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Hi everyone and welcome to the final lecture of the course, and what we hope to do

today and finish the course of is we will continue the development of the model of this

one example that we have started with which is of how does HIV infection propagate

inside a host, and we want to model the dynamics and the interplay associated with the

virus particles and the immune system in the body. Now we will develop this model and

we will  do that  in a stepwise progression as in the sense that  we will  start  with the

simplest  possible  model  associated  with  the  infection,  and  we  will  keep  building

complexities which make the model more realistic and captures the actual physiology

associated with HIV infection. With that example we will conclude the course and I will

just to do a brief recap of what we have covered in the last 40 lectures or so ok.

So, in the last lecture we had seen that HIV infection, HIV specifically infects what are

called c d 4 cells in the immune system and these c d 4 cells play a role in launching the

immune system associated with the body, via activating c d 8 and b cells in the human

host. And by targeting c d 4 cells HIV compromises the immune system that the host

body can launch. Now it depends when you are starting any modeling exercise you can

go  up  to  any  level  of  complexity  and  incorporate  any  amount  of  detail  which  is

associated with this process. So, we can actually worry about how does HIV associated

with c d 4 cells model that interaction then how does that interaction compromise the

ability of the c d 4 cells to activate c d 8 cells model that interaction how does that

compromise c d 4 cells in its ability to activate b cells and model that and so on and so

forth.

But the very often the problem associated with this that one not all mechanistic details

might be known of the process that you are interested in, this is just an example that we

are working with,  but  mechanistically  all  details  might  not  be available.  The second

problem is  that  even if  the mechanistic  details  are  known, the parameters  which  are

associated with these interactions, dictate what is the dynamics that is going to be so.



Any model is going to have parameters and unless we have those we are not going to be

able to accurately mathematically define what is going on. 

So, what we are going to do is define a very course (Refer Time: 02:49) a very crude

model of infection, where many many interactions are going to be lumped in a single

term with a help of just one parameter.  That is the way we will start our model and

hopefully we will choose a particular value of that parameter which takes into account all

the interactions which are associated physiologically, with the which are associated with

the physiological process that that particular term represents. And that can be done with

the help of limited data that might be available for cases like what we are going to model

now, and using clinical data that might be available we might get estimates of what are

those parameter values associated with the physiological process that we are going we

are trying to represent through this term.

So, let us start this and in the most basic form, what we are going to assume is just 2

variables. One is what is the virus number and the second one is what is the immune

system response associated with that amount of viruses being present inside the host; and

lets represent those quantities by 2 variables.

(Refer Slide Time: 04:04)

Let us call this v i which represents population size of one particular virus strain let us

call thisi th strain and as we had discussed in the last lecture the virus has a very high

mutation rate as and as a result new progeny with altered antigens exposed on them are



continuously arising in the system, but this v i variable represents just one type of a virus

particle  one  particular  genotype  which  has  this  one  antigen  associated  with  it,  its

numbers are represented by the variable v i. And I could take on any value which is equal

to the number of different antigens associated with different virus particles.

Similarly, we have a variable X i which is which represents the magnitude of specific

immune system against i. So, remember I is the a particular virus strain and each and the

immune system is only going to launch response to very specific strains of virus. So,

when you have infections start with the first strain of virus you have v 1, the response

that  s  launched through that  particular  strain  is  called  x 1.  Then after  sometime via

mutation you have another strain of virus that (Refer Time: 05:59) up inside the host let

us call that strain v 2, and then the immune system is really going to recognize that and

launch its appropriate response x 2 to this virus v 2, and then via mutation we have v

three  and  immune  system  s  response  x  3  and  so  on  and  so  forth  that  progression

continues and the virus keeps producing these mutant progenies and the immune system

keeps trying to catch up with the mutations and launch response against each particular

variant that has a reason in the system. So, that s represented by v i and X i and these are

not just 2 variables, but this is a just a set of variables associated with different viruses

and immune system s response to those different viruses ok.

So, the 2 dynamics that we are interested in understanding is that, how does the virus

dynamics  of a particular  type change with time and what  is the immune is response

dynamic associated with that virus. So, that 2 dynamics we are interested in are d v i by d

t, how does this particular virus strain change with time and d x i by d t. So, we are going

to try and give forms to these. So, first is the rate of generation. So, the virus numbers of

this strain i are going to change by the rate at which this is being generated minus the

rate at which it is being eliminated. And the way it is we are going to think about this is

what is the rate at which virus particles of type i are being generated inside the host and

one intuitive way to think about this is that the more the virus particles of a particular

type inside the host the more is going to be its generation rate. So, this can simply be

represented as r times v i, where v i is just the number of virus particles of the type

whose rate of change we are interested in and r is the rate of is the rate at which the virus

grows  associated  with  that  particular  strain.  Now  virus  particles  are  going  to  get

eliminated because of the immune system and that rate can be had by this term called p x



i times v i which is obtained by multiplication of number of virus particles of which we

are talking about here times the immune response against that particular type of virus

strain.

So, if x i is equal to 0; that means, there is no immune response against this v i against

this i strain of virus, then you have a case where viruses are not being eliminated because

there is no immune response against that virus to eliminate it. On the other hand if v i is

equal to 0; that means, there is no virus of this strain i, then also elimination is 0 because

there is no virus to be eliminated. So, this is a basic model that we start with similarly d x

i by d t can be modeled as times v i minus b times x i. C times v i represents the case that

the immune system is launched with a strength which is proportional to the viral load

associated with this strain i, and the second term b times X i represents the case that if

there was no virus load associated with this the immune system would no longer need to

launch  this  response  and  that  response  is  just  going  to  decay  exponentially  with  a

constant b associated with it. So, this is the basic model that we have and with these 2

equations  the  first  thing  that  we  should  know is  what  is  the  steady  state  condition

associated with this response; that means, we have put all the derivatives equal to 0 that

is we are interested in what is the rate what is the value of v i and x I, at which the rate of

change of these 2 quantities is equal to 0 we put the derivative terms equal to 0 and solve

for them and we get at steady state. 

(Refer Slide Time: 10:27)



We get the following condition that x i is equal to r by p, and c i I am sorry v i the viral

load is given by r times p divided by c times p. So, these are my steady state loads

associated with the immune response against the i th viral strain, and the number of the

the number of the virus particles associated with strain i. 

If  you look at  this  condition if  you look at  these 2 equations again another  solution

steady state solution associated with these 2 equations when both the left hand sides re

going to be equal to 0 is just 0 0, which just represents the case that when there is no

virus particle there is no 0, when the individual is not infected with the virus there is no

immune response. But that s not that is an uninfected agent and that s not the dynamics

that we are trying to model. If there is a viral infection these are the steady states which

are associated with viral numbers and the immune system response which is launched in

response to this viral so, but the way the infection starts is it starts with just the just an

individual  being infected by just one genotype associated with virus and mutants are

thereafter  generated  inside,  the  host  when  the  virus  particles  are  reproducing  and

producing more progeny. So, what we do is we say that the probability to incorporate the

fact that viral load increases in terms of the number of genotypes are represented inside

the host, by modeling that fact with this statement that probability that a new mutant

arises, this can be modeled by either saying that that probability arises in time interval

say to t plus d t, because mutation occurring of mutation is a random process every time

a virus particle replicates you may have a mutation or you may not have a mutation,

because there is randomness associated with that replication process, you capture that

with the help of a probability. 

So, you say that the probability that a new mutation arises in the time interval d t as you

move from t to t plus d t, is either a constant probability and that s represented by a

capital P, what you are saying by that and capital P might have a number associated with

say let us say 0.1. Which means that what you are saying is that in moving from time t to

t plus d t, there is a point one chance that a new type of virus has arisen in the system and

you model that when you model that nine times of a 10 you will not have a new virus

particle arisen in the system, but one time out of ten times on average, you would have a

mutant virus enter the picture and grow from there.

A more representative physiologically representative way to capture this is you say that

the probability that a new mutation arises is actually proportional to the total virus load



that  is present at  that  particular  instant at  time t.  And what this  is  saying is  that the

probability that a new mutant arises is actually proportional to the total number of virus

particles which are present in the environment at that particular time. 

Which  makes  more  physiological  sense  because  if  you  have  more  number  of  virus

particles in the system then you have more divisions taking place in that d t interval of

time that your interval d t interval of time, that you are interested in and if you have more

divisions taking place, the likelihood that a mutant virus is going to arise also increases

in proportion to the number of division events that are happening. Hence these are 2

ways of modeling of incorporating the fact that there are new virus particles new vs i is

being generated in the system, as you move forward in time. So, the total virus load

therefore,  is  a  quantity  that  we are  interested  in  which  is  the  total  sum of  all  virus

genotypes which are present in the host, is just given by r b divided by c p times n.

Because each of these x i s and v i s will constitute dynamical equation for one particular

virus, and if we do that for all the virus strains that are present then we get the total virus

load as this where n is called the Antigenic diversity associated with this associated with

the host at this particular time. So, that is the most basic model that we have available;

now we want to incorporate 2 different features associated with HIV infection that are

not present in the in the current model the first one is that immune system has a basal

response against all virus particles. 

So, a host does not need to launch immune response to every specific every new virus

strain that arises in the host from a fresh, but it has a basal immune response which acts

against all of these virus particles, irrespective of the specific immune response that the

host launches against each of the new virus strains that arises in the population. And the

second thing that we want to model is that HIV the model that we have developed so far,

is actually very generic in the sense of in the sense that it captures every infectious agent

that might infect an individual. 

But  what  would  make  the  model  very  HIV specific  is  the  fact  that  if  we  were  to

incorporate the fact that when HIV infects, the ability of the host to launch an immune

response is actually compromised. So, that facet of the infection has to be incorporated

into the model, and that is what we will do we will make this model that we have started

with slightly more complex and incorporate these 2 facets associated with infection. 



(Refer Slide Time: 17:52)

So, the first facet that we want to incorporate in our model is that we will that we wish to

include  a  cross  reactive  immune response which is  not  specific  to  a  particular  virus

strain. And the way we do that is we slightly edit our equations to incorporate this fact

we say d v i by d t is just equal to r times v i minus p times x i v i minus q times z v i.

Second d x i by d t is just equal to c times v i minus b times x i and last d z by d t k times

v minus b z ok.

So,  what  this  captures  is  the  first  equation  is  just  capturing  the  virus  dynamics,  the

second is just capturing the specific immune response. And this is capturing the general

immune response and what we mean by that is that x i is the immune response which

only acts against the v i virus particles and its very specific in nature x 1 would only act

to  control  virus particles,  which are of type x 1.  On the other hand z represents the

general  immune  response  which  acts  against  all  virus  particles  irrespective  of  their

particular type, and this general immune response are generated which is in a strength

which is proportional to the rate of change of launch of this response, is proportional to

the total viral load associated with this. 

So, the v here is the total virus load associated with all different strains of the virus and it

decays exponentially if there were no if there were no viruses inside the host. It is quite

similar to the wavy model the x I, the only difference being that this is non specific and

acts against all virus types where as the x i response acts only against the against the very



specific virus strain that that is present in the host. So, that s the first facet associated

with the system, lets include the second one second aspect that we want to capture in our

model  and which makes the model  more HIV specific  and that  s  the fact  that  upon

infection  the  ability  of  the  individual  to  launch  the  immune  response  actually  gets

compromised; and that that is very representative of what happens in HIV and any model

that captures HIV dynamics should incorporate that. So, that is. 

(Refer Slide Time: 21:30)

So, this is the second feature that we want to include in our model and that says that HIV

impairs the immune response and clearly what should happen.

If we look at the equations that we just derived what should happen is that if we think

about it that how do we incorporate a fact such as that into our models. Now what we

want to capture is that these virus particles do not permit the host do not permit the

immune response to get activated as it would in a normal circumstance. So, if we look at

our  equations  this  equation  represents  the  virus  dynamics,  and  these  2  equations

represent the immune response dynamics. And what we want to capture is the fact that

the virus particles should somehow limit this response. Both these responses if the virus

acts to control only the immune response the specific immune response then there should

be a term which captures that fact here, and if the presence of virus also compromises the

general immune response then there should be a term which captures these 2 responses. 



So, the second facet that we are interested in that the virus compromises the immune

response should be captured via terms in these 2 equations, and the way we do that is

again lets write down our three equations again the first one is just the virus dynamics

which is d v i by d t, and this is r times v i plus p this should be minus x i v i minus q z v

i. So, this is the growth rate the specific and the general immune response acting against

the virus which gives me the viral dynamics for the specific immune response dynamics

I have d x i by d t equals c times v i its launched in proportional to the virus load, it

decays exponentially in the absence of virus and we add another term which says u v x I,

and uv is the factor which represents the ability of virus to impair immune response.

And similarly for the general immune response we have d z by d t equals its launched in

proportional to the total virus load, unlike this one which is launched in proportional to

the virus associated with that specific of that specific strain. Decays exponentially in the

absence of virus and again is compromised u is the factor which decides a sensitivity of

this compromise of the immune system by the virus and it is also proportional to v which

is the total virus load associated with the host at any at that particular instant.

So, this now captures the dynamics associated with virus the specific immune and the

general immune response associated with the host at any particular instant. And if you

were to solve these equations they actually tell us a lot about the viral dynamics that are

happening inside this host. So, if you solve these equations for steady state, what we

would get. 



(Refer Slide Time: 25:37)

So, if we solve these the immune response converges to the specific viral load associated

with the strain converges to this value, and the general immune response which is non

strain specific converges to as you can see this is proportional to the specific viral load

viral load this is proportional to the total viral load, but these are also normalized by the

total viral load. So, this represents the fact that the specific virus load actually is going to

converge to 0, if the total virus loads becomes very very high. Specifically in addition the

general viral load also saturates if the virus loads keeps on increasing and that saturation

value will be given by k by u.

At this junction when the immune response has converged to a steady state values, at that

point the viral dynamics can represented as the following.



(Refer Slide Time: 26:56)

The total virus loads is then represented by this. Where D is just defined as sigma v i

upon v square, which is just an inverse measure of the diversity associated with the viral

infection. If you have lots of virus particles which together make up the total number v,

then d is going to be very small and indicate that there is a high amount of variability

associated with various virus particles on the other hand if  all  the virus particles are

represent in the host belong to one particular strain; that means, v i is equal to v in that

case d is just going to be equal to one indicating that there is a very low variability that

exists between the virus particles, that are present in the host. D is an inverse measure of

the variability associated with this, this variability is important because what the virus by

continuously generating these new particles is doing instead of tiring the immune system

that s associated with the host.

So, once you have this  the critical  the variable  that  becomes critical  in dictating  the

dynamics of the viral load is actually represented by this quantity here. Depending on

what is the value associated with these you get a different type of a response dictates the

dynamics of this thing. And specifically I leave this as an exercise, but you can show that

if r u is greater than k q plus c p, or you can have a case where r u is less than k q r you

can have a case where k q is less than r u is less than k q plus c p. 

Depending on which of the regimes you currently or an individual who is infected with

HIV falls in, you can have immediate disease, you can have an indefinite virus control or



you can have disease after an asymptomatic period. So, I leave this as an exercise to

work  out  the  details  which  lead  you  to  this  conclusion,  but  this  is  very  interesting

because this tells us that what the HIV is typically doing is operate in this regime, where

you lead to disease aids after a long asymptomatic period. And any strategy that works

towards treatment of this should work such that we move from this regime to the regime

where r  u is  less than k q,  where you are indefinitely  able  to control  the virus load

associated with this.

So, what this tells you is that you can play with these parameters and hopefully move in

a direction which allows you to control, the viral load associated with the individual. So,

with the help of this simple example what we have tried to show is that how you can

model (Refer Time: 30:43) phenomena as complex as HIV dynamics inside a host, and

from this very basic simple models you can gain insights of that. And that sort of brings

us to the closure of this course and hopefully through the through these 40 lectures 20

hours of lectures that we have gone through, what I have tried to communicate is that

how can we approach biology evolutionary biology using simple mathematical models

which allow us and give this give us this framework in which we can put biological

phenomena and building of this framework allows us to quantitatively define biological

phenomena and gain some insight via these mathematical models.

 Thank you very much. 


