
Advanced Numerical Analysis
Prof. Sachin Patwardhan

Department of Chemical Engineering
Indian Institute of Technology - Bombay

Lecture - 41
Solving Ordinary Differential Equations - Initial Value Problems (ODE-IVPs) : Runge

Kutta Methods

ODE initial value problems, methods for solving ordinary differential equations with initial

condition specified and then I talked about 2 categories of algorithm.

(Refer Slide Time: 00:32)

We talked about 2 categories, 1 was explicit method and the other 1 was implicit method.

Explicit method given this differential equation dou x/dou t=F of x, t and initial condition x

tn=xn.

(Refer Slide Time: 01:24)

We derived explicit Euler method that was x n+1=x n+h times F n. This was explicit Euler

method and other class that we talked about was so this is explicit Euler and other class that

we talked about yesterday was implicit method. So what we yesterday looked at was

trapezoidal rule. So trapezoidal rule is given as x n+1=x n+h/2 F n+F n+1. This is implicit

method.

This is trapezoidal rule, h here is constant integration interval so h is tn+1-tn, difference

between 2 successive time steps. So this particular method does require iterative calculations.

I am just going to write down the algorithm for doing the iterative calculations here. How do

I solve this? Typically, F here is a non-linear function. Now right hand side here F n+1 is

nothing but function vector evaluated at x n+1.

So this is an implicit equation where left hand side is x n+1 and the right hand side also

depends upon x n+1. So this is implicit equation, which you have to solve iteratively. So what

is the method? How will you do this? The algorithm would be something like this. Well to

solve this equation, I can use complex method like Newton-Raphson, but I do not have to.

As I told you that there are some simple derivative free methods, which can be used without

requiring to compute Jacobian okay, so I can employ those methods here. If I give a very

good initial guess, then it is possible to use those methods. So what we are going to do is to

generate a good guess here okay for iterations I am going to use explicit Euler method. This

will give me a good guess.

And then I will use it to kick off my iterations and my iterations then you know will be just

successive substitutions. I am not going to use Newton-Raphson or any other more complex

method. So simple successive of substitution works here if you give a good initial guess. So

as I said which method you use, we talked about multiple methods for solving non-linear

algebraic equations.

And which method you use when is context dependent. In this context, we most of the times

sufficiently use simple successive substitutions. So what is the algorithm?

(Refer Slide Time: 05:18)

So I initialize x0 this is the initial value from which you start your integration okay, tf is my

final time, h is my integration interval, epsilon is my tolerance and capital N is tf/h number of

steps total I want to go from time 0 to time tf I want to integrate differential equation.

Integration step size is this small h and then I am going to use this. So in my program first I

initialize x0, tf, h, epsilon and so on.

Then I have to go on marching in time so I am writing a pseudo code for n going from 0 to N-

1. I want to use the implicit method okay, but every time I need a good initial guess for the

implicit method. So what I do is my initial guess now just try to understand the notation. Here

superscript 0 is iteration index okay sorry this should be n so n+1=x n+F x n. So I initialize

my iterations using explicit Euler okay.

Then I write a WHILE loop, there is h times F x n. Then I write a WHILE loop here and my

delta is nothing but okay now let us understand this algorithm. The first guess in the iterations

it generated using explicit Euler. This does not require any iterative calculations. Now I want

to compute x n+1 iteratively. So what I do here is x the new guess for n+1 is generated using

old guess for n+1.

First time when you enter this WHILE loop okay, you have this k0. K0 is calculated here that

will give you k1, using k1 you will get k2 okay. Time index remain same because you are

trying to get n+1 okay. You keep checking whether this iteration is converged or not. That is

done using this delta which is relative change between 2 successive iterations should become

very, very small okay.

Once this become small okay this relative change between 2 successive iterations become

small, I exit this WHILE loop and whatever result I get I accept it as x n+1 okay. So at every

time step, there are iterations in implicit algorithm. In explicit algorithm, there are no

iterations. It just gives you, you just go marching in time. Here while you march in time, you

keep doing iterations and these are the iterations okay.

So to close the loop, I have to put so at the end of this I am just continuing it here.

(Refer Slide Time: 11:49)

So this is continued here so once the iterations converge then I accept x n+1=whatever was

xk n+1 okay. Of course, I am skipping things like you save those values and so on. Basically,

in the implicit algorithm at every time step, you have to do iterations. The way I am going to

do iterations is not using very complex algorithm. I am just using derivative free algorithm. If

you just go back here, these iterations are nothing but successive substitutions okay.

To generate an initial guess x0 substitute x0 here you will get x1, substitute x1 here you will

x2, keep doing this till you get successive values very, very close and terminate when you get

closer values or sufficiently close values. So you keep doing this till this delta is>epsilon,

epsilon is the tolerance that you are given. Epsilon seems typically a very small number say

10 to the power -8 or something.

So relative tolerance is very, very small, 2 values are almost converged. Now if your time

step is small, h is small then this will be a good guess and these iterations will converge very

fast within 4 or 5 iterations this will converge okay. Now in the program which I have asked

you to do iterative calculations, you will see that the inside loop will converge very fast step.

he problem might come if you have h is which is very large and then this approximation is

not good then you may have problem otherwise convergence will be good; you will get

solution every time very quickly okay. So now let us start developing the numerical

algorithms okay.

(Refer Slide Time: 14:02)

Now there are 2 classes or I would classify them according to the approximation strategy that

is used. The approximation theory is again required because you cannot solve these problems

exactly okay. I have this differential equation and then the true solution of this differential

equation.

(Refer Slide Time: 14:59)

Let us denote by x star t is the true solution. Often times, it is not possible to compute the true

solution. You have to live with only an approximate solution okay. So we will keep calling

this approximate solution as xt okay, xt will be approximate solution. Well there are some

cases where it is possible to solve it analytically but if you look at the entire set of differential

equations that we encounter in engineering that fraction of problems for which analytical

solution exist is very, very small, it is not a large set.

So we have to live with approximate solutions that are constructed numerically okay.

Actually, the true solution of a differential equation, let us see well if you take a scalar

differential equation, the true solution will be a function in time or space whatever is the

independent variable okay. From time 0 to whatever time tf that you want to or if tf is infinity

from 0 to infinity it is a continuous function okay.

What you do here is that we often only construct you know discrete approximation. So if you

see here I am hopping in time x n to x n+1 x n+1 to x n+2. What about solution between n+1

and n+2? I am not saying anything about it okay. All these numerical methods see what I did

was you know what I did was I started from 0, time 1, time 2, time 3 whatever and this is my

time n, n+1.

So I am calculating solution in jumps so I have this x0 here approximate solution. Then, I

have x1 here, I have x2 here, I have xn here, I have x n+1 here so I am trying to compute this

x at discrete time points okay hopping in time. I am not saying anything about what happens

between okay.

All that I can do with let us say Euler method is I can reduce the distance and come closer

and closer even then it is not same thing that true solution is not in pieces like this. The true

solution is a continuous function. So you are approximating okay. If it is a vector differential

equation, it is a vector which is consisting of functions which are continuous over 0 to tf that

is the true solution.

What you are doing is you know you are replacing that vector function defined over 0 to tf by

number of vectors, 1000 vectors, 10,000 vectors depending upon how you choose a

integration interval you will end up approximating that using a set of you know vectors at

discrete time points okay so it is an approximation.

When you draw using MATLAB, you tend to connect and draw but that does not mean that

you know in between solution is just connecting the 2 points. That is only for our visual.

Actually, in MATLAB when you get solution only at these discrete points you should only

plot the points because you do not know what is in between actually but when you plot you

will not plot discrete points, you will plot continuous curve.

Actually in that some kind of linear interpolation can be done in between. So the way we

erroneously represent as a continuous graph the solution which is actually discrete should not

be taken as the correct true solution. It is only that you are going closer to okay. So what are

the classes of methods? So I would say that there are 2 ways of developing approximate

solutions.

(Refer Slide Time: 20:11)

So one class is based on Taylor series approximation and this actually leads to so called

Runge Kutta methods. Taylor series approximation actually involves computing derivatives.

It is very difficult to compute derivatives. So very nice substitute was developed in which you

only evaluate functions at certain points without requiring derivatives but what you do in

Runge Kutta methods is equivalent to do in the Taylor series approximation okay.

I will derive it and we will see how it is done. So you want to first approximately solve it

using Taylor series but Taylor series itself can be difficult for a multi-variable function. So

you further approximate and you develop Runge Kutta methods okay. So the class of

methods that you get here. The other one I would say is apply Weierstrass theorem and do

interpolation.

Well Weierstrass theorem is applied in both the cases so instead of just saying Weierstrass

theorem you can say interpolation polynomials. The other approach is interpolation

polynomials. Interpolation polynomials gives rise to again 2 sub methods. So interpolation

polynomial you will get multi-step methods. I do not know whether you heard about Gear’s

predictor-corrector or predictor-corrector methods.

They are also known as predictor-corrector methods. So multi-step methods is follow out of

using polynomial interpolations and other one is orthogonal collocation. You can use

orthogonal collocations and then solve the problem converting everything into set of

algebraic equations and so we are going to look at all of them. So what I want to do now is

systematically derive algorithms of each class okay rather than just stating the algorithms.

So we will start from scratch, derive the algorithms and see what is the philosophy behind

these methods? Okay for now when I do this development even though I want to finally work

with multi-dimensional differential equations. I am going to actually restrict myself to 1

variable case because derivations become simple okay and 1 variable methods are simply

extended to the multi-variable methods by just we do not do derivations separately.

Whatever coefficients or whatever you get for 1 variable method are just extended to deal

with the multi-variable methods okay. So development that follows for all the classes of

methods I am going to restrict myself to 1-dimensional differential equation and also mention

later how it is extended to multi-variable case.

(Refer Slide Time: 24:40)

But the development we are just going to do for simple equation dx/dt=f of x, t where x

belongs to R and you have t which is from some 0 to tf and a specific problem at hand is we

are at time point t corresponding to tn so we have x tn=x n okay and I want to go from my

problem is I want to integrate this differential equation over t that belongs to tn to tn+1.

I have divided my interval 0 to tf into smaller sub intervals and my specific problem is to go

from tn to tn+1 okay.

(Refer Slide Time: 25:52)

So Taylor series based methods you start by saying that let x star t represent true solution

okay let x star represent true solution. Then x star tn+1 which is in our notation, this is same

as x star n+1 right. The notation that we have adapted is x star n+1 okay. This is same as x

star tn+h right. This is x star tn+h okay so I am going to do a Taylor series expansion of x star

in the neighborhood of tn okay.

(Refer Slide Time: 27:18)

So x star n+1 is x star n+h times right I have just then Taylor series expansion of the true

solution in the neighborhood of this is exact equality if I take infinite series right so exact

equality. Now what is this dx star n/dt? x star, I know x star in terms of f so this will be f x

star n, tn right this should be exactly equal. Now what should be d2 x star? Is everyone with

me on this?

Okay what is df? Now we have to go back and check that okay.

(Refer Slide Time: 29:20)

Well I will just leave this 1 equation that is dx/dt=f of x, t okay. Now df is dou f/dou x

dx+dou f/dou t dt right. I am just taking exact differential of df so df/dt at x star n. See this

term that df/dt at x star n this term I can replace this by dou f/dou x at n calculated at n okay

then I will get a term here. See if I take dou x/dou t, I will get dx/dt right but what is dx/dt? f

okay so this will be f n okay because dx/dt is replaced by f okay +dou f/dou t at n okay.

So this first derivative of dou f that is df/dt is replaced by Jacobian of f, f itself and derivative

of f with respect to time okay. So this is what it is replaced by and so on. So see this is the

second term I can similarly find d3x/dt.

(Refer Slide Time: 32:07)

Let us go back here this should be square here, so 2 here dt square. Just like I approximated

the second derivative, I can approximate the third derivative, fourth derivative, fifth

derivative and so on okay. I can express it in terms of f, Jacobian of f, second Jacobian of f

and so on. I can just go on doing this and for the scalar case there is no problem. The terms

that you are getting here for the scalar case, these are not matrices, these are just scalars okay.

So it is not so difficult to compute these scalar derivatives and principle okay. Now what I am

going to argue is that when in reality we do not have the true solution with us okay. We only

have an approximate solution and we are going to continue approximating using the

approximate solution okay. The true solution x star will never be known in most of the cases

even for a scalar problem.

(Refer Slide Time: 33:30)

So I am going to develop this approximation not for the true case but for the approximate

solution so the star will disappear and then the next thing, which I am going to do here is I

cannot do submission up to infinity okay. So I am going to truncate the series after some

terms okay.

If I happen to truncate the series after first term okay see I can decide to truncate the series

here, I can decide to truncate the series here, I can decide to truncate the series after the third

order term okay. If I decide to truncate after first order you know everything higher in terms

of x square and higher is neglected. So I can write this as x n+1=x n+h times dx n/dt+order of

h square, all the terms which are of the order of x square and higher.

When you write like this it means all the terms okay. If I decide to neglect this, if my h is

very, very small okay and if I decide to neglect this high order terms then I can come up with

the so called explicit Euler algorithm. This is x n+h. Now what is dx n/dt? I am going to

replace it by f xn. This is same as xn+h times f n in our notation okay. This is my first order

Taylor series approximation okay.

What if I decide to do approximation after first 2 terms so which means somebody might say

well this is too naïve you are just taking you know first order term h should be very, very

small well I would like to include the second order terms.

(Refer Slide Time: 36:00)

So you will say that I will take xn+1=xn+h dxn/dt+1/2 h square d2xn/dt square+order of h

cube so I am neglecting so I am writing it like this and when I do approximation I neglect

terms which are higher than h cube okay. So this then will be approximately equal to xn+h.

Now dxn/dt I can substitute fn here right, dxn/dt I am substituting fn okay+h square/2 and

using just the derivation that we did we can write this as dou f/dou xn fn+dou f/dou t at n.

So I can approximate the right hand side okay, the second derivative I just showed you how

to approximate the second derivative I am substituting that here okay. This if I start doing

calculations using this approximation, this will be a second order Taylor series method okay.

Likewise, I can have a third order Taylor series method, fourth order Taylor series method

okay.

So I am just using Taylor series expansion idea to construct a local solution to go marching in

time okay. The way it is written here these are all explicit algorithms. You are going from n to

n+1 using the derivatives at n local derivatives at n, first derivative, second derivative, third

derivative depending upon where you want to stop okay. If h is very, very small even the first

order approximation is okay, okay.

But if you want to have h to be relatively larger you cannot stop with first or second order

you probably have to go to okay. Now doing these calculations particularly if you have many

equations to be solved together can become very, very cumbersome. So you have to compute

derivatives even for a single variable case if you are taking fourth order approximation, you

have to compute derivatives every time fourth order derivatives and it is not so easy.

So what was done by Runge and Kutta, they came up with a very nice scheme by which you

can do calculations of this type without explicitly having to compute the derivatives okay.

You want to get an accuracy which is similar to that of a second order Taylor series method

without actually having to compute the derivatives okay. That is the modification which

Runge Kutta methods bring in.

So I am going to start with this second order method and show how will I come up with a

Runge Kutta second order okay. Now If I do Taylor series expansion up to second order and

if I do Runge Kutta second order, I will not get identical results but I will get equivalent

results okay. That is what is important.

So what we are going to do in Runge Kutta methods? I mean if you understand the basic

philosophy then you know how Runge Kutta third order, fourth order, fifth order are derived

will become clear okay. Runge Kutta methods were developed in that era when we did not

have computers like you have so doing computations, computing a trajectory, doing it by

hand or by doing you know some logarithmic tables or whatever was not an easy job.

It was quite cumbersome. Nowadays, you can do those calculations probably within a second,

in fraction of a second not just a second.

(Refer Slide Time: 40:25)

So the idea was I want to compute xn+1 as xn+h times ak1+bk2 okay, h is same as your

integration interval. I am going to develop a second order method now okay. I will tell you

what is this k1 and k2. K1 is f xn, tn that is fn okay and k2 is f tn+alpha h xn+beta h k1 okay,

k1 and k2 are 2 function evaluations okay. K1 is the function evaluation at the initial point

okay; k2 is the function evaluation at an intermediate point between 0 and h.

See you are going over interval, you are going from tn to tn+1, let say integration interval is h

okay. So I am going to do a function evaluation at an in between point okay so I want to do

only 2 function evaluations and what I want to achieve through this 2 function evaluations? I

want to achieve something like this okay. So my aim is to choose alpha beta in such a way a

and b.

I have 4 unknowns here alpha, beta, a and b. I will choose alpha, beta, a and b in such a way

that doing these 2 function evaluations and calculating this okay is equivalent to doing a

second order Runge Kutta method okay. I want to do these calculations in such a way that

doing these types is same as is equivalent to doing a second order Runge Kutta step. So what

I am going to do is I am going to expand this using Taylor series okay.

And match the right hand side of this with right hand side of this that will help me to find out

coefficients alpha, beta, a and b okay, which will make them equivalent methods okay. What

is the advantage of doing this? I am just doing function evaluations; no derivative is required.

What is the disadvantage of Runge Kutta? You have to compute dou f/dou x, you have to

compute dou f/dou t derivative of derivatives.

I do not need that when I come here, I just need to evaluate f of xt okay. At 2 different points,

I am going to choose those points in such a way that doing these calculations is same as

second order Runge Kutta method. Let us see how it is done okay.

(Refer Slide Time: 44:10)

Now just for the sake of convenience let us call delta x=h beta k1 and delta t=alpha h okay. I

am just writing this for the sake of convenience. So my k2 is function evaluation at x+delta x,

t+delta t. My k2 is function evaluation. This is same as function evaluated at well one minute

let us put this little more. This is xn+delta x and tn+delta t, delta t is some intermediate point,

delta h is some intermediate point okay.

So this is same as f xn, I am just doing a Taylor series approximation f xn tn+dou f/dou x dou

x/dou tn delta t+dou f/dou xn dou f/dou x delta x+order of h square. I am just doing a Taylor

series approximation of f at xn+delta x and tn+delta t around xn, tn okay. I am going to do

approximation around xn, tn so this is I am just approximating this as f xn, tn. First derivative

with respect to t and first derivative with respect to x delta x, delta t.

I am working with scalar; x is the scalar okay. So now if I substitute this k2 see what I can do

now see this k1 is nothing but just look here k1 is f1 okay, k2 now I have written in terms of

what is this? This is fn this is nothing but fn okay. So this approximation of k2 I am going to

substitute here okay.

(Refer Slide Time: 47:52)

If I actually substitute for Taylor series approximation of k2 then take into fact that delta x is

h beta k1 and delta t is alpha h and all that you know if I do all the substitutions, I get this

xn+1=xn. I am just rearranging and writing what I get okay by doing substitutions. This is ah

fn+bh fn+dou f/dou tn alpha h+dou f/dou xn*beta h fn. All that I have done is just substituted

okay expansion of k2 in the neighborhood of tn, xn here okay.

And then you know our delta t was alpha h, our delta x was beta h fn, all that I have just

substituted and rewritten on this okay. Now if you compare this expression, let us compare

this expression and expression here on this side okay. Look at the terms that you have dou

f/dou xn okay dou f/dou tn and fn okay. Here I have fn coming in okay, I have dou f/dou t

coming in okay.

And at n and dou f/dou xn coming in. What I am going to do is simply you know rearrange

this; I am going simply rearrange this and compare the coefficients of this and this okay. I am

just going to rearrange this, compare the coefficients. So if I rearrange this equation I will get

something like this, I will write by rearrange form right here.

(Refer Slide Time: 50:37)

So rearrange form comes out to be xn+a+bh fn+dou f/dou tn alpha bh square+dou f/dou xn

beta bh square fn+ high order terms okay. I have just rearranged this and rewritten. Now I

want this to be equivalent to second order Taylor series expansion here okay. All that I want

to do now is to get this a, b, alpha, beta I am going to compare the coefficients and equate

them okay.

So that if you choose a, b, alpha, beta exactly equal to h square/2 and so on then you have an

equivalent calculation. Advantage is no derivatives are required okay. This is not the

computational form; this is the inner form. You are never going to do these dou f/dou t dou

f/dou x. To derive this alpha beta, we are just doing this okay. So when I equate it I get

following equations. See how many terms I have here 1, 2, 3 terms.

There are also 3 terms, I have 4 unknowns. I will get 3 equations in 4 unknowns okay.

(Refer Slide Time: 52:47)

My first equation is alpha is a+b should be=1 just look at this the multiplying coefficient is h

is just 1 so a+b should be=1 okay. Then alpha b should be=1/2 and beta b should be=1/2. So I

get this 1, 2, and 3 equations okay. I get these 3 equations. I have 4 unknowns and I have 3

equations. How to solve this? Well what I am going to do is I am going to fix one value

arbitrarily okay.

Then the remaining 3 will get fixed. I have 1 degree of freedom okay so if I use this 1 degree

of freedom okay I will get for 1 particular value of that parameter, the remaining 3 will get

fixed okay. Once I use this degree of freedom, I get different algorithms of the class of second

order Runge Kutta methods okay. So let us rewrite this as a=1-b then alpha=1/2b and which

is also=beta.

So if I rearrange these equations as a=1-b and alpha=beta=1/2b then I have to choose only b,

moment I choose b I get one particular algorithm okay.

(Refer Slide Time: 54:33)

So I will just move on. Now if I choose b to be 1/2 then what is a? Then a=1/2 and what are

the other 2 parameters? 1 right then alpha=beta=1. What you get after that is called as Heun’s

modified algorithm. So this is called as Heun’s modified method so this will be

xn+1=xn+h*(1/2 fn+1/2*f tn+h and xn+h fn) okay. So this is what I get. There is one more

the different ways you can choose b.

It is a free parameter okay and you can choose it 1/3 and put your name if you want but all of

them will be second order Runge Kutta methods okay.

(Refer Slide Time: 57:00)

So I will write a generic form and so basically my general algorithm is xn+1=xn+h times 1-b

fn+bf. This is the generic form for different values of b okay. We will get different

algorithms, b=1/2 you will get Heun’s modified rule, b=1 will give you Euler Cauchy method

and so on okay. All of them are second order Runge Kutta methods okay and they will not

give you identical solutions.

But implementing Heun’s rule or implementing Euler Cauchy method is equivalent to doing

the second order Taylor series approximation okay. Without having to compute derivatives of

f with respect to x or with respect to t, you are just doing these calculations okay. That is how

all the Runge Kutta methods fourth order, fifth order, sixth order whatever you normally we

use up to fourth and fifth order, which are derived.

They are derived using Taylor series approximation up to fifth order and matching the

coefficients like this okay. So will have a look at yeah “Professor - student conversation

starts.” Yeah no, it is equivalent to using derivatives up to second order that is what I worried

means local derivatives up to second order. Solution will change with b.

So if you do exact Taylor series calculations of second order and you do calculations by this

approach with some b you will not get identical solution, they have similar order of

inaccuracy okay. You are neglecting terms of Oh square and then it is equivalent to doing

those derivative calculations. You will not get identical solutions. Each one of them will give

a slightly different solution okay “Professor - student conversation ends.”

