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Solving ODE-IVPs: Multi-step Methods (contd.) and Orthogonal Collocations Method

So we have been looking at predictor-corrector method or multi-step methods for solving ODE

initial value problems, and we looked at one particular class last time that was Adams-Bashforth

explicit methods.
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So what we have done till now is multi-step methods for solving ODE-IVPs, and under this class

I have derived constraints that need to be satisfied interpolating polynomial coefficients,  and

from that we have derived a generic formula for arriving at any method, and I am describing

some popular methods. So one of them was Adams-Bashforth explicit methods, so these methods

are  multi-step  methods  which  only  certain  class  of  or  it  only  makes  certain  assumptions

regarding what in the past you had to use.

So it leads to the formula where you set alpha 0=alpha 1 sorry, alpha 1=alpha 2=alpha p=0, so

we are not going to use past x values, we are going to use past derivative values. And it is an

explicit method, so beta-1=0. And we set p=m-1 okay the polynomial the multi-step p is number

of steps=m-1, where m is the polynomial order which you have to fit okay, so we have p+1



additional equations and total number of constraints this=total number of unknowns, and it is

turns out to be 2 m +1, where m is the polynomial order okay.

So this is an explicit method using this first constraint that is alpha i=0 to p alpha i=1 together

with the assumptions that we are not going to use past x, this implies that alpha 0=1 okay, and

the remaining coefficients can be found out by setting up the constraints. So I am just writing the

final from here, so I have to solve for alpha 0, I have to solve for beta 0, beta 1 to beta p. I am

just setting up those constraints which we were derived earlier for the coefficients.

And then once I solve for beta 0 to beta p and alpha 0, I get a particular method multi-step

method. The final form of this multi-step method, well one assumption when I wrote all these

equations I forgot to mention, when we have derived those constraints on alpha and beta okay,

we have made an assumption that is 0 raised to 0=1, you get 1 term in that those constraints, it is

assumed that 0 raised to 0 is 1 for the sake of writing those constraints.

So whenever I do not want to say anything about whether 0 raised to 0 is truly=1, for these

constraints whenever 0 raised to 0 comes substitute by 1 okay that is what makes it easy to write

these constraints okay, do not assume that this is this equality is this is only for these constraints,

which we already derived okay.
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So Adams-Moulton explicit method finally we looked like this x n +1=x n +h beta 0 f n +beta p f

n-p okay, the problem arises at time 0, at time 0 you do not know what are the derivatives in the

past,  one simplification you can do is that at time 0 you can use all  the past  you can make

assumption  that  x  0  was  the  value  which  was also  prevalent  in  the  past,  so  at  all  the  past

instances before 0 you can compute derivative using x 0 okay.

So the problem will vanish after p steps okay, first p steps you have problem because or the other

way to think about it is that you have to give first, you have to when you initialize this algorithm

we will have to give for p values p initial values okay, one simple way of the give p initial values

is to set them=x 0. If you set and you start  integration from p+1, so you have to start your

algorithm from p+1, 0 to p you will have to specify and those can be set=x 0, and then you can

pick up your algorithm.

After sometime okay you will have past values and okay, so these are explicit algorithms okay,

just a correction, so here this is not Adams-Moulton this is Adams-Bashforth, Adam-Bashforth

are explicit methods, so these constraints here are for Adams-Bashforth. And Adams-Moulton are

implicit methods okay, so these constraints are same we are not going to use past x values okay,

we are going to use past derivative values okay.

And we set p=m-2, and well I will not set up the equations for beta 1, beta 0, so you now the

unknowns are now not just beta 0 to beta p, but these are implicit method for beta-1 is not 0

okay. So the unknowns well the first equation will give you alpha 0=1 okay, and you have to set

up equations remaining equations for beta-1, beta 0, beta p you have to set up constraints for

these and solve them.

You will get a matrix equation in these unknowns you have to solve for beta-1 to beta p okay, it

is an implicit method, so you will get only difference between the implicit and explicit method is

you will have a, of course this beta 1 to beta p which you get by this approach are not going to be

identical with Adams-Bashforth, so these are 2 different approaches, you will get 2 different set

of coefficients okay. So this will give you an implicit method, so I will just go there and write it

down.
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So this is my x n+1=x n +h beta-1 f n+1+beta 0 f n, well just because you are using the same

notation  alpha beta  or  beta  here does  not  mean these 2 will  give you same,  this  is  Adams-

Moulton. So this is an implicit  method f n+1 appears here on the right hand side, this is an

explicit method okay. What is typically done is that when you want to solve or when you want to

get the solution by implicit method okay, you use a corresponding explicit method to generate

the initial guess.

Because this is the iterative this has to be solved iteratively right, we saw this we have seen this

in implicit Euler, explicit Euler, we use explicit Euler to initialize implicit Euler or trapezoidal

rule. So likewise in this particular case okay we are going to use this to give initial guess good

initial guess for this okay, so now this is done in 2 ways okay, one way is to do iteratively okay.

And the other approach is non-iteratively, so which means you do a prediction and then you do a

correction okay.

So I will just describe this prediction correction first okay. So this is one is non-iterative method,

in non-iterative method you just do one prediction, so my prediction is going to be x tilde n+1=x

n +h beta 0 f n, I am calling this prediction as x tilde okay, and I am going to use this prediction

to do a correction. Now my correction is x n +1=x n +h beta-1 f x tilde n+1 okay, I am not going

to do an iteration in this by this approach.



I am just going to use x tilde n+1 which was computed here, do it only once substitute here okay,

since this is now known to me okay I can compute this okay, using this I am going to compute x

n+1, so + okay. So if you do it this way only once it is non-iterative okay, this step is called as

prediction step, this is called as correction step, prediction correction, prediction correction okay.

Suppose you do not want to get into iterations at every point at least do a good prediction and do

a correction okay.

Well of course best thing would be to do iterations, so in that case the same approach can be used

except  this  second part  will  be iterative  okay. So in  that  case the  way I  would  change this

algorithm is, so this is non-iterative algorithm. Iterative case I would call this I will go back here

and call this my initial guess x 0 n+1, and then I will change this to x k n+ 1, and this side, this is

still prediction correction, except now the correction is iterative okay.

And only first time this prediction is used as the initial guess, next time this itself will feed to

itself, and then you will wait for the convergence to occur okay. And then we first look at this x

k+1, this to become smaller than some epsilon, where epsilon is the limit 10 to the power -8 or

something small number. So when you do prediction correction iteratively you use this only once

the prediction only once, and then you keep doing iterative calculations till you get convergence.

If you just want to stop with prediction correction okay that is also good enough many times, and

you  typically  use  same  order  algorithms  for  initializing.  So  Adams-Bashforth  and  Adams-

Moulton can be used together in this prediction correction form okay. There is one more class of

algorithm, now as I told you that Adams algorithms which use past derivative values okay, what

you should do of course when you write a program okay you should memorize past derivative

values.

You can store them in some array okay or multi-dimensional array, and then you should not

compute it every time okay, you should store it in the array and update the array every time you

move in time okay, you have to remember past p values okay, when the new value comes the



new derivative gets in old derivative goes out, you can create a matrix kind of a structure. And

you can write an efficient algorithm for doing these calculations okay.

Well what happens when you go to multi-dimensional case where you have vector differential

equation, we use exactly same approach, we use the same coefficients which are derived using

scalar case, and just instead of f which is scalar here we will substitute by f which is vector

nothing is going to change, there are no separate derivations for the multi-dimensional case okay.

Multi-dimensional case we just use the coefficients that you derive for the scalar case okay, f

here will be a function vector, x here will be a vector, x n+1 will be a vector and so on.

So that is the only difference which comes it when it comes to multi-dimensional methods. Now

another  class of methods like Adams method another class of methods which are very, very

popular are Gear’s method.
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So Gear’s explicit method and Gear’s implicit method. In Gear’s method we do not use past

derivatives we use past x okay, we do not have to save past derivative values, we have to keep

saving past x values, anyway past x values we are saving because you want to see the profile. So

Gear’s method are, in Gear’s explicit method we put the constraints that beta -1 beta 1 up to beta

p=0, we of course do not set beta 0=to 0 okay.



So this method would look something like this that is x n+1=alpha 0 x n okay +alpha 1 x n-1 up

to alpha p x n-p +beta 0 f n only 1 derivative value the current derivative value at initial point

okay, and then we use x n, x n-1, x n-2, x n-p past p x values okay, but this is an explicit method

so only f n “Professor - student conversation starts” (()) (22:12) h correct, h times yeah you

are right, h times beta 0 f n okay. “Professor - student conversation ends.”

As you can  guess  now Gear’s implicit  would  be  beta  0=beta  1=beta  p=0,  so  these  are  the

constraints, what is non 0 here is beta-1 is !=0, so here you set beta 1=0 beta 0=0 okay, beta 0=0

up to beta p=0 only beta-1 is !=0. So only the way algorithm changes is x n+1=alpha 0 x n up to

alpha p okay. So instead of h beta 0 f n which appears here okay you will get h beta-1 f n+1, this

is an implicit method, explicit method.

They can be tied up again if you want to implement Gear’s method okay in the non-iterative way,

you generate x tilde x n+1 using Gear’s explicit use it here and do the correction, so prediction

correction non-iterative, iterative prediction correction is you initialize your algorithm using this

and then solve this iteratively till you get convergence okay. And just to emphasize any of these

algorithms, for any of these algorithms if I am solving for dx/dt=f of x t, where x belongs to R n.

And then we are starting from x t n=x n okay, where f is the function vector, all that I do here is

if I just go back here all that I do is here this will be my function vector f n, this all will be

vectors alpha 0 alpha 1 are same they are not different okay, same thing here this would change

to  be  a  function  vector. Typically, these  iterative  suppose  you want  to  solve  this  iteratively

typically you solve it using successive substitution.

The reason being successive substitution will  give you a good solution or it  will give you a

convergence quick convergence provided you have a good initial guess and we assume that we

have a good initial guess because of this, so typically it will converge okay, you have a good

initial guess and you do not have to. See the advantage of simple successive substitution is that

you do not have to compute derivatives right, no derivative calculations involved.



It is just generating a guess and putting it back, and so those are derivative free methods which

are computationally less intensive, so you would solve them using successive substitution okay.

So as I said these are 2 popular schemes Adam scheme and gear scheme okay, one can create one

once own mix you know you might say well I do not like only derivative values or only x values,

I want a mix of few derivatives and few and you can do that.

You can choose to generate the method of your liking and develop your own program, develop

the coefficients, find them for once and develop a generic program in which you would integrate

your differential equation using your own recipe for okay. Just remember what we have learnt is

how to arrive at integration algorithms or how to arrive at algorithms for solving ODE initial

value problems okay, either  through Runge-kutta  class or through multi-step class predictor-

corrector class okay any one of them will.

And then multivariate case is simply as I said, we use the same coefficients as the univariate case

and then instead of derivative scalar derivatives we will substitute by derivative vectors and you

get the algorithm. The third method which I promised to do in the class but I am going to leave it

more  as  the  reading  exercise,  because  I  want  to  move  on  to  something  else,  is  orthogonal

collocation because we are looking at orthogonal collocation very much in great detail okay.

I will just give you an idea what is done now, and then we will move on, the details are there in

the notes you should read this okay, because it is just a repetition of what we have already learnt

about  orthogonal  locations.  We have  learned  about  orthogonal  collocation  in  the  context  of

solving boundary value problems okay, now I want to use orthogonal collocations idea in the

context of initial value problem okay that is the difference I want to use it in the context of initial

value problem.

So in the same class that is except one thing which changes here is that the philosophy changes,

though is in the same class of interpolating polynomials, we are still going to use interpolating

polynomials okay. But when you use orthogonal collocation in some sense the philosophy is

similar  to  Runge-kutta  method,  so  what  happens  in  the  Runge-kutta  method?  What  is

philosophically difference between multi-step and Runge-kutta methods?



(Refer Slide Time: 28:53)

See in multi-step methods and Runge-kutta methods, suppose you are going from time step n to

n+1,  this  is  n-1 this  is  n-2,  this  is  n-3,  in  multi-step methods we used x n-1,  x  n-2,  x  n-3

derivative values at these points in the past. See this is my current time, this is future and this is

passed okay, in multi-step methods we used derivative values or we use the x values in the past.

What happened in Runge-kutta method? In Runge-kutta method we created some intermediate

points okay.

And then we evaluated derivatives at those points, we never worried about what happened in the

past okay, we moved from x n to x n+1 by doing some intermediate calculations okay, and what

happened in the past is all contained in x n we did not bother about using it again okay. What

happens  in  orthogonal  collocation  is  somewhat  similar  to  what  happens  in  Runge-kutta,  in

orthogonal  locations  you are going to  still  use polynomial  interpolation,  idea  of  polynomial

interpolation remains there, because it is orthogonal collocation okay.

Except I am not going to use past now, I am just going to use from here to here okay, so what I

am going to do now is this section okay I am just blowing it up, this is my time n or this is my

time tn or integration instant n and this is n+1 okay. Now what I am going to do is I am going to

use shifted Legendre polynomials or the roots of the shifted Legendre polynomials at over this

interval, but the problem is this is not 0 to 1 okay.



So what I do is to transform the time axis using tau=t-tn/h, where h is my integration interval

okay, and then I have to say that I am standing here at n, so I know x n which is same as x tau=0

okay, and then I am going to place the collocation points now at the roots of the suitable shifted

Legendre polynomial inside this interval okay, suppose you place them at you know third order

polynomial then this will be the first root will be let us all this okay.

I am going to place roots at tau 1 which=0 okay, tau 1=0, tau 2=0.11, we have seen these roots

0.1127 okay, tau 3=0.5, tau 4=0.8873 and tau 5=1 okay. So I am going to place these knots okay,

what is the solution? The solution is the value of x at tau 5 this is x n+1, see my x n+1 where

tau=1 that=tau 5, t=tn +h which=tn+1 okay, so once I reach tau 5 okay I get the solution okay.
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And so what I do here is so I am defining this intermediate variables x1=x at time 0, let us all this

by some other notation say z1=x at time 0 which is same as or x at tau=0 which is same as x n

right initial point okay. Then and I am going to call z2 this is x at tau=tau 2, z3 is x at tau=tau 3

and so on okay. My aim is to find out z5 which is x tau=1 which is x n+1, this is what I want to

find out okay, now what I do is I have this differential equation dx/dt okay=f of x t okay.

How will you transform this to tau? So t= or tau=t-tn/h, so d tau= or h d tau=dt right, so this

equation will become dx/1/h d tau=f x tau h +tn right okay, and this is my h. I am just going to



multiply this h on the right hand side, so I will just say dx/dt=h times this. Now how do you use

orthogonal collocation yeah this dx/dt you have to convert okay, dx/dt you have to convert using

these x n t matrices okay, and then instead of working with sorry one mistake this should be dx/d

tau.

And then instead of working with x we could work with z okay, so I could work with new

notation z okay. Then all that I need to do is to set up these equations that is S i transpose z=h

okay, where i goes from 2, 3, 4 and 5, we have taken. See there is one difference here okay, when

you were solving boundary value problems okay you have to use 2 boundary conditions okay,

here we have to use initial condition.

So you cannot set derivative at time tau=0, because at tau=0 you know the value of z1, z1=x n

okay, we know that z1=x n this value is known okay, so what is this vector z here? z consists of 5

elements z is z1, z2, z3, z4 and z5 out of this z1 is known, what are unknowns? z2, z3, z4, z5

okay. What is the solution finally when you solve this is z5, because z5 is x n+1 okay, so you set

up these equations, these equations could be non-linear equations okay?

They could be non-linear equations; they could be linear equations depends upon what is f? If f

is the non-linear function this will be non-linear algebraic equations, they have to be solved using

Newton-Raphson or Newton's method or whatever some iterative methods okay. The difference

is even though you are using interpolation polynomial,  you are doing function evaluations at

intermediate points, at different intermediate points okay.

This is h tau i, and tau i we know what tau i values, tau i values are roots of the shifted Legendre

polynomial, so those things we know. So these are at intermediate points we do the function

evaluations,  we  solve  this  set  of  non-linear  typically  non-linear  algebraic  equations

simultaneously. And when you solve it okay the final value that is z5 will be your solution okay,

how do modify this for the vector differential equation, I have discussed in the notes you can just

go through it, slightly it will become slightly complicated but not too much.



Here, of course you will have to solve this algebraic equations, and then may not be a good

initial guess, in which case you have to solve them using derivative best methods okay. There are

good collocation based packages available Carnegie Mellon University has put up a package for

(()) (41:26) as from Carnegie Mellon University has put up a package on solving large number of

differential equations using orthogonal collocation.

You can just  download,  setup  your  problem gives  number  of  grid  points,  it  will  do  all  the

calculations for you it will also, it has a solver inside which will solve, of course these things you

can use when you go to your projects. Now in the course you should not download the package,

you should program yourself to understand what is going on. So what is going on is you know

intermediate calculations going from n to n+1 okay.

So in some sense philosophically what is happening is similar to that of the Runge-kutta method

we are not going to use past derivatives okay. Now so with this method okay we have a wide

variety of approaches for solving ODE-IVP, which one do you use okay, so there are 100s of

methods now not just one. Runge-kutta method is a class of methods you can derive third order,

4th order.

And here that to within each order depending upon how you choose the free parameters, you will

get one method which belongs to second order Runge-kutta method class or third order Runge-

kutta class and so on, because they always free parameters. As you have seen here also, there are

free parameters if you set certain things=0, you will get some constraints and then you will get a

method. So there are so many of methods many methods.

We  need  to  get  some  insight  into  their  behaviour  their  convergence  behaviour,  what  is

convergence? First of all, I need to know if in certain situations I know the true solution okay,

and then  I  construct  an  approximate  solution  using  one of  these  methods,  how close  is  the

approximation to the truth? That is one fundamental question okay. And related to this question

is how do I use okay interval of integration.



How do I choose my integral of integration? h is the most difficult part in solving ODE-IVP

okay. So we will get some insights into this in next 1 or 2 lectures, as to how to exactly what

about choosing selecting h okay. So if we are willing to choose h to be very very small, even

simple Euler's method will work okay, but sometimes okay this small becomes too small and

then it is not useful.

Suppose you are doing dynamic simulation of a chemical plant, some differential equations act

on a very fast time scale, some differential equations act on a very slow time scale, choosing 1 h

okay which will so you may have to choose h to cater to the small time scale fast dynamics, you

may have to choose h very, very small you know milliseconds. And to cater to dynamics of the

temperature in a furnace you may have to choose h to be 1 minutes, because nothing happens in

1 hour you know.

So how do you choose h, if you start choosing millisecond you will have too many computations,

if you start using minutes you will miss some dynamics okay, so there is a balance. And how do

you go about  choosing integration  step size,  these analysis  of  integration  step size gives  us

insight into you know some comparative behaviour or some relative behaviour of each methods

okay.

At the end of it  I  am not going to prescribe one method ultimately when you actually  start

solving real problems you will develop your own preferences okay. Some of you will start using

Runge-kutta, some of you will start using multi-step, and you will know how to tweak the free

parameters or how to choose the integration interval appropriately, so that you can make your

algorithm work okay. So there  is  no  one  unique  you know recipe  which  will  solve  all  the

problems okay.

So you will typically develop your own solutions, I will just mention one approach before we

move on to actually getting insights into integration step size okay, so this is called as a variable

step size approach. I will just mention this, now before I moved to variable step size approach, is

orthogonal collocation idea clear? I have just cased here, I am not derived all the equations, the

equations are given in the notes.



And we have looked at orthogonal collocation thoroughly for boundary value problems, only

difference here is okay we are solving it for you are using it for initial value problems okay, so

just have a look at okay.
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So let us look at this variable step size implementation, the detailed algorithm I will describe in

the next class. I will just give you the philosophy is let us say you have reached up to this point,

you have started from time t=0 and you are at point tn, and of course you have x n with you, and

then you want to move and make the new step okay, you want to make a new step. Variable step

size implementation idea is possible only with Runge-kutta class of methods okay.

Not possible or only with the methods in which you are marching I had n time you are not going

to use past information okay, multi-step methods variable step size does not work, or it will need

a lot of work to make it work in variable step size. Here, in Runge-kutta methods you are just

marching from tn to tn +1 okay, so the philosophy is very simple, now the question is I am not

going to fix h okay, I want to move from tn to tn +h, what should be h? Okay.

What I do is a simple idea okay, I choose some h some guess h okay, and then I make one move

from here to here okay, assuming that step size is h. Then what I do is I assume that step is not h

but step is h/2 okay, so I made 2 moves from here to tn +h/2 okay, and then from here to here, so



this is h/2 and this is h okay. Now if the solution I obtained by making 2 steps, and by making

one step is not too different, then I accept that h okay, you get what I am saying.

See what I am going to do is in variable step size implementation, I do not know, what is the step

size to choose, is it 1 minute okay or is it 10 seconds okay, let us say I start with guest of 1

minute okay. So I make integration from tn to tn+1 minute okay, then I go from tn to tn +1/2

minute, tn +1/2 minute to tn+1 minute, I go to the end point once in 2 steps and once in single

step okay, then I compare the result.

If the result is too different okay then I say well I do not accept this initial 1 minute, I will reduce

my step size to tn +h/2 okay, now what I will do is I will go in one shot here to here okay, and I

will go hopping twice okay. Compare the results, if these 2 results are similar I accept it, if not

you know I shrink this further okay. So I take some initial step size, I go there in 2 steps, I go

there in 1 step. If the 2 solutions are very, very close I accept that solution, the 2 solutions are too

different I shrink the step okay, I reduce the step.

So I might start with 1 minute as my step size, and I might reduce it to half minute okay, to

quarter minute, to 1/8th of a minute, till  I get this you know 2 solutions matching. One step

solution should match with the 2 step solution okay, so this way if you implement Runge-kutta

method, you have a very robust method. You do not have to worry about how to select the step

size.

It  will  keep  doing  lot  of  calculations  but  those  calculations  will  help  you to  give  a  robust

algorithm, which will not fail okay. We will describe this algorithm in detail next class, and we

will also get insight into what really matters okay. Well, unfortunately or fortunately again what

will reappear is eigenvalues okay, and they will again help us to find our way out okay. So let us

look at the convergence aspect in the next class.


