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So, we have been looking at differential algebraic systems or DAEs and in my last class, I gave

some examples of semi implicit DAEs, we also define what is called as index of a DAE, so we

have been looking at semi implicit differential algebraic systems, so these can be written as dx /

dt, so these equations are typically written by this coupled differential and algebraic system of

equations.

So,  this  is  zero  vector  and x,  typically  we call  as  differential  variables  and  z,  we  call  as

algebraic variables. So, these are differential equations which have to satisfy certain algebraic

constraints  and not all  the variables appear  with their  derivatives  okay, very, very common

situation  in chemical  engineering  models  in  chemical  engineering  linear  operations,  so you

have algebraic constraints which typically define the phenomena which are occurring at a very

fast time scale.

Whereas, the differential equations would represent phenomena, which are at a slow time scale,

so, in a distillation column for example,  this would be thermodynamic equilibrium and this



would represent dynamics of compositions, temperature on each tray, okay. So, we also looked

at what is called as index of a semi implicit DAE, so index is minimum number of times you

have to differentiate this equation to get into; okay.

Minimum number of times you have to  differentiate  to  get  into a  system of pure ordinary

differential equations. Now, remember this is G here and I am writing another symbol here, S,

which means that when you differentiate and get a new system of equations, this would be

different okay. The new system will be some function of G of course but it will be different.

Now, we will look at a specific example and then understand this
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Last time, I talked about a mixing tank example, so this was a simple mixing tank okay, so this

was the example that we looked at dc/dt is = C0 – Ct/ tau and C of t is specified that means beta

t is unknown specified function okay, so this is my G of z and G of z and x. Now, note one

thing here this equate the first equation contains both algebraic and differential variable that

means, what is the differential variable here; C, okay.

Algebraic variable by; you know this is a semi implicit DAE, algebraic variable will be Co t,

right, algebraic variable will be Co t, now the second equation does not contain the algebraic

variable and this can be a troublesome part. The second equation does not contain the algebraic

variable, you can get into difficulties while solving because Ct, the algebraic constraint is an

implicit is a function of you know; is an implicit function of C0t.
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And the first derivative here with respect to Co t is not =; is = o, so it is not nonzero, so we have

a problem. What is the problem I will just elaborate that, so this simple example actually turns

out to be an index 2 system okay? Let us go and see why this is an index 2 system, so what is g;

x, z; g, xz corresponds to Ct - beta t, right. Now, if I differentiate this; okay, if I differentiate this

with respect to time, then I will get dc/ dt - d beta/ dt is = 0, okay.

But beta is a specified function, what is dc/dt? Dc/dt, if I substitute from here, I will get C0 t –

ct/tau beta prime t is = 0, this is still  an algebraic equation; we have not got a differential

equation yet because I could substitute for dc/dt in terms of this okay. I could substitute and so I

still  have  an  algebraic  equation,  I  want  a  differential  equation  okay. To get  a  differential

equation, I will further differentiate this, okay.
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So, from this what we get is C0 t is = tau beta prime t + Ct, if I just rearrange C0 t is tau beta

prime t + Ct and then I can now differentiate this. I want another differential equation, which is;

now, look at this equation, I finally have eliminated algebraic constraint, I have one differential

equation in C, another equation differential equation in C0 t okay. So, now this is my S of x, z,

in fact S of x, z and t of time because beta double prime comes okay.

So,  this  is  my system with  index 2,  I  had  to  differentiate  twice  to  get  a  set  of  consistent

differential equations; first order differential equations. So, how will you use this index business

we will come to that soon okay? Now, what is the problem, why do we have to worry about,

why is it important to have index? So, let us look at this particular problem well, when you

have a high index system, there are 2 difficulties.

One difficulty is that it is difficult to specify or it is tricky to specify I would say the initial

condition, what you will notice is that C0 t cannot be arbitrarily specified for a pure differential

equation, which is not coming from an algebraic differential equation okay, you can specify

initial condition arbitrarily and see evolution in; of course, the initial condition should make

sense from the physics.

But once you specify initial  condition with that  makes sense from the physics,  you have a

unique solution as long as dou F/ dou X is  differentiable  and so we had talked about this

continuity right in the beginning about the existence of a solution, those things are not true here

because  of  the  algebraic  constraint  particularly  for  index;  higher  index  systems,  there  is  a

problem, so there are 2 problems okay.
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Now, let us see where this the problem come from, let us look at; let us look at solving this

particular set of equations using implicit Euler. So, implicit Euler would mean that you know x

n + 1 is = Fx n + 1, I am just dropping for the sake of convenience the time argument and oh

sorry; this is my implicit Euler would be; this is my implicit Euler okay, this is my; I have to

solve these 2 equations simultaneously.
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Or rearranging this; you know, you can write 0 = ; so you have to solve these 2 equations

simultaneously,  if  it  is  implicit  Euler  and if  you are  solving  it  using  Newton-Raphson for

example, if you are solving it using Newton-Raphson, then you will get this matrix; Jacobian

matrix.  When you are trying to solve this using Newton's method, these 2-couple algebraic

nonlinear equations using Newton's method, you will get this matrix.



This is Jacobian matrix that you know that you have to compute during each iteration, if we

rearrange and then differentiate, you will get this okay. Now, the trouble is with this dou G /dou

Z okay, if dou G/dou Z; if this is = 0 okay, then you have trouble solving this problem, when h

goes to 0, for small h, okay. If this is 0, you can land up into trouble, okay, so this nice thing

about index 1 systems is that dou G/dou Z is not equal to 0, okay.

We saw that flash example;  in flash example,  if you write algebraic  constraints  and if  you

differentiate,  then you can show that  dou G/dou Z is  not = 0 and then you can solve that

problem simultaneously and get the solution without a difficulty. In this particular case, dou

G/dou Z is 0 because if you look at here; if you look here, this is G of; this is my G of x, z okay

that the differential variable only appears in G of x, z, algebraic variable does not appear.
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So, dou G/dou Z is = 0 okay and then because this is the high index problem okay, here this is

my G of Ct, C0t and obviously C0t does not appear here, so dou G/dou Co t is 0, okay and then

that is why you have a problem here okay. Now, what is very, very important is that when you

have a high index system okay, this dou G/dou Z should be; when you have an index one

system, dou G/dou Z is not = 0, you can solve it for high index system okay.

If  you want  to solve it,  it  becomes very, very crucial  then to be able  to  specify the initial

condition properly. If you are not going to give the initial condition properly, your solutions can

diverge okay. So, I will just continue with the same example okay, yeah, “Professor – student

conversation starts” we have to use; yeah, yeah, so the solution is when you have higher order

system; high index system okay, you should actually differentiate multiple times go towards.



And then you solve simultaneously all the; I will come to that so. but now you realize there is

one more thing, you should realize now, you should be able to find that thing using automatic

differentiation. See, now for simple 2 variables, 3 variable thing okay, I can find the index of

the system by you know; by hand differentiation, then I can say this is order; second index 2

system, index 3 system, index 5 system.

Maybe up to 5, 6 variables, 10 variables you will do lot of hand calculations and do it. If you

have 1000 equations okay, which is the case where you are simulating a chemical; dynamics of

a chemical plant, section of a chemical plant, you have trouble, right because how will you

decide the index? You should automate, if you want; just given a set of equations you are not

able to see, what is the index.

So, you should have a procedure that automatically differentiates and calculates the index and

then does appropriate  initialization,  okay. So, unless you do that  you are going to get into

trouble okay, so I will illustrate this and then give the solution which is; he has very rightly

guessed that you know; you should use those differentiated equations to develop what is called

as consistent initial condition but just to show what can happen.
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“Professor – student conversation ends” If the initial condition is not consistent, see this is;

so C 1 – C0, I am just using for this particular system, I am just using the implicit Euler, let us

say my h is my; this is how, way I will use implicit Euler for this particular system, right. On



the right hand side at time 1, right, I am going from 0 to 1 at time 1, okay and then other

equation that I have is C1 is = beta 1, right. 

One is; you know, 1 here means t = h that is what we mean by 1. In our notation of time, we

have taken tn = nh, so we use n right, to denote the time, so shorthand notation that we have.

So, this C0 is actually Ch – C0, okay, so these are the equations at the first iteration; the very

first iteration they are the equations okay. So, after you rearrange this, you will get C0 1 is equal

to; okay.

Now, what happens for this equation to be consistent; see what will happen with, when h goes

to 0, this beta 1 will actually tend to beta 0 because h is you know; ahead of time 0? If h goes to

0 okay what we require is that; if h goes to 0 for this equation to be consistent, okay we will

require that beta 0 is = C0. We have to make sure when you start solving the equation that

initial condition for C0 is given as beta 0, okay.

If you do not obey this constraint and start your integration okay, integration can blow up okay,

so giving a consistent initial condition is very, very important for a differential algebraic system

extremely crucial, okay particularly the high index DAE systems okay. Now, what do you do to

deal with; how do you deal with this problem for high index systems, how do you generate

consistent initial condition for a high index system.

“Professor – student conversation starts” No, no see beta 1 will tend to 0, as x tends to 0, as

X tends to 0 okay, 1 will tend to 0, right because see, what is the meaning of 1? See, this is

actually  t  =  h,  as  h  tends  to  0,  so  the  initial  value  has  to  be  given  correctly,  you cannot

arbitrarily; see in a normal differential equation, you can arbitrarily give C0 and it will work.

Here, the constraint has to be obeyed that C0 is = beta 0.
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If  it  is not obeyed, you get into difficulty  okay.  “Professor – student conversation ends”

Generation of consistent initial condition for a differential algebraic system, now this is a key

thing particularly for the high index systems okay. So, what you do is; you write this, so we

define a variable y or vector y, which is actually the x and z stacked up and then we translate

this to some H of y y prime t = 0, okay.
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We translate this to y, y prime t = 0. Let P correspond to the index of DAE okay, then we

differentiate this P times, which means; so this is F y, y prime t = 0, then df / dt, which will

obviously have y, y prime, y double prime = 0 and so on up to differentiate this up to P times

okay  and  these  are  known  as  derivative  array  equations.  Yeah,  “Professor  –  student

conversation starts” P here means the order of the derivative; P + 1 not P – 1.



“Professor – student conversation ends” So, these have up to P + 1 derivatives of y, okay, so

these are called as derivative array equations and to generate consistent initial conditions, we

have to solve these equations simultaneously okay. So, higher index system, why it becomes

difficult to deal with is because you have to solve these equations together to come up with a

consistent solution.

In fact, if you solve it at time t = 0, you will get consistent initial condition, if you solve it any

time in future at t = h, t = 2h, t = 3h, if you solve these equations together, you will get solution

of the DAE, okay. So, if you know the index of the system, you can differentiate stack the

equations together and then solve the stacked set of equations to come up with a consistent set

of initial conditions as well as you can solve them in time.

(Refer Slide Time: 28:47)

And then, you will get consistent solution of the DAE, high index t okay. To summarize; so I

think what we shall was; you had guess, right that we have to solve them together that is the

solution,  you have to solve these differentiated equations together to get a consistent initial

condition and then of course, there is one more way, you can go on eliminating high order; you

can go on eliminating high order derivatives.

And finally you can convert it into a form, which is called as pure ODE + state any variant, I

will just mention the form and then solve that, that is another way of doing it but solving it at t

= 0 will give you consistent initial condition, okay. So, derivative array equations, you have to

solve; you can see that why doing this automatically becomes difficult. So, developing dynamic



simulators even though we have very, very advanced computers, even though we have a lot of

knowledge now about solving large scale equations, dynamical systems;

It is still something, which is a difficult task because you have to do this business automatically,

if you look at some of these commercial dynamics simulators, they do not ask you to specify

what is the index of your differential algebraic equation. Obviously, when you are giving all

kinds of constraints on the; you know a heat transfer, mass transfer, thermodynamic equilibrium

and the dynamics associated with each of the units.

You are not expected to know as a chemical engineer, what is index, whether this is high index

system or so you have to automatically internally find out what index it is, differentiate and

create  a  stacked  set  of  equations,  which  you  can  solve.  So,  generating  consistent  initial

conditions  or  use  some  other  way  of  generating  consistent  initial  conditions,  generating

consistent initial conditions or consistent solutions is a big task; is a difficult task.
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And if you make a mistake there, things can go wrong. The other approach is to reformulate

okay. I think I will again move there because I want these equations, so the other approach is

that you know; other approach is that this derivative array equation then can be written in this

form, this is a pure ODE and this is an algebraic; these are algebraic constraints okay. So, you

can reduce by eliminating higher derivatives, you can go on eliminating higher derivatives.

Now, this business might be pretty difficult for a very large system of equations but for some

simple systems, you can obviously do this by eliminating derivatives, we just now did this for



the; you know this mixing tank example, we eliminated the higher derivatives and so on. So,

you can reformulate it like this and then solve it using a DAE solver which is; so these are

called as state invariants; these are called state invariants.

And then you then you try to solve this set of equations using a DAE solver. So, with this I

want  to  just  close  this  very,  very  brief  introduction  to  differential  algebraic  systems,  my

intention was to give you a flavour of what it is beyond you know, just differential  or just

algebraic systems. In reality, you get always a mixture and then solving it simultaneously is a

difficult task, it is not that easy okay.

So, you need to develop expertise in solving these and beyond a point as I said working with

numerical methods and solving the problem becomes an art, it is not just the mathematics, it is;

you learn lot of tricks of the trade, which everything is not written in a book and cannot be

written in the book. So, for example you know, when you start solving problems you will learn

that making variables dimensionless or scaling the variables; all the variables help improving

the numerical accuracy or stability of the algorithms.

If  I  have (())  (35:21),  let  us take  a distillation  column,  you know you may have pressure,

composition,  temperature  appearing  in  one huge vector  okay, pressure  might  be you know

Newton per meter square 10 to the power 5 something, temperature is in you know, kelvins 300

and  concentration  is  in  fractions,  mole  fractions.  Then,  you  know you  have  a  trouble  the

numerical integrating such things.

Because the vector has imbalanced you know; numerical values, so it helps to scale them on a

similar scale and then work to the scaled variables and these things are something, which you

have  to  learn  by  experience  okay,  these  things.  Unless  you  are  hit  by  situation,  where

everything is fine and you do not get a good solution and you have to start thinking about now

what to do.

So, that is where you start thinking, making dimension, defining dimensionless variables and all

kinds of other tricks, so it is not enough just to know the mathematical background, it is also

important to know all these tricks, which you can learn only through experience and as I keep

saying in every of my instance of teaching this course is that the good part is that it cannot be

automatic, you know that is why we are in business.



We keep getting jobs you know, because you have to know some tricks and that is where; you

know you can still; otherwise, you know MATLAB or some software would be sufficient to

solve  all  these  problems  but  even  though,  you  have  very,  very  sophisticated  solvers  and

software,  you still  need chemical  engineers who know numerical  analysis  to go, you know

make fixes or make things work that is because everything still you cannot automate it.

You  have  to  have  some  kind  of  human  intervention,  (())  (37:26)  or  chemical  engineer’s

intervention to make the problems solvable okay. So, let us have a quick look at what all things

that we have done in this course, I would like to summarize this course by saying that it is not a

course on computational or numerical methods but it is a course on numerical analysis. We

learn to do analysis here than just learning the methods.

The aim was just to make you learn methods, I could just go on writing recipes and you know,

you  will  not  see  the  threads  that  connect  them and  then  it  just  becomes  you  know, you

memorize it and forget about it after some time. The reason for developing it as an analysis

course is that you should remember the; you should understand the fundamentals behind how

numerical recipe is concocted or is cooked or is developed.

And  then  you  should  have  this  confidence  of  coming  up  with  a  new  recipe,  if  you  are

encountered with a new problem, every problem will be different, every problem would require

different  way of  thinking,  which  will  not  be  given in  any of  the  numerical  methods  book

because the real problems are very, very complex, you will have partial differential equations,

differential equations, you will have algebraic equations all coming together.

It could be partial differential equations in time and space, some algebraic equations because

you are lumping and saying that the spatial variation is not important okay, you know and some

algebraic equations because of some constitutive laws or thermodynamic equilibrium and so on.

So,  you  have  a  very  complex  system of  equations,  which  you  have  to  solve  and  solving

mathematically  modelling  and  solving  it  is  becoming  very,  very  popular  in  industry  in

academics in research everywhere.

Because you know, you can do an experiment without actually having to go to the; you can do a

virtual experiment, you can develop a model, play with it, understand how the model behaves



hopefully the model at least represents in a respectable way the reality and then if you learn

something from the model you know, when you go and design your experiments or design your

equipment or do control of a system, you will have some a priori knowledge about how to go

about doing it okay.

That  is  what  we  hope  when  we  do  modelling  and  so  modelling  is  becoming  very,  very

important tool and then to develop models you should be able to solve them and get some

reasonable  solutions,  which  makes  sense.  Now, most  of  the  models  that  we  encounter  in

chemical engineering cannot be you know; their solutions for under different situations cannot

be constructed analytically.

Though we do study a lot of methods for analytical constructions of solutions that is more to

look at  some idealized problems,  simple situations  okay and of course,  analytical  solutions

typically  which  you  can  find  for  linear  differential  equations  or  linear  partial  differential

equations, they give you a lot of insights, they help you understanding how things behave. They

also have helped you numeric analysis to benchmark your approximate solutions to see whether

approximate solutions are close to the 2 solutions.

So,  there  are  different  ways  where  you  can  use  analytical  solutions  and  in  some  simple

situations, analytical expressions can be generated but even if the differential equations, partial

differential equations are linear not that every time you can generate analytical solutions. If the

geometry is nice okay; if you have cylindrical you know, something, which can be modelled as

a cylinder, it can be modelled as a perfect you know; sphere or some tube some nice geometry,

then you know it is easy to solve those problems.

But if you have some weird geometries even if you are linear partial differential equations, you

still have to go for numerical solutions, you cannot construct analytical solutions with some

weird geometries and the real problems are with weird geometries okay. So, computational

modelling or computational fluid dynamics very, very important part nowadays, in design of

chemical systems.
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Now, the way we looked at it; the difference about this course and most of the other books,

which present course on numerical methods for engineers, is that we did not; we did not look at

the methods based on the types of equations. We looked at methods from the viewpoint of tools

okay. So, the basic idea was that you have; for a real system, you develop a mathematical

model.

This  mathematical  model  typically  would  be  you  know,  algebraic  equations  or  nonlinear

algebraic  equations  or  ODE  or  PDE,  some  kind  of  you  know;  some  kind  of  algebraic

differential, partial differential or their combinations that kind of an equation. Typically, for the

situation  for which we would like to study this  coupled set  of differential  algebraic  partial

differential equations cannot be solved analytically unless very, very rare situations, okay.

So, then we said that this you have to transform the problem, so we spend a lot of time in

understanding how to do problem transformation,  so using approximation theory, you get a

transformed computable form. This transform computable form in terms of its structure could

be  completely  different  from what  you  started  with;  you  may  have  started  with  a  partial

differential  equation,  you  might  get  you  know,  algebraic  equations;  nonlinear  algebraic

equations.

So, what; the transform problem could have completely different structure from a mathematical

viewpoint than the original problem okay. What you end up solving is the transform problem

typically  and  not  the  original  problem  except  for  some  very,  very  rare  situations,  where



analytical solutions can be constructed okay. Now, then we said that to solve this transform

computable form, we only have you know, 3 or 4 tools.

So, one tool that we said is solving linear algebraic equations, so solving Ax = B, this is one

tool. So, this tool is used, then the other equation or other tool, which is very commonly used is

solving nonlinear algebraic equations, so this is F of x = 0, okay, then the fourth tool; third tool

is; the third tool is ODE IVP solver, so this is my third tool and a fourth tool that we did not

discuss  would  probably  form  part  of  advanced  course,  stochastic  methods,  okay,  random

sampling based methods.

So, we have 3 or 4 tools, it is like you know; it is like you are a doctor with you only have 3 or

4 tablets with you and you have to create a concoction, you have to create a recipe that will cure

the patient, so you have to use some combination of these 4 tools okay and then what you get

finally is approximate. Now, is it sufficient that this 4 tools are with you, it is not okay. You also

have to give inputs.

If I think in terms of another input that goes is; to solve a problem, you have to have some

engineering insights from physics, chemistry, thermodynamics whatever because you have to

give good initial  conditions,  which make physical sense okay, so this component cannot be

ignored. This is in fact the most vital component, it is not enough to have these 4 tools, you

should know limits of this 4 tools.

You should know about you know, things like stiff differential  equations,  you should know

about you know, ill condition problems and well-conditioned problems and condition number

and Eigen values and a relationship to convergence and so all this analysis that we looked at

should be there in the back of your mind, when you are solving these problems. One of the

focus of this course was analysis.

We looked at how to do convergence analysis, how to use eigenvalues particularly for solving

linear  algebraic  equations  iteratively,  we  could  use  you  know, the  theory  of  behaviour  of

difference equations; linear difference equations and understand under what conditions the error

will go to 0. Same, you know, the theory of linear difference equations; qualitative behaviour of

venial difference equations based on analysis of eigenvalues.



Also came to our help, when we looked at you know, different numerical solvers for OD IVP,

we looked at convergence of error; error between the true solution and approximate solution

when with it and how do you choose integration step size, all that was you know analysed using

linear difference equations okay. So, these are tools that help us; well, for Newton's method, I

just touched upon contraction mapping principle, though we could not go deep into it.

So, the idea was to give you flavour okay, it is not possible for this; this is a course that would

prepare you for research, it is a course that is between your undergraduate course and advanced

course; really advanced course, it is somewhere in the middle okay, what we are doing is a

course which is fixed in middle, where you know, you are introduced to various things like

sparse matrices, sparse linear systems, then how you can speed up your calculations.

Finally, we came to you know, combine things like differential algebraic systems together and

what  are  the  complications  okay.  Now,  things  like  solving  partial  differential  equations,

boundary value problems all was dealt by approximation theory okay. If I go back and see what

plays  most  crucial  role  in  this  is;  how  do  you  approximate,  what  are  the  tools  for

approximation? 

Taylor  series  approximation  then  collocations  or  interpolation  polynomials  okay  or

interpolating functions in general and least squares polynomials or least square functions, least

square approximations, now what is the origin? Origin comes from Weierstrass theorem that

any  continuous  function  can  be  approximated  with  arbitrary  accuracy  using  a  polynomial

function of a suitable order okay.

So, this one idea, which was discovered more than a century back you know, it actually forms

the CD of what has happened later on, okay, entire structure actually critically depends upon

this fundamental idea. So, basically we cannot really solve most of these problems exactly, we

have a real system there is a level of approximation when you develop a mathematical model.

A lot of simplifications,  when you approximate reality  using mathematical  model okay, the

mathematical model that you construct and situations that you develop again you know, you

cannot solve them exactly you have to further approximate if you want to compute numerically.

When  you are  computing  them numerically,  there  are  further  difficulties,  there  is  an  error



committed when you go from reality to the mathematical model, from mathematical model to

the computable form.

Because typically, we looked at these different spaces associated and we said that the original

problem  is  typically  in  the  infinite  dimensional  space  we  are  approximating  with  a  finite

dimensional approximation so you have limitations. So, there is lot of error committed when

you approximate problem in finite dimensions with problems infinite dimensions because finite

dimension problems are computable.

Further, when you solve using computer; computer has limitations, you cannot represent every

number in the computer, it has a finite precision, whatever bits you use, 128 or 256, you have a

limitation at some point and then that is where there are errors coming because of limitations of

your computer okay. So, what you actually want to do and what you finally see, there is lot of

difference, you have to use this part.

This is the most crucial part, which I cannot teach in the class, this you have to develop by

solving many problems using all this theory, using the analysis, which I taught you. Unless you

start using it you know, it is like you have been given tools, if you do not keep using them, then

they do not remain sharp you know and then you will not understand why;

So, hopefully you know, you understood why behind most of these methods and then you will

be able to carry it with you and so it was enjoyable teaching this course for your class and I

hope you have learned something. So with this, I would like to close this course on numeric

analysis, just remember this entire diagram and do not forget what is most important is your

engineering insights and physics, which you cannot forget.

All these are tools, which will help only if you give correct initial  guesses, only you make

correct choices, there is no unique way of solving the problem okay, each one will come up

with a different recipe or a different concoction, you should have confidence to make a new

bhelpuri when; or a new concoction okay, when a new problem comes that is important that is

what I wanted to learn through this course. 


