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So we have been looking at methods of solving ODE initial value problems and under this

category  we  have  till  now  looked  at  Taylor  series  approximations  and  in  Taylor  series

approximations we said that the trouble with classical Taylor series is computation of partial

derivatives. We do not want to explicitly compute partial derivatives. So is there a way out?

And these Runge-Kutta methods actually provide a way out of this difficulty.

You  can  do  calculations  equivalent  to  Taylor  series  approximation  without  having  to

explicitly  compute  derivatives.  So  you  just  do  function  evaluations  and  the  function

evaluations are done in such a way that it is equivalent to doing Taylor series approximations.

So we looked at last time this second order Runge-Kutta methods.
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And then  I  talked  about  this  so  general  Runge-Kutta  method  second order  Runge-Kutta

method. So the classical Taylor series approximation based method would actually have this

formula where I would have to compute the first derivative of f with respect to x and t. So

this  is  the  classical  second  order  method  and  Runge-Kutta  method  tries  to  do  the  same

achieve the same calculations without actually having to compute.



So we have this Runge-Kutta method xn+1=generic formula I had written was xn+h ak1+bk2

and k1 was nothing but chosen as fn and k2 was. So this is my generic second order Runge-

Kutta method, k1 and k2 are function evaluations at some intermediate points and these are

carried out in such a way that you match or inspirit you are doing second order Taylor series

expansion okay.

So I  choose a,  b,  alpha,  beta  in such a way that these calculations are equivalent  to this

formula and then we derived this generic by equating the coefficients doing Taylor series

expansion of this.
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And equating the coefficients we came up with a generic formula, which was so this was a

generic second order Runge-Kutta method. Different choices of free parameter b will give

rise to different second order methods. So this second order method is actually equivalent to

doing this second order Taylor series expansion without having to actually compute these

derivatives okay.

So  we have  chosen  function  evaluation  at  intermediate  point,  1  in  the  beginning  of  the

interval and 1 at an intermediate point in such a way that doing these function evaluations is

equivalent to doing derivative calculations. So you can think of this as some way of doing

derivative approximations using finite points and then rearranging okay.

You can do derivative approximations using some finite points and then do a rearrangement

to get a formula in which you do not have to explicitly compute. You do not have to compute



explicitly  derivatives.  Now likewise  you know and we derived  some specific  rules  with

specific formula. We had different choices. We had a choice which was b=1/2 and then that

gives you Heun’s modified rule.
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Choosing b=1 gives you modified Cauchy Euler formula and so on. So likewise here my

third derivative if I want to approximate using third order Taylor series then I will have one

more term and then this d3x/dt cube I can expand in terms of df/dx, I will get some complex

formula here. I am not writing that right now but I will just give an equivalent Runge-Kutta

here.
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So my equivalent Runge-Kutta here would be xn+1=xn+h ak1+bk2+ck3 and k1=fn, k2 is f

okay. If I want to approximate a third order Taylor series method using an equivalent Runge-



Kutta method, the way it is done is something like this. Now if you see here you can actually

make out a pattern the k1 here is always at the initial point okay. The k1 which is calculated

is used here while calculating k2 okay and this is at some intermediate point between 0 to h.

The k2 which is calculated here is used in calculating k3 okay and the unknown parameters a,

b, c, alpha, beta, gamma, delta okay.

There are 7 parameters to be picked up okay. These you can get by equating the coefficients,

you do Taylor series expansion of this, you do a Taylor series expansion of this okay and then

equate the coefficients of the terms there. When you equate the coefficients of the terms, you

will  get  typically  an over determined set  of equations.  You get  number  of  equations<the

number of unknowns.

And you can pick some variables arbitrarily and then you can fix those arbitrary variables and

come up with the remaining variables. What you will get is set of methods, which are called

third order Runge-Kutta method okay and logically you can go on writing fourth order, fifth

order. Basically, when you want to derive these equations, you have to be very, very patient,

do Taylor series expansions properly and then equate the coefficients to get the equations

okay.

What you are doing is essentially doing something equivalent to Taylor expansion without

having to compute derivatives okay. So this explains entire class of Runge-Kutta methods, I

mean you might  keep wondering  how did you get  those  coefficients  and why computed

intermediate points what is the basis? The basis is that these methods actually try to mimic a

Taylor series expansion of equivalent order.

So fourth  order  Runge-Kutta  will  try  to  mimic  accuracy  of  a  fourth  order  Taylor  series

expansion okay. So that is the basis and looking at this pattern you can go on developing if I

ask you conceptually can you write fifth order set of equations, you can okay because k2 is

used here. If you have to write for fourth order, k3 will be used okay and 2 more parameters

will appear okay.

And then you will get those many equations by comparing the coefficients and then you can

solve them. So typically up to fourth or fifth order you might find them coefficients listed.

Normally, we can work with fourth or fifth order. You do not have to go beyond that to get.



There is only good accuracy if you choose your integration step size carefully okay. Now

what you do when you go for multi-variable method, multi-variable equations?

Actually, we do not do the derivations. These derivations we have done for the scalar case.

Right now f here is the scalar of 1 variable equation. We do all the derivations of finding out

the coefficients only for the scalar case okay and we simply use that when you go to the

vector  case.  There  are  no  separate  derivations  for  vector  case  okay. So we just  make a

simplifying assumption that the same thing will hold and when I have to work with okay.
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See for example I want to now do dx/dt=now I am writing this capital F x, t okay x belongs to

Rn and f is the n cross 1 function vector right. This is the kind of equations now we actually

want to solve. In most of the cases, we have vector differential equations, which are coupled

which we cannot separate into separate equations and the real problem is this okay. Now we

do not derive coefficients separately for this.

We just derive Runge-Kutta coefficients only for scalar case okay. I will just write down the

formula for the fourth order Runge-Kutta, which is using these vector calculations.

(Refer Slide Time: 15:01)



So again you will be able to recognize the pattern and just to give you a feel of what is done

so this is fourth order. As you could have guessed, a fourth order Runge-Kutta method will

have  k1,  k2,  k3,  k4 4 function  evaluations  okay and the first  1  obviously k1 is  just  Fn

evaluation at the initial point, k2 is F tn+h/2 and mind you this is one way of formulating

fourth order Runge-Kutta.
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There will be other ways of getting this alpha, beta, delta coefficients and k4 is F okay. You

can notice the pattern, k1 is used in calculating k2, k2 is used in calculating k3, k3 is used in

calculating k4 okay. So same pattern and this is multivariate implementation of same Runge-

Kutta method. The coefficients here a, b, c are you can recognize the coefficients 1/6. 1/3 1/3

1/6 okay.



And we can also see alpha, beta, gamma, delta okay and then there are 2 more, 6 coefficients

will come here and they have been chosen by equating the Taylor series expansion of fourth

order and matching the coefficients. It is tedious but you can just match the coefficients and

then choose some of the free parameters, you will get this fourth order Runge-Kutta method.

So this is the foundation of Runge-Kutta methods, Taylor series expansions okay.

There are some other variations of Runge-Kutta for example variable step size Runge-Kutta

method. I will come to that a little later when we talk about step size selection. How do you

choose h? This becomes a very important thing when you are solving ODE IVP and at a later

point when I discuss choice of h at that point I will talk about a variant of this called as

variable step size Runge-Kutta method.

But for the time being let us now move on to the next class of methods, which is predictor-

corrector methods okay. So this is all about Taylor series expansion and its variant which is

Runge-Kutta. There are also some variants of this like if you can see this, this is an explicit

method okay. The way it is organized if you see here, it is an explicit method because all the

intermediate points so this Fn can be calculated, given Fn, k2 can be calculated okay.

Given k2, k3 can be calculated,  given k3, k4 can be calculated.  So there is no iterations

involved here okay that is very, very important. There are some modifications of this which

involve  semi-implicit  some  iterative  calculations  what  I  have  presented  here  mostly  the

popular methods of Runge-Kutta are explicit methods okay. The next class that is polynomial

interpolation based methods.
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Under this class, I am going to talk about 2 types of method, 1 is multi-step methods. These

multi-step  methods  are  also  known as  predictor-corrector  methods,  some of  the  popular

algorithm under  this  class  is  Gear’s predictor-corrector. See  you might  have heard  about

Gear’s integration algorithm. This in some book or some research paper you may have come

across Gear’s predictor-corrector.

So those Gear’s predictor-corrector belongs to this class. The second method I want to see

under this is orthogonal collocation. The orthogonal collocations method which we have seen

or which we have used for solving or discretizing boundary value problems or discretizing

the partial  differential  equations.  This approach can also be used for solving ODE initial

value problems and will have a peak at that too.

So  we  begin  with  multi-step  methods  or  predictor-corrector  methods.  Now  again  my

development is not going to be for multivariate case. My development is going to be for the

scalar case. It is easier to understand okay and typically we do the same thing even for multi-

step methods we do not derive coefficients separately for vector case. We just derive, make

derivations for the scalar case and we use those coefficients in the vector case okay.

So same idea which was done for Runge-Kutta. Runge-Kutta is delight for the scalar case.

We just use those coefficients okay for the vector case. So it is going to be the same case

here.
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so for the derivation sake, I am going to be bothered about dx/dt=f x, t where x belongs to R,

it is a scalar variable and we are at point x tn=xn and then I want to integrate over t so again I

am going to solve the same problem, one small ODE initial value problem starting from time

point tn and going to time point tn+1. Now when you say multi-step, let me clarify why this

word multi-step is being used.

In Runge-Kutta methods, we were just worried about going from tn to tn+h okay. All that we

used was xn and then values between xn and xn+1 we created some intermediate points okay

and then we did evaluations at the intermediate points between tn to tn+h and then we did the

calculations okay. Here the philosophy is different. Here what I am going to say is that well I

have information available about what has happened in the past okay.
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See I am currently at let us say I am currently at tn, I want to go to tn+h okay. So my problem

is I have xn here and I want to find out xn+1. I want to go from here to here right but I have

started my integrations somewhere here, this is my x0 okay and then I have this information

about tn-1, tn-2, tn-3 right. I have information about xn-1, xn-2, xn-3 because I have started

integrating from time 0 okay and I have this information.

When I have reached up to point tn, I have information in the past okay. I want to march from

tn to tn+1 one step ahead in future. Currently I am in tn okay. I have this past information.

Apart from this, I also have not only information of x at this discrete time points, I also have

information about f n-1, I also have information about f n-2 right. These are values in the

past. I can evaluate the derivatives at the point in the past okay.

I can evaluate I know the values of x or I know the values of the solution at time points in the

past okay. What I am going to do is when I go from here to here okay I am going to make use

of this past information okay. See it is like again if you take the analogy of you know when

you are climbing down a mountain okay. When you take the next step, you may want to use

information about what has happened in the past okay.

How was the slope and what is the local curvature, you want to use that information and

make one step ahead okay. The Runge-Kutta method only you know looks at everything that

is in the past is contend in xn and I just want to go from xn to xn+1 so Runge-Kutta method

when it goes ahead, it is cautious, it takes small steps in between and goes okay whereas here

we are not going to do intermediate calculations okay.

We are going to use calculations at these previous time points to make a judgment about how

to go in the first. So 1 measure difference here is that these are fixed step size methods so tn

or  in  general  ti-ti-1  is  h.  So  the  step  size  is  fixed  okay. Now  what  is  the  philosophy?

Philosophy  is  to  use  an  interpolation  polynomial.  What  is  an  interpolation  polynomial?

Interpolation polynomial is 1 which passes through given set of fixed points okay.

So one idea is that if I have this xn-1, xn-2, xn-3 okay, I can invoke Weierstrass theorem and

say that well my solution x is actually a continuous function okay. A continuous function can

be approximated by a polynomial. What kind of polynomial? I am going to fit a interpolation



polynomial. So I am going to fit a polynomial using this data okay and do an extrapolation

okay.

I fit a polynomial using past data and extrapolate from tn to tn+1 okay. So this will give me

an explicit method. The other idea is I try to fit a polynomial using xn+1 so using future in

the past okay then you get implicit formula because you will get the future is the function of

you know this xn+1 is the function of xn+1 and you have to solve it  relatively okay. So

basically I am going to fit a polynomial.

So my idea is to fit a polynomial. Now my notation is little bit complex okay and you have to

carefully understand my notation. Let us say I want to fit a cubic polynomial okay or I want

to fit a let us take the simplest polynomial quadratic polynomial okay. I want to fit a quadratic

polynomial.  So x0n+x1n t+x okay. This is the polynomial  solution.  Let us call  this  local

solution xn t okay let us call this solution xn t.

What is this n? Okay this n corresponds to the point tn. I am standing at tn okay. I am not

going to fit one polynomial okay. At this point, I am going to fit  a polynomial locally, a

quadratic polynomial okay and use it to do extrapolation. When I move on okay I am going to

fit another polynomial, I am not happy with fitting one polynomial. It is not possible to fit

one giant polynomial into all.

Suppose you are integrating from 0 to time 1000 minutes and you are integration interval is

10 seconds okay. I cannot fit a interpolation polynomial of higher order okay. I cannot fit one

quadratic  polynomial  because  the  nature  is  changing  as  you  move  along  the  slope  is

changing. So I want to fit a local polynomial using local neighborhood data okay and then do

an extrapolation okay.

So we are just going to use the local information and these polynomial coefficients are going

to be time varying. They are going to change as you move in time okay. That is why this

index sub index n comes okay. Now 0, 1, 2 is a quadratic polynomial, which I want to fit

locally okay. This is fit in the sense I am not going to do least square fit here. I am going to

do interpolation polynomial okay.
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Let us see how we can fit this local interpolation polynomial okay. Now what I can do is I can

differentiate this polynomial okay. What will I get if I differentiate the polynomial? a1, n+2

a2, n t okay. Now I am going to temporarily shift the time okay such that I am going to shift

my time axis such that tn corresponds to 0 okay. For making this local fit I am going to shift

the time axis such that tn corresponds to 0.

So what will be tn+1? This will be h. What will be tn-1? This will be –h. What will be tn-2?

-2h and so  on  okay. Now when I  am fitting  the  polynomial,  in  this  case  I  am fitting  a

quadratic  interpolation  polynomial.  How  many  coefficients  are  there?  There  are  3

coefficients, a0, a1, a2 okay. How many equations I need to exactly determine the 3? I need 3

equations so somehow I have to generate 3 equations okay.

So let us start doing this by with this shifted time scale okay I am going to now generate 3

equations and 3 unknowns and once I have solution of 3 equations and 3 unknowns, I have

one way of doing calculations okay.
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So now let us see how this is done okay. So what is x0 at t=tn we have shifted time now okay.

In shifted time, what will be x0? Will corresponds to xn okay. Now xn in terms of shifted

time, this will be a0, n+a1, n*0+a2, n*0 okay. I got the first coefficient. What is my first

coefficient?  Because this  is  0,  so this  is  0,  this  is  0,  I  got  x0n=xn okay. Now I need to

generate 2 more equations okay. See dx/dt is nothing but f of x right.

Now what is fn? That is function evaluated at time tn okay. That will be=a1, n okay +2a2,

n*0 fine. So this is 0 because with shifted time this is 0 okay. So I got second coefficient a1,

n=fn okay. Now I want to generate the third equation. How do I generate the third equation? I

can use the past okay. I can use information at xn-1 or I could use information of fn-1, I have

a choice. I can choose from xn-1 or fn-1 okay.

So which one do you want to go? Xn-1 okay, we will derive both ways okay. So let us take

initial possibility that to fit the interpolation polynomial, I am going to use xn-1 okay. So

what will be xn-1? Xn-1 will be a0, n+a1, n*-h+a2, n h square right okay. Now can you

eliminate and find out a2, n? Just tell me what is a2, n? Because a0, n is nothing but xn. We

got this a0, n=xn.

We got a1, n is nothing but fn so these 2 coefficients are known to us okay. What is the third

coefficient?
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So what I will get if I substitute there I know that a0, n=xn, I have found that a1, n=fn right.

Now the third equation that I got is xn-1=xn-fn*h right+a2, n h square. So what is a2, n h

square? So a2, n will be xn-1-xn+h fn/h square okay. This is my interpolation polynomial.

This  is  my  coefficients  of  interpolation  polynomial.  So  I  have  found  out  interpolation

polynomial with time varying coefficients. So what is my interpolation polynomial?
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Let us go back and write it here. So my interpolation polynomial is now let us write it in

terms of shifted time let us call it tau shifted time okay this is equal to what is a0, n is xn okay

is xn+what is the second coefficient? Second coefficient is fn*tau, tau is the shifted time okay

and what is the third coefficient? xn-1-xn+h fn/h square*tau square right. Is everyone with

me on this? See I fitted an interpolation polynomial.



There are 3 coefficients a0, n a0, n turns out to be xn okay a1, n turns out to be fn okay and

a2, n turns out to be xn-1-xn+h fn/h square*tau square this is my polynomial okay. This is the

second order polynomial fitted using this point and this point in the past okay. Now I am

going to do extrapolation. How will you do extrapolation? What I want to find out? The next

step. So how will you get the next step? Tau=h okay.

Tau=h will give me this point so what will I get if I substitute tau=h here? Let us substitute. If

you substitute tau=h, you will get xn+1, see setting tau=h will give you xn+1 okay.
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So if I set tau=h that is I want to go to this point then if I substitute that here tau=h I will get

xh, xh is nothing but xn+1 okay, xn+1=xn*fn*h okay+here you will get h square, so this h

square h square will cancel okay. Can you rearrange and write what you get now? Yeah so

what you get? So after rearranging you will get xn-1+2h fn. Is that right? Okay. The final

formula looks like this.

The  final  formula  you  do  not  see  the  interpolation  polynomial  anywhere  okay.  The

interpolation polynomial, which we have fitted locally has disappeared with this final form

actually what you have done is fitted a local polynomial. Is this the only way of doing this?

No, okay. Let us do it some other way okay. What is this formula which you got? Is this an

explicit formula or implicit formula? This is an explicit formula okay.



Because anything that is before is known to you okay. What is in the future is not known to

you. Let us make a small modification and see what do you get now. This point I have chosen

xn-1, instead of that let us choose here let us go back here okay.
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Make a small modification and I will choose xn+1, just derive what will happen. If I choose

xn+1, this will be a0, n, this will be a1, n and this will be +h, -h will disappear and this will

be h square. What will you get? Okay my equation here this a0, n is still xn, a1, n is still fn

okay.
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This equation will  change, this  will  be xn+1=xn+h fn and this  will  be xn+1-h fn okay/h

square that is your a2, n now okay. This has become xn+1 instead of xn-1, this is xn+1 xn h

fn okay. Now what? How will the formula be modified? Just go back and derive the formula



now. What do you get? You will still end up with the explicit formula I think. So what is the

polynomial that you are fitting now?
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You will get x tau=xn+fn tau+what is the third coefficient? xn+1-xn+h fn/h square tau square

okay. Now what do you get? You will get 0=0 here. Oh great so this will not help us. So what

way to go? What about fn+1? Can we use fn+1? Just check. Now instead of using xn+1, I

decide to use fn+1 okay. So here you get 0=0. So xn+1 is not useful. So we need fn+1.
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What  is  fn+1? fn+1 will  be  a1,  n+2 a2,  n*+h okay. Now using  this  I  will  get,  these  2

coefficients remain same.
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I will get fn+1=fn+2 a2, n h. So what is a2, n h? a2, n=fn+1=fn/2h okay. If you substitute

this, what will you get? So my formula now becomes here.
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This becomes so this is my time varying polynomial, this is fn+1-fn/2h*tau square okay. So if

I set h=tau, so I will get xn+1. What is the integration formula? xn+1=xn+h/2 f of n+f of n+1

the famous trapezoidal rule. This is an implicit formula because xn+1 appears on the left hand

side, fn+1 appears on the right hand side okay. This is our famous trapezoidal rule. I got an

implicit formula okay.

When you see it in this form, you do not see the interpolation polynomial okay and what I

want to stress here it is matter of choice how do you choose which point of it. See suppose I

give you a problem in which you have to fit a cubic polynomial, what will you do? Cubic



polynomial will have 4 coefficients, so you need 4 equations. How you generate 4 equations?

There are variety of ways. You could do using xn, xn-1, xn-2, xn-3 okay.

You could do using fn, fn-1, xn, xn-1, 4 equations okay. You could do using you know this

and this okay, which points you use all of them are multi-step methods okay. So I will just

summarize this here. “Professor - student conversation starts.” Yeah you have a doubt. No,

no, no. It will only give problem at a time 0. No, no, no. At time 0, you have to make some

assumption about past yeah.

Why you started with the wrong guess, you start with the same initial point, same point in the

beginning and then start  creating new points,  only first 3 points will  be problem, 3 or 4

points. After that you have with the past right. No, there is nothing like a wrong guess know.

This is not iterative solutions. See when you are solving ordinary differential equations, you

are not guessing you are marching in time okay.

So do you know some values in the past is the question okay. So it is not just one initial

condition, you need to know some values in the past. No, I can assume the same value was

there  in  the  past,  it  is  same  point  in  the  beginning  for  last  4  instances.  If  I  make  the

assumption, there is nothing wrong and I can go on marching. So after 3 instances, I will have

past 3 and then I can go on doing it.

It does not get a problem so the convergence to the true solution depends upon something

else okay. It  does not  matter  even if  you have slightly wrong initial  3 or 4 points  okay.

“Professor - student conversation ends.”
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So basically, if I want to fit a polynomial of the form you know xn t=a0, n+a1, n t+a2, n t

square+a3, n t cube okay. I want to find out a0, a1, a2, a3 okay. To generate this, either I can

use xn, xn-1, xn-2, xn-3, I could use xn, fn, xn-1, fn-1, I could use xn, fn, fn+1 fn-1. I want to

create 4 equations in 4 unknowns, fit an interpolation polynomial okay of cubic type with

time varying coefficients.

Those time varying coefficients  can be either  function of past  3 x values,  they can be 2

derivative 2 x values, it can be 3 derivatives 1 x value, it is up to you okay. So every possible

combination will give rise to 1 multi-step method okay. Final form the cubic polynomial or

whatever that cubic form will disappear, you will only see an integration method with some

coefficients okay.

What I will do in my next class is derive a generic mth order polynomial to be fitted in okay.

I will derive a method formula for mth order method and so we can do any order fitting okay,

find a multi-step method and derive it.  So you should understand what is the philosophy,

should be able to derive a new method if you want, that is very, very important, that is what I

wanted to learn from this exercise.

Because the final rearranged form you know the origin disappears, it looks like some recipe

you know, you take this, you take this, do this, do this, you will get the solution. What is the

philosophy is not clear when you look at. So in the next lecture we will continue these multi-

step methods. I will try to finish multi-step methods. There are different classes of multi-step

methods.



One which only use past f1 will use only past x and so on and then there are variations, you

get explicit methods, you get implicit methods. Then you use explicit method to initialize an

implicit method. The same idea which we use for Euler you know, that is how do you get a

good guess? Okay so you will get a good guess by Euler and then you know kick off your

iterations.

And the same thing you do here, you take a nth order multi-step method, explicit and use it to

initialize a nth order implicit method and that way you know you can converge faster. So

large number of methods exists because the way you fit the polynomials is up to you. How

much information in the past you want to consider relevant is up to you okay? So order you

can choose how much data you want to choose in the past you can choose.

And then you can go on marching using interpolating polynomials okay. What is important to

remember?  There  is  no  one  interpolating  polynomial,  it  is  like  series  of  interpolating

polynomial so every time you move on, you are fitting a new interpolation polynomial, you

move  on  you  fit  a  new  interpolation  polynomial  okay.  So  sequence  of  interpolation

polynomials that is very, very important.


