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We have been looking at  nonlinear  algebraic  equations  and we looked at  three  different

classes of methods. One was derivative free method, the other was sloper derivative based

methods and the third was optimization, so which was numerical optimization and we are

looked at the algorithmic aspect of nonlinear algebraic equations. Now, today I am going to

touch upon the convergence aspect.

So very, very important aspect of equations, but I am just going to give a very, very brief

introduction. I am not going to go deep into this. I just want to sensitize you that there exists

lot of work, lot of literature on convergence of nonlinear iterative schemes. For convergence

of  linear  iterative  schemes  like  Gauss-Seidel  method,  Jacobi  method,  we  could  actually

derive in the class necessary and sufficient conditions.

Whereas for nonlinear cases, much more difficult and the machinery that you require it is

fairly more advance than what we are doing covering in this course and also many times, you

only get sufficient conditions, you do not necessary conditions. So, nevertheless these tools or

the theorems that actually give sufficient conditions give lot of insight into how solutions of

nonlinear algebraic equations behave.

So, I am just going to touch up on it today, not really go into deep of this subject. So, one

thing that we need to talk about, see if you look at the development that we did for the linear

algebraic equations. We had there is some sense parallel between what we have done there

and what we done here. There too we talked about noniterative schemes, iterative schemes

and then we talked about optimization based schemes.

There we talked about a very important issue called condition number. So, we said that a set

of linear  algebraic  equations  is  well  conditioned or ill  conditioned depending upon some

properties of matrix A, right and it was possible to do analytical treatment quite easily with



whatever we have learnt till now. Can we extend this to nonlinear algebraic equations, I am

just going to briefly touch up on this idea.

That what is the condition number of a nonlinear algebraic system and then move onto the

convergence properties of,  or how do we analyze the convergence of nonlinear  algebraic

equations? So, what was in the case of, so first thing I just want to touch up on this condition

number. So in linear algebraic equations, we had defined condition number as when you have

Ax = b, okay.
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One may be defined this condition number was sensitivity of the solution x to a small change

in b, right. So, if we look at this as an input and x as an output, if you look at this first time as

b as a input and x as output where A is the operator, one maybe defined the condition number

was norm delta  x/norm x.  So,  we showed that  this  ratio  that  is  fractional  change in  the

solution to fractional change in the input, okay is bounded by this condition number, which is

multiplication of norm of A * norm of A inverse.

Now to draw a parallel, I am going to consider nonlinear algebraic equations of the form f of

x u = 0, okay. Well, this kind of equation very routinely arise in chemical engineering when

you are solving steady state behavior of say CSTR, x are no states concentration temperature

inside the reactor, u are inputs, as an input flow rate, inlet concentration, inlet temperature, all

these free parameters, okay, input parameters.



So if you fix yourself to one input condition, you will get one steady state of the reactor or let

us say you have distillation column, you have this kind of equation, u there is nothing but

feed composition, feed flow rate, feed temperature, reflux rate, heat input, okay all these free

inputs which in balance of control you call as disturbances or manipulate inputs, all these

inputs are u.

X  are  all  the  dependent  variables  like  tray  temperature,  tray  concentrations,  vapor

concentration, liquid concentration everything. So moment to fix one u vector, okay, for a

particular u vector, let us say u = u bar, you get f of x u bar = 0, this is what you have to

solve. Once you fix u bar, okay, say typically x belongs Rn and u belongs to Rm and for

every u, you fix, okay and f is a n cross 1 vector, okay.
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This particular vector, n cross 1 vector is a state of nonlinear algebraic equations. You have to

solve them simultaneously for a given u, for every u, okay. If I change the feed condition, if I

change  the  feed  composition,  the  concentration  or  temperature  profile  in  the  distillation

column is going to be different, okay. For every value of this input conditions, you get one set

of steady state solution, okay.

In some sense, this u is parallel with b on the right hand side. If you change the right hand

side b, you get different x, okay. So now, we define condition number as with respect to

solution of f of x + delta x and u + delta u = 0. So, when I change u for u bar 2, say u bar +

delta u bar, okay. When I introduce a perturbation in u, what is the corresponding perturbation

in the solution x, okay.



So,  I  am going  to  define  sensitivity  of  this  equation  or  sensitivity  of  the  solution  with

reference to perturbation in u as my condition number, same idea fractional sensitivity of the

solution to fractional sensitivity or fractional change in the input, okay that is going to be my

condition number. So for a nonlinear system, we define cx as supremum over delta u, okay.

We define this a supremum over all perturbations delta u, okay.
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This of course nonzero perturbations delta u. So in other words this delta x, not c of x, c of f,

this should be, well this in general will not be a constant number like matrix, you get you

know matrix is a operator which only consist of, we have considered a matrices which are of

real numbers, so you will get you know matrix, norm of matrix * norm of matrix inverse as

your condition number.

Here that is not going to happen, your nonlinear algebraic equations. So, the conditioning of a

nonlinear algebraic system could be different in different regions of the state space. Suppose,

you are solving, this is a abstract way of putting it, I will put it in the simple words, let us say

distillation column, you are trying to solve set of algebraic equation for a binary distillation

column in a low purity region as against in the high purity region, okay.

Conditioning  of  these  nonlinear  algebraic  equations  in  low  purity  region,  okay  will  be

different from conditioning of these nonlinear algebraic equations in the high purity region. It

might be more difficult to solve, for example high purity region. I am not saying it is always



difficult, but little bit it might be more ill condition let us say and it is well condition when

you are away from the high purity region.

So if you are trying to solve equations when the purity is you know 0.99 as against purity to

top  purity  as  against  top purity  is  0.9,  you will  have different  behavior  of  the  nonlinear

algebraic equations, okay. So, the sensitivity of the solution to a small change, okay on the

right hand side might be different in different regions. It depends upon where in the state

space, you are solving this set of equations that is critical, okay.

So,  this  actually  gives  you an upper bound on this  ratio  change in  the or a  perturbation

fractional  change  in  the  solution  to  fractional  change  in  the  input  condition,  okay.  So,

analogous to the linear case, one can define something called a condition number here, you

can talk about well conditioned nonlinear systems, ill conditioned nonlinear systems, you can

talk about local, you have to understand this is local, okay.

For  a  same nonlinear  system,  it  could  be  well  condition  in  some region,  it  could  be  ill

condition in some region, okay. So, nonlinear algebraic equations are much more difficult to

handle  in  terms  of  conditioning  than  linear  algebraic  systems.  So  sensitivity,  what  did

actually condition number tell you? Sensitivity of the solution to errors for example, okay.

So, if nonlinear algebraic equations are you know in some cases, if the condition number is

high, which means the small change in u will cause a large change in the solution x, okay. A

small error in representation of u will cause a large change in the solution x and just imagine

when we are solving many of these nonlinear algebraic equations arise because we are doing

discretization  of  some  nonlinear  boundary  value  problem  or  some  partial  difference

equations.

When you doing that you are approximating, okay, so in some regions, a small perturbation in

the input condition can lead to a large change in the solution because of sensitivity of the

equations in that region. But this is again, as I said it is much more difficult to analyze this

than the linear case. The next concept is we just touch up on this existence of solution and

convergence of iteration schemes.
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Now, you  have  seen  that  all  the  methods  that  we  have  for  solving  nonlinear  algebraic

equations or iterative. Quadratic multidimensional equations can be solved analytically, but I

am not aware of solution for the cubic case, so majority of elements in the set of nonlinear

algebraic  equations  cannot  be  solved  analytically,  you  have  to  solve  them  using  some

numerical procedure, okay.

Invariably any numerical scheme that you come up with can be written in this form, any

numerical scheme that you come up with, okay. You start with a guess, generate a new guess,

x =, where you want to reach finally, I want to reach finally to what is called the stationary

point,  I  want to reach to a stationary point x star = G of x star. This x star is called as

stationary point, it is called as fixed point, okay.
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So, we want to actually reach here. See for example, when you are solving f of x = 0, if you

are solving using Newton-Raphson method, okay or Newton’s method, Newton’s method was

x k+1 = xk - doh f/doh x at x = xk inverse f of, right this was my Newton’s method. I wanted

to solve for f of x = 0. Now, G would be here, in this case, G is equivalent to x - doh f/doh x

inverse fx, this is my G of x, okay.

And ultimately you are solving for x = G of x, right. You are solving for x k+1 = G of xk.

From the previous guess, you construct a new guess, okay. So any method that we are looked

at till  now for solving nonlinear algebraic equations, iterative method can be put into this

generic form and you are looking for x star, x star is the fixed point, okay. I think the word

stationary is not really used here mostly.

Stationary point is used in the case of optimization; it is the fixed point. So, literature on

function analysis will be full of fix point theorems, so doing analysis of iterative equations,

okay, so how do the, okay. So now, I am going to just revisit some other terms that we looked

at right in the beginning Banach space and operator mapping, Banach space to Banach space

and so on, okay.

Why I am worried about Banach space? What is the Banach space? Banach space is one in

which every sequence has a limit within the space is convergence. Why I am worried about

every sequence, looked here. What is this? If I am start from some x not, okay, I will get a

sequence  of  vectors  x1,  x2,  x3,  x4,  x5  and so  on.  This  iterative  process,  we generate  a

sequence of vectors, right.

Now if I give one particular problem, okay and if I ask him to solve the problem, he will start

with one x not, she will start with another x not, she will start with another x not, okay. What

is  important  is  that  if  they  are  starting  from  different  initial  guesses,  okay,  will  those

sequences converge to the same solution under what condition. First of all, one condition or

one primary condition is that the sequence should not go to a limit which is outside the space,

right.

The sequence should remain within the space that is the first condition. Second condition that

is important is that we want to know is that whether the sequence will converge to a solution,



is the solution unique? So, does the solution exist and is the solution that you get is that

unique, all these questions are very, very important, okay.

So, I am just going to give some hint about how these are handled in the, so in some sense

this would connect to the cherry that we had done in the beginning, you know abstractions of

Banach space and Hilbert space and so on. Now, G is the mapping from x to x, where x is the

Banach  space  or  a  complete  normed linear  space  which  means  moment  I  say this  I  am

ensuring that the sequence generated from any initial guess x not will never leave the space,

will always be within the space that is what I mean here, okay.
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The sequence will never leave the space. An important concept here is contraction mapping,

okay. A very important concept here is contraction mapping. Now, when I am writing here an

operator G implicitly one which was define, we have just define it is also x is Banach space

to Banach space, all these things are implicit, I am not writing them on the board, okay. I will

just, I have to complete this definition, but before that let us look at what I have written here.
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An operator G is called as a contraction mapping of the closed ball, okay. A closed ball is set

of all x belonging to the vector space x, such that x - x not is < r, r is some radius, okay. How

do you, what is the relation of this radius and convergence all that will come to soon, but

right now, I am defining idea of contraction, okay on a small vision in the neighborhood of x

not.

This is the way of defining the neighborhood of x not, some region around x not, okay. So,

which norm you use? Depends upon you, 1 norm, 2 norm, infinite norm, it does not matter,

any norm that of your choice, but I am defining a region in the neighborhood of a initial

guess, okay. What is x not here because we are solving nonlinear algebraic equations we can

look at x not as my initial guess, okay.

It is not a fixed point, as I said x not can vary from person to person, everyone can take a

different guess, okay. Just pay attention to these concepts because these are little difficult and

then you are not, the other things which have been teaching at least you know something

about it,  okay. Whereas these are little advance concept,  so you have to understand them

carefully.
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Now, I want to call this mapping into a contraction mapping, if there exists a real number

theta which is strictly < 1, which is a positive number strictly < 1 such that, okay. So, this

completes my definition. So when do I call mapping G to be a contraction mapping, okay. If I

pick up any two points x1 and x2 in this region, okay and take difference between G of x1

and G of x2 that is always smaller than x1 - x2, which means if I draw it pictorially.
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Let us say this is my x2 and x1 and this is my x not, initial guess and let us say this is the

region, this is the ball in which I am defining the contraction mapping, okay. What I am going

to do is I am going to randomly pick any two points, say here and here, okay. Now, what is

G? G is an operator, which gives you element in the same set, right. G is the mapping from x

to x.



So, if I apply G on one element, it will give you another element, okay. So, let us say this is

my x1 and this is x2, okay. So, when I apply Gx1, see what is G? x = G of x, right. This is the

kind of equation we are solving, so when we apply G on x, you get another x, okay. So, let us

say this gives me some element x3, okay. I pick up x2 and apply G of x2, this gives me say

x4, okay.

Now, we are concerned about this ratio that is x3 - x4 upon x1 - x2. We are saying if this is <

theta which is < 1, okay. See I get two points, let us say when I apply this, I get x3 and when I

apply G on this, I get x4. What we are saying is that this distance between x1 and x2 is larger

than  x3  and  x4.  Sorry,  I  should  put  norm  here.  It  is  not,  we  are  working  in  multiple

dimensions, I should put norm, okay.

What I am saying here is that the distance between any two points, x1, x2, okay, let us say x1,

x2,  this  distance  is  always  larger  than  this  distance.  This  is  x3  which  was  obtained  by

applying G on x1. This is x4 which was obtained by applying G on x2, okay. So, this is my

x3, this is my x4, okay. So, if this condition holds for any two x1, x2 inside this region, okay

which means when you apply G on x, on any two separate points, okay, then the relative

distance contracts.

It comes close and it is called as a contraction map, is this clear, okay. Yeah,  “Professor -

student conversation starts” (()) (32:28) that is the good question, will come to that, okay.

“Professor - student conversation ends”. So that will depend upon how you are chose this

radius and it is a very good question, leading question, I will answer this question soon, okay

that actually forms the crucial, it is very crucial to the solution procedure, the convergence of

solution method.

So, let us for the timing assumes that it lies within the same ball, let us assume for the time

being. Then, every time you apply on any two points, the new two points that you generate x3

and x4 are closer than the initial two points, you take any two points, apply G on the first

point, apply G on the second point, you get two new points, okay that should be closer than

x1, x2.

It should happen for any x1, x2, in this region, then G is called as contraction mapping on this

ball u, so this is my u x not, r and she has rightly guessed this critical point is, what is this r,



will come to that. Now, in general we are solving for x k+1 = G of xk, it is quite likely that G

is not a continuous operator, not a differentiable operator, it could be continuous operator, but

not a differentiable operator.

So, actually this theory that has been derived is not necessarily for all differentiable operator,

but if G is differentiable which is the case in most of the chemical engineering situations, then

we can derive some nice conditions. So this is the result, well all the other things hold that is

G is the operator from Banach space to Banach space and it is differentiable on this ball,

okay.
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Well, this makes it easier for you to understand because derivative is something which you

are more comfortable with. So, if the derivative of G is norm of derivative of G is strictly < 1

for  every  x  belonging  to,  this  is  the  very  nice  result.  It  says  that  if  the  operator  is

differentiable, okay, then it is a contraction mapping, if and only if necessary and sufficient

condition, if and only if the norm of the derivative is strictly < 1, okay.
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So, if the norm of the derivative is strictly < 1 in some region, then it is, well, I have to check

whether it  is  necessary and sufficient,  I  will  confirm this.  If it  is strictly  < 1,  okay, it  is

definitely a contraction, but if it is a contraction, does not mean that norm has to be strictly <

1 that we have to check. I am definitely sure that if part of it, I will confirm this result.

So only if part is in doubt, so if this is strictly < 1, okay. Then, it is surely a contraction. So, if

the derivative has norm strictly < 1, we are guaranteed that. So, this part I am not too sure

right  now, I  have to  confirm,  okay. How are  you going to  use this  contraction  mapping

business? The literature on theoretical numerical analysis is full of what are called as fixed

point theorems.

They are worried about under what condition the solutions to x = G of x exist, under what

condition iteration sequences will converge to the solution. The solutions are local, first of all

you understand that  unlike linear  algebraic  equations  when A is  nonsingular, you have a

unique  solution,  right  that  is  not  a  case  in  nonlinear  algebraic  equations.  You  can  have

multiple solutions to same set of nonlinear algebraic equations.

Simplest example I have given you is, you know from the abstract this thing is eigenvalues.

When we looked at eigenvalue problem, it was a set of nonlinear algebraic equations and any

how multiple solutions to that problem. Other example of course is CSTR, a CSTR can have

multiple steady states. Under the same input conditions, it can have the steady state operating

point and unsteady operating point depending upon how the heat removal and heat generation

terms are.



So,  same  set  of  nonlinear  algebraic  equations  under  identical  input  conditions  can  have

multiple solutions, okay. So, we are talking about local convergence to local solutions. We are

talking about convergence inside a ball, okay, this ball which is in the neighborhood of the

initial  guess, okay. Now, let us try to under this theorem, this is the contraction mapping

principle, one of the fundamental results in.
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Now, probably you can already guess norm of an operator strictly < 1, okay. Then, you get

convergence.  We  have  seen  something  similar  to  this,  what  was  that  linear  algebraic

equations,  we were analyzing convergence of iterative schemes and we said that induced

norm is a upper bound on the set of you know, the lower bound of that is the spectral radius

and so, if norm is < 1, norm of the operator. So, the norm of the operator there was A, okay.

Not A, s inverse t, now the operator there was s inverse t and if now the operator s inverse t

was < 1, we were ensured convergence. So, this is something like generalization, so try to

compare draw parallels, then you will understand these things better, okay. Now, I am going

to assume something which she was suspecting, okay. The theorem assumes that G is the

map, which maps you into itself.

So which means you take any point inside this u, okay and apply G on it, the resultant will

also be inside u that is the first assumption. So, actually choose r becomes very, very critical

because  you know G has  to  map into  itself,  okay. Now, here  I  am coming up with the



condition  how I  choose  r,  okay. Now, see  carefully  you have  this  map G,  which  is  the

contraction map, first of all G maps u into itself. 
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If I take any element in the set u, G will map it into itself. So, you will find a new element

also inside u, it is not going to be different. Second thing it is a contraction map, okay which

means you take any two points in u and apply G to it, okay. The new point generator are

going to be closer than the two initial points, any two points, okay, this is the second thing.

What should be the minimum size of this ball? Okay.

Looked carefully  it  is related to the first x that you produce,  okay.  “Professor - student

conversation starts” Why this is related to first x that you produce? (()) (45:52). “Professor

- student conversation ends”. See what should happen is that if you take x1, x2 and x2, x3,

okay, x2,  x3  will  be  shorter  than,  sorry  should  take  x0,  x1  and  x1,  x2  because  it  is  a

contraction.

X1, x2 will be shorter than x0 and x1. The very first x1 that you produce by applying, so this

is the okay should be > this in some way it is related to distance x1 - x0. How this factor

comes,  you  will  have  to  read  the  proof.  Why  just  1  -  theta  comes,  okay, but  you  can

appreciate that the radius is related to the first, if you start with x not, the first x1 that you

generate, okay that should be within the ball.

After that whatever you do will be within the ball because it is a contraction, okay. It will stay

within the ball, okay. What next? Then, now if these conditions are satisfy, then okay. First



thing that this theorem guarantee is that G has a unique fix point inside the ball, okay. There

exists a unique solution inside the ball. What is the solution of the problem? The fix point.

You want to reach x star = G of x star, okay.

So, this is the unique fixed point inside this ball, okay. When the radius of the ball is chosen

according to this condition, okay, this minimum radius and when G is a contraction on this

particular ball, okay, then we are guaranteed that the solution exists inside the ball that exists

one point, okay, where this condition is satisfied, okay. Moreover, with this ball is only one

such point, there are no two points, okay.

There is only one such point in which a unique solution that is also. Now, the second part is

very, very important, I will just continue here. Second and third part, there are three parts for

this result. Second part says that if it is a contraction and if these conditions are met, then

applying G repeatedly on the sequence will take you to the solution, okay that is guaranteed

and at what rate you will go to the solution, okay.
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The distance between xk - x star, this will reduce with theta to power k. Again, look at this

result, it says that the distance between xk and x star will be shorter than distance between x

not and x star. This is the initial distance you started with. X star is let us say this is my x star.

This is the solution. I am starting with some x not here, I want to reach here, okay. In doing

so, I might move around, you do not around how it will happen.



It is a nonlinear map, you might move around all over the set and then come back to the

solution, okay. How the path is going to be, you do not know, but what you know is that the

initial distance, okay. Now, how is this result going to shrink rest to theta to power k. Theta is

the fraction. So, theta to power k, as k increases, this distance will reduce, okay. If theta as

you can appreciate, if theta is 0.99, okay rate at which you will go to x star will be slower.

If theta is 0.1, 0.1 rise, k will go to 0 very, very fast. Iterations will converge very fast. So,

what is the contraction constant, we will decide how fast you converge the solution, okay. So

that is another message this theorem gives. The last message is very, very important. This is

very, very important message, it says that I do not have to start from x not. See, we were

talking about here.
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So this is my x star and say this is my s not, okay. I am going to start my iterations only from

x not, if I happen to start my iterations from some other x tilde not in the same ball, okay. As I

said, you know she might take a different guess, he might take a different guess, he might

take a different guess, okay. As long as those guesses lie within this ball, all those sequences

will converge to the solution, very, very important, okay.

There is no unique initial guess. If you are in the region of convergence, any initial guess in

that,  if  you give  a  good initial  guess  in  that  region,  you are ensured to  converge,  okay.

Sequence x tilde k generated by x tilde k+1 = G of x tilde k starting from any x not belonging

to this region, okay. Where, I just continue this here, okay. So, if I were to start from any

other initial guess than x not, okay.



As long as G is the contraction in this region, okay. I am guaranteed that the sequence will

converge okay. All the concepts are important. Why Banach space? Any sequence that you

start from any initial guess should remain within the space, very, very important, okay. Next

thing is, we have this operator which maps this ball into itself. Then, it should be contraction,

okay.

If  it  is a contraction,  if  all  this  conditions are met,  these are sufficient  conditions,  if  this

sufficient conditions are met, you are guaranteed to get convergence to the solution, okay. So,

this  is  the  famous  theorem called  contraction  mapping  principle  or  contraction  mapping

theorem. There are many, many variances of this and I will just present to you one particular

variant, which is easy to understand and very, very powerful.

We will just look at one or two examples briefly in the next lecture and then move onto the

next topic. We cannot spend too much time on this because I will have to take many lectures

if I really go into prove in this theorem, getting more insights, but what I want to do here by

this one lecture is to just sensitize you that you know how do you look at the convergence

properties of nonlinear algebraic equations, okay.

One simple message that you can carry is that look at the knob local Jacobian or G of x, okay.

If that is not < 1, maybe you should try to make it < 1, so that you know you can ensure

convergence and so on.


