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Welcome back everybody. We will continue our discussion from last lecture. We want to

understand what is the probability of one mutant in a bacterial population of size N going

to  fixation  and  eliminating  all  other  N  minus  1  individuals,  in  terms  of  this  game

theoretic framework that we have developed. And the particular case, particular scenario

we are interested in, that what is the relationship that this probability of this one mutant

going to fixation have, what is the dependence of this probability on the population size

n?

So, we had ended our last lecture by defining the transition probabilities P i to i plus 1,

what  is  the chance that  the system goes from i number of A individuals  to i  plus 1

number of A individuals? And those probabilities were defined using the Moran model

that we have discussed earlier.  And similarly we defined transition probability of the

system going from i to i minus 1 and the probability that the system stays at i starting

from i number of A individual. So, we have all of these.

And the one probability that we are very interested in is, what is the probability that this,

the one probability that very interested in is, what happens when we start at i equal to 1?

And what is the probability that this one individual goes to fixation?
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So, just to rewrite this that P i we had derived the transition probability as i to i plus 1 as i

f i divided by i f i plus N minus ig i, this is the probability associated with the fact that

we are selecting an a type individual for replication. 

And this has to be paired with a probability that a b type individual gets selected for

death and that is just given by N minus i upon N. And f the f and g variables are not, are

not  directly  coming from the payoff  matrix  elements,  but they  are a function  of the

payoff associated with the matrix and this is just equal to 1 minus omega plus omega f i

and g i similarly is just equal to 1 minus omega plus omega g i.

And depending on what value of omega do I choose that dictates how strongly or how

weakly is the payoff associated with the payoff matrix linked with the fitness associated

of these variables. So, we have these and we know that f i and g i come from the payoff

matrix. So, we have these and we have already seen that f and g are going to be functions

of N. So, both f and g are dependent on the population size N and also dependent on the

current the current structure of the population, which is the variable i and it is also of

course, dependent on f i and g i the elements of the payoff matrix.

Elements of P which are just a, b, c, d; so if we were to plug the expression for f here,

and plug the corresponding expression of small f i into this transition probability we are

going to get a expression which is going to be very involved in nature. So, without really

going into that derivation we are just going to use a result. And we are going to use this



particular  result  in  a  very  specific  setting  where  we have  seen  that  selection  effects

associated with the payoff matrices. Payoff matrix that we have is weak in nature and

what that means, is that what we are implying that omega is very close to 0, it is not

close to zero, but it is a small number which is very close to 0.
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So, the limit under which we want to study this is called weak selection which implies

that omega is close to 0. And what this means is that the payoff associated with the

payoff  matrix  has  a  very  weak  effect  on  dictating  the  fitness  associated  with  the  2

genotypes that we are talking about. The effect is not very strong, but it is not 0 either

there is a small association between the payoff and the fitness associated.

With this in this setting what we get and remember we are interested in the probability

associated with this one mutant going to fixation and eliminating all other N minus 1

individuals. And it can be shown that this probability it is called rho A is just going to be

equal to, this is an approximation under the regime omega approaching 0.

Is just going to be  equal to 1 by N times 1 minus 1 minus alpha N minus beta times

omega by 6 where alpha is equal to a plus 2 b minus c minus 2 d. And beta is equal to 2 a

plus b plus c minus 4 d. A, b, c, d are the elements associated with the payoff matrix and

rho A is the probability, rho A is the probability that 1 A mutant goes to fixation. That in a

population which was all b you have this one mutant that has arisen and this mutant now

goes to fixation is defined by this variable rho A. What is important to realize is that we



are talking when we are talking of transition probabilities that, the probability that the

system changes it is state from i to i plus 1. What happens is that when we are starting

when the mutant has first arisen my i is equal to 1.

That means, the transition probability that I am interested in is telling me about what is

the chance that this one mutant  individual goes to 2 mutant  individuals in the in the

population. And that particular transition we will have a certain probability associated

with  it.  As  soon as  I  have  2  mutant  individuals  the  transition  probability  that  I  am

interested in terms of these numbers of mutants going to fixation is I becomes 2 now.

And I am interested in what is the probability that this system goes from i equal to 2 to i

equal to 3. So, the transition probability I am interested in becomes P 2 to 3 and so on

and so forth that I associated with the transition probability keeps on changing when I am

interested in this particular mutant goes to fixation. And because each of the transition

probabilities P i to i plus 1 is heavily dependent on i the probability of each of these

transitions  is  going  to  be  different  in  number.  So,  that  changes  as  the  number  of

individuals  that  belong  to  a  particular  genotype  change,  because  these  transition

probabilities are the function of I themselves. So, we have we have this expression where

these a, b, c, d are just elements of the payoff matrix.

And this particular rho A is obtained is the is the sum probability that that 1 A individual

mutant that arose in the population goes to fixation. And while these mutants went to

fixation all the steps associated with P 1 to 2, 1 to 2 and then P 2 to 3 and so on and so

forth, going all the way up to P N minus 1 to N. All of these steps and their respective

probabilities have been incorporated lead to this and under the regime that selection is

weak this is the expression that we get. And that is the expression we want to work with

and understand, understand that how does population structure have a role to play in

dictating probabilities association with fixation of a particular mutant. 

So, let me just write the expression again we have rho A equals 1 upon N times 1 minus

1 minus alpha N minus beta times omega by 6.
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So, now you should ask the question, you should ask yourself the question that if the new

mutant  that has arisen had no fitness advantage or any fitness disadvantage over the

parent genotype. If the new genotype was identical in terms of fitness compared to the

parent  genotype,  what would rho A be? Remember rho A is  the probability  that  this

mutant goes to fixation. Suppose this mutant is different from the parent genotype in a

characteristic which has nothing to do with fitness.

The  mutant  is  growing  identically  as  compared  to  the  parent  genotype,  what  is  the

probability that this mutant goes to fixation? Maybe pause the video for thirty seconds

and try and think about this question for some time. The way you should think about this

is that in a in a very long run, if there are N individuals in the population one of those N

individuals will eventually go to fixation. That will just happen because of drift even if

one no individual had any fitness advantage over any other individual in the population.

Drift would ensure that one of those N individuals goes to fixation. If that is the case

then, then when I am working with the chance that the mutant has no fitness advantage

or disadvantage associated with it compared to the parent genotype. In such a case the

probability that this mutant will go to fixation is as good as any other individual which is

present in the environment. 

And if that is the case, then the probability that one of them will go to fixation is just

going to be 1 by N, because some probability of any individual going to fixation is equal



to 1. And that 1 that probability equal to 1 is divided equally over N individuals in the

population and hence the chance that my mutant will goes to goes to fixation,  s just

going to  be equal  to  1 by N.  So,  if  there  was no fitness  advantage  or  disadvantage

associated with mutant the fixation probability is 1 by n. But what happens here? Let us

look at this expression and what we are interested in is under what conditions.

So, the question that we are interested in here is that under what conditions is rho A

greater than 1 by N? Again the mutant that has arisen here had no fitness advantage or

disadvantage compared to the parent genotype, then that rho A would just be equal to 1

by  N  and  that  comes  from random chance.  But  we  are  interested  in  understanding

conditions where this fixation probability is greater than 1 by N. Particularly greater than

1 by N because that tells  us that  under these conditions the mutant  has a more than

random chance of going to fixation. In addition to the random chance associated with

every individual there is also some fitness advantage conferred on this mutant which

gives it fixation probability of more than 1 by N.

So, we want to understand that when is what is the condition that this entire relationship

is greater than 1 by N or we can say that when would it be that this term inside the

bracket is more than 1, because of this is more than 1 then we have a number more than

1 multiplying 1 by N and hence the whole thing is more than 1 by N. 

And this is 1 divided by something this would be the case if the denominator this whole

expression in the bracket, will be more than 1 if the denominator is less than 1. So, this

will  be true if  1 minus alpha N minus beta  times omega by 6 is  less than 1.  If  the

denominator is less than 1 then; that means, we have a number which is 1 divided by less

than 1, So whole expression becomes more than 1. And this will be true if alpha N minus

beta is greater than 0. Because omega is a number remember all of this is valid only in

the regime where selection is weak omega is a positive number, but very close to 0. So,

omega by 6 is always positive.

And if the term in this bracket alpha N minus beta is greater than 0 what that means, is

that this whole expression will be negative and we have 1 minus a positive quantity and

hence the denominator will be less than 1. And hence the whole expression will be more

than 1.  So,  we have to  ensure  we have  to  find  out  the  conditions  under  which this

quantity holds. And if I substitute for alpha and beta So, this just implies that rho A is



more than 1 by N when alpha N minus beta, alpha N is greater than beta. That is the

condition that I have to work under. And if I if I plug these expressions in I already have

expressions for alpha and beta in terms of a, b, c, d the payoff matrix elements.

And if I plug those in I get an expression an inequality in terms of populations size N and

the elements of the payoff matrix which help me comment on under what conditions is

this mutant like, more than randomly likely to go to fixation.
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So, if I do that substitution, I get a relationship that a plus 2 b minus c minus 2 d times N

should be greater than beta which is just equal to 2 a plus b plus c minus 4 d. This is the

condition that has to be agreed to if my mutant has a fixation probability of more than 1

by N. And I can simplify this a little bit by clubbing all the terms associated with a, b, c,

d and I get an expression equal to N minus 2 times a plus 2 N minus 1 times b should be

greater than N plus 1 times c plus 2 N minus 4 times d.

So, that is the expression that I have in when I am computing the condition that the

fixation probability associated with the mutant is more than 1 by N. So, as you can see

that  this  is  a  interplay  of  this  is  a  relationship  which  is  of  course,  dependent  on

population size as well as elements of payoff matrix N. And depending on what is the

population size that I have in my environment, this relationship is going to give me a

different condition in terms of a, b, c, d for the for the likelihood that this one mutant

goes to fixation is more than random is more than 1 by N.



So, that is where population size comes into picture. And depending on N you get very,

very different conditions on a, b, c, d that is on the structure of your payoff matrix when

you are trying to decide whether a mutant goes to fixation or not. So, we will just do 2

very  simple  cases  let  us  do  what  happens  in  the  case  when  N is  equal  to  2.  This

represents a case that there are only 2 individuals in the population and you have one

mutant arise in the population.

So, just by random chance if this mutant had no advantage over the parent genotype then

you would imagine from random chance that the probability that this goes to fixation

eliminates the original the other individual which is still in the population and belongs to

the parent genotype that probability is just equal to half, that happens by random chance.

So, the, but the probability that this mutant is able to outcompete the probability, that this

mutant is able to outcompete the parent genotype would be more than half, if we plug in

N equal to 2 in this relationship and derive the relationship.

So, when we plug in N equal to 2 the a term drops out the b term becomes 3 times b this

should be greater than 3 times c and the d term drops out. So, the condition that you get

for N equal to 2 is simply that b is bigger than c. And now if you look at your payoff

matrix what that means? What that means, is that b should be bigger than c. A is the new

mutant that has arisen in the population and what does b bigger than c means b is the

growth rate or fitness associated is a function of fitness. 

B is how well does an A individual do in presence of b. And c is how well does a B

individual do in the presence of an a. Now, because my population is such that there is

only 1 A and 1 B individual- because there are only 2 individuals in the population; this

A is always growing in presence of B and this B is always growing in this presence of A.

So, B; that means, this A which is always growing in the presence of in the neighborhood

of B A is going to grow at the rate which is decided by the element b of the payoff

matrix. And the B individual which is growing in the neighborhood of A individual is

according to the payoff matrix going to grow at a rate which is a function of c variable.

And if you have condition that b is greater than c; that means, an A individual is going to

do better as compared to B individual. And hence there is a greater likelihood of this A

individual going to fixation as compared to the B individual. So, you can see that there is

a very nice connect between how you would anticipate growth rates when these growth



rates are plugged into this payoff matrix and eventually what you arrive at in terms of

this analysis that we have just done.

We  will  finish  this  discussion  by  taking  one  more  case  associated  with  this  with  a

different N and see that how varying the sizes of the population in the environment that

we are  talking  about  actually  changes  the  result  we get  in  terms  of  the  relationship

between payoff elements associated.
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The elements associated with the payoff matrix. And the case that we take is N is very

large or N approaches infinity. In that case remember we are working with a relationship

N minus 2 times a plus 2 N minus 1 times b should be greater than N plus 1 times c plus

2 N minus 4 times d.

And if N is very large you can think of N in terms of 10 power 8, 10 power 9 a typical

bacterial population then what we are going to do is, we are just simply going to go drop

this constant terms because as compared to N 2 is very, very small. So, N minus 2 is

effectively just equal to N and we are going to drop all these terms because compared to

the variables the terms which have N in them these terms are very, very small.

And the relationship we get is N a plus 2 N b should be greater than N c plus 2 N d. And

then we can since all these terms have N we can drop N. And we get a plus 2 b bigger

than c plus 2 d. So, what this shows is that by simply changing the size of the population



we can also change N to be an intermediate population size where N is not as small as to

that we are not talking of a case where there are only 2 individuals.

And we are talking of a case where N is So larger again practically we treat it as infinite,

we can  tune intermediate  we can plug  in  intermediate  values  of  N and derive  other

relationships that must exist between the elements of payoff matrix for the probability

that the for the probability that the mutation goes to fixation with a with a more than

random chance. And hence population size is what I have tried to demonstrate through

this is that the population size is play a very strong role in terms of what the likelihood

associated with this mutations going to fixation.

And any analysis  on evolutionary  dynamics  associated  with  a  system like  this  must

incorporate  population  sizes  into  the  framework  as  well.  So,  that  concludes  our

discussion on sort of evolutionary game theory and analysis associated with it the text

book goes to some more detail associated with these phenomena. For our purposes we

want to end the course with one particular example and what I want to discuss regarding

that is an example associated with HIV evolutionary dynamics.

And what we will be discussing is how can we understand a very basic HIV phenomena

inside a human host which is observed when somebody contacts this virus. HIV is a retro

virus  it  has  a  RNA geno  which  gets  transcribed  into  DNA when  it  enters  the  host

organisms.  And specifically  HIV does not target  any cell  in the in the host which is

human beings here, but it targets a very specific type of cells which are called CD4 plus

cells which belong to the immune system.

So, the way HIV targets human cells is by targeting the immune system itself. And that

of course, compromises the ability of an individual to fight back the virus and eventually

the 2 the dynamics between or the fight between HIV and CD, and the immune system of

the host dictates that who is going to go fast. But what happens is that CD4 plus cells the

immune cells  they play  a specific  role  we will  just  discuss,  that  in  the second keep

continuously decreasing over time as the infection persists in the host. And eventually

when the numbers, when the numbers associated with these CD4 plus cells get below a

certain threshold that is when a certain that is when the individual is said to have it is

which is the clinical manifestation associated with having HIV in a host. 



So, we want to understand that why is it that it is very difficult to control these HIV

infections. And what happens as during the interplay between the immune system and

the virus itself.
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In order to do that what we will start with is a very a fact regarding HIV, I said it is a

retro virus and it is genome size is around 10 to the power 4 bases. So, it is a it is a

relatively small genome. The mutation rate associated with HIV is of the order of 10 to

the power minus 4, 10 to the power minus 5 per base per geno, per base per generation.

So,  the  first  thing  that  you  should  check  is  when  the  virus  replicates,  what  is  the

probability that the progeny has no mutations? This is something that we touched upon

earlier in the course. And the probability that the progeny has no mutations is just going

to be given by, if this is the mutation rate let us for our analysis, let us take the mutation

rate to be 10 power minus 5.

The  actual  value  is  somewhere  between  the  two,  but  the  probability  that  1  base  is

correctly  copied  is  1  minus  u,  where  this  is  the  mutation  rate  u  associated  with

replication. So, this is the probability that 1 base is copied correctly and the probability

that the entire genome is copied correctly and the progeny has no mutation will be 1

minus u to the power l, which ensures that every one of these bases is copied correctly

where l is the genome size.



So, we are looking at a value of 1 minus 10 to the power minus 5 raise to power 10 to the

power 4. I will leave this as an exercise for you to compute, which tells you that what is

the  likelihood  that  every time HIV generates  a  progeny inside  the  host;  what  is  the

chance that this progeny is identical in genotype? And what you will find when you plug

these numbers in that actually HIV has a HIV s mutation rate is very high which ensures

that the probability that there is a mutation in the progeny s genotype is actually going to

be  very,  very  high.  And  when  you  consider  the  fact  that  the  number  of  progenies

produced of this virus particle inside the host is so large the number of variation that is

generated by this replication and mutation process inside the host even in a very, very

short time is going to be very, very large.

And that is the that is the particular challenge that is posed by HIV that the antigenic

variation associated with the virus particles is So large that the immune system is always

trying to catch up with the virus and act against  a new a new antigenic form that is

produced by just mutations happening in the system. So, as I had mentioned that the

target something called CD4 cells in the system and if you look at the particular viral

dynamics associated with infection, it would typically look like this.
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This is time and on we want to plot numbers of CD4 cells  and the number of virus

particles. And upon infection the virus particles increase and they are suddenly they are

rapidly brought  down by the immune system and there is  a  very long asymptomatic



phase where the virus particles do not increase very much. And eventually you would

have a large increase in virus particles take place. So, this is the dynamics of number of

virus particles associated with the system that takes place over time. And this phase of

the infection is called the primary phase, this phase of the infection where the immune

system is able to keep the numbers in control is called asymptomatic phase.

And this phase where the virus particles grow and are uncontrolled is when the patient is

said to have AIDS. Along with this if we take a look at the CD4 cells numbers in the cell

they go down are able to recover, but then in the asymptomatic phase there is a constant

decrease in CD4 cells over time. And when they cross a threshold which is this threshold

of they cross a certain threshold that is when the virus is able to just grow practically

uncontrolled and go to very, very large numbers in the in the host. 

So, that is those are the 3 steps associated with an HIV infection. And particularly what is

curious about this is that there is a very long asymptomatic phase associated with HIV

infection. And typically this could last up to a few years. And what is sort of we want

what  we  want  to  understand  is  just  interplay  between  these  CD4  cells  and  a  HIV

particles,  which  tells  as  why  should  there  be  this  such  a  long  asymptomatic  phase

associated with the infection which lasts, such a long time and what happens at the end

of it that triggers the uncontrolled explosion associated with virus particles inside the

host. So, to understand that let us let us understand the role associated with CD4 cells In

the immune system.
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And what these cells do is, we have CD4 cells and when there are foreign antigens, these

antigens stimulate CD4 cells. CD4 cells then send activation signals to what are called

CD8 cells and B cells of the immune system. The role of B cells is to release antibiotics,

I am sorry antibodies that attack the virus particles and other infectious agents in the

body.

Whereas the role of the CD8 cells is to recognize and kill the virus infected cells inside

the host. So, that is a dynamical relationship that are that is present in the body between

foreign antigens and the immune response. And of course what HIV targets is CD4 cells

itself,  So  it  breaks  the  link  that  exists  between  antigens  and  the  immune  response

associated with the body. So, what we want to understand through we want to develop a

model to understand this dynamics between this interplay between the virus particles and

the immune response.

And on first glimpse if you look at this graph of dynamics of numbers associated with

the players, here the green here refers to the CD4 numbers, what happens is that initially

in this phase of the response the virus particles that are getting selected are those which

have  the  highest  growth  rate  associated  with  them,  that  is  what  selection  is  acting

against.  But  then  once  these  numbers  grow the  immune  system is  able  to  launch  a

response in A is able to launch A response to the viruses and then these viruses which are

growing very fast are able to be controlled by this immune system response.



But in that phase of the infection what now gets selected for is those viruses which have

a capability to evade the immune system response and still survive. So, the selection that

is happening which controls the virus particles at any given instant varies in the in the

sense that initially it is the virus particles it is that sequence which is able to grow fastest,

but very soon the immune system launches the response and you are selecting for those

virus particles or those sequences now which are able to evade the immune system. And

these mutants are now generated because of the mutation rate associated with the virus

particles which we have seen is actually very, very high.

So, in the final lecture of the course we will  work towards development  of a model

which captures this dynamics, and see what that tells us whether that can explain the

very long asymptomatic phase of infection which is associated with HIV.

Thank you.


