolic m L and the total heat transfer rate q f is

given by square root of h p k times A c into theta b into tan hyperbolic m L. And for the

third boundary condition where you have a fixed temperature that is theta at x equal to l

is theta l, the solution will be theta by theta b equal to theta l by theta b multiplied by sin

hyperbolic m x plus sin hyperbolic m L minus x divided by sin hyperbolic m L and for

the fourth type of boundary condition where you have long fin infinitely long fin.

So, theta at x tending to T infinity that is equal to 0 that is the temperature and the other

end is equal to the temperature of the fluid itself. So, that case theta by theta b is simply

given by e power minus m x and q f is given by square root of h P k A c into d theta b.

So, those are the 4 different solutions and I would encourage all of you to actually derive

these expressions and convince yourself that this is the solution.  So, there is another

definition and some expression for the definition with that we will finish todays lecture

what is called the efficiency.



(Refer Slide Time: 20:38)

So, note that when we said the purpose of a fin is basically to enhance the heat transfer

rate.  So,  therefore,  from design point of view it  is useful to define a quantity  called

efficiency, how efficient is the fin that I have designed can I calculate the efficiency and

find out what. So, if I want to compare 2 different fins in instead of comparing what is

the actual total heat transfer rate it is useful to compare the efficiency of the fin that has

been designed.

So, therefore, the efficiency of a fin is basically defined as the total heat transport rate

that is the total amount of heat that is transferred by the fin divided by the maximum

possible heat that can be transferred divided by the maximum possible heat that can be

transferred by the same fin, what is q max how can we find the maximum possible. So,

let us pose a slightly different question when can we achieve maximum heat transfer

from a fin of a given geometry.

Student: (Refer Time: 22:02). 

When can we assume when can when can we get maximum heat transport rate under

what conditions.

Student: (Refer Time: 22:14). 

Temperature.



Student: (Refer Time: 22:18). 

But that is that is like infinitily long fin you never going to achieve it. In fact, if the

temperature the right end is T infinity then the temperature gradient or driving force for

convection is almost 0 at the end of the fin. So, which means that the end of the fin are

almost of no use the any heat transport  rate is governed by the temperature gradient

which is the driving force. 

So, if the temperature at the end of the fin is equal to that of the fluid temperature it is no

use. So, you do not want to design a system where some parts of your fin is going to

have  a  0  driving  force  that  is  useless  it  is  a  waste  of  money. So,  how do  we  find

maximum when do you achieve maximum heat transfer rate it is hypothetical you are not

going to achieve it temperature is.

Student: Constant.

Constant where.

Student: (Refer Time: 23:20). 

Throughout the length what is that constant.

Student: That is equal to the (Refer Time: 23:26). 

That is equal to the base temperature. So, what is the purpose of a fin the purpose of a fin

is to transfer heat from the base to the fluid around when can you achieve maximum heat

transfer rate, when the temperature in the fin is constant and not just at any constant it

should  be  equal  to  the  temperature  of  the  base  itself  because  that  is  the  maximum

possible heat that you can transfer. So, therefore, q max is simply given by h into the

overall conductive heat transport area multiplied by T b is the base temperature so the

maximum possible rate. 

So, note that this is maximum possible rate, but what you will actually achieve in reality

will; obviously, be lesser than this. So, this is the maximum possible and therefore, 1 can

define efficiency as q f divided by h A s into T b minus T infinity.

So, that is the efficiency of A fin. In fact, for this problem the efficiency would be so, for

the second type of boundary condition where it is an adiabatic case.



(Refer Slide Time: 24:39)

So, eta f simply given by square root of h k perimeter into A c into theta b tan hyperbolic

m L divided by h into a s into theta b theta b is nothing, but T b minus T infinity. So, that

is the substitution that we made when we solved the differential equation. So, that is

nothing, but tan hyperbolic m L divided by m L what happens when l equal to 0.

Student: (Refer Time: 25:30). 

What does tan m L by m L when L equal to 0.

Student: (Refer Time: 25:46). 

What is tan hyperbolic when L is 0?

Student: (Refer Time: 25:53). 

Yeah.

Student: (Refer Time: 25:55). 

0 so it is 0 by 0. So, what is it oh it is not that simple how do you know that it is 1.

Student: (Refer Time: 26:03).

When you have an indeterminate system what do you do?



Student: (Refer Time: 26:07). 

You do an l hospitals rule l hospitals rule. So, you will find out that eta f is equal to 1 that

is  sort  of  obvious  to  intuit  and  the  reason  why  you  can  intuit  is  you  said  that  the

maximum temperature in the fin is achievable only when the fin size is 0, you can never

achieve a constant temperature which is equal to the base temperature. 

So, therefore,  the efficiency if  at  all  you have the base cross sectional area which is

sufficient to transport heat as much as whatever is required to be transported then the

efficiency is going to be 1, but this is not a realistic case it is just hypothetical yes.

Student: (Refer Time: 26:50) number you designed.

Will be 0.

Student: (Refer Time: 26:52). 

(Refer Slide Time: 26:55)

That is right. So, which means that as L goes to infinity eta f goes to 0 that is right. So, it

is not that you design a long fin and you are going to have very high heat transport. So, it

is completely counter intuitive. So, although intuitively you would guess that I design a

very very long fin and I will be able to achieve as much as heat transport that I want that

is not really true. And the reason why the efficiency is very poor is that the as you as the

length increases, the driving force is constantly decreasing because you have 2 processes



which  are  occurring  simultaneously  one  is  the  conduction  and  the  other  one  is  the

convection. So, the driving force which is actually forcing the efficiency to be 0.


