
Advanced Numerical Analysis
Prof. Sachin Patwardhan

Department of Chemical Engineering
Indian Institute of Technology – Bombay

Lecture – 37
Solving Nonlinear Algebraic Equations: Optimization Based Methods

We have been looking at methods for solving nonlinear algebraic equations and in that till

now we have covered gradient-free methods or successive substitutions, then gradient based

methods and now I am going to move onto a third category which is optimization based

methods. So, if I just collate what are the methods that we have seen.

(Refer Slide Time: 00:51)

So for solving nonlinear algebraic equations, the first method that we saw was successive

substitutions or here we had different variants like Jacobi iterations, Gauss-Seidel iterations

and so on. Then, the second class, I would say is gradient or slope based methods and here,

we have looked at univariate secant method, multivariate secant or which is popularly known

as wegstein iterations.

(Refer Slide Time: 01:20)



So, we looked at univariate secant method which are slope based method, I would instead of

saying gradient based method, I would say slope based method. It will use two consecutive

iterates and then find a slope and use that slope to find out the next step. Then, we looked at

multivariate  secant  method.  Under  the  same category, we moved to  Newton-Raphson or

Newton’s method, sometimes known as Newton-Raphson method.

(Refer Slide Time: 02:29)

So here, we had some modifications, so damped Newton method and we looked at quasi

Newton  method.  Damped  Newton  method  was  adjusting  the  step  length.  Quasi  Newton

method was Jacobi and matrix update using rank-one matrices or Broyden’s update. So, this

was using Broyden’s update. Well, of course you can combine these two and have a Newton’s

method which is damped Newton method with or quasi Newton, the damped method and so

on.



So, you can have all the combinations. So these are the categories on which we have looked

at  solving  nonlinear  algebraic  equations.  The  third  category  that  I  want  to  look  at  is

optimization based, okay. So first two categories we have looked at in detail, the third one the

optimization based, it has its parallel in solving linear algebraic equations, linear algebraic

equations we solved using gradient method, conjugate gradient method.

Likewise,  here too we can form solving nonlinear algebraic  equations  as an optimization

problem and it relatively solve the optimization problem till you reach the solution, okay. So,

what are this optimization based methods, so here we form an optimization problem. See, I

want to solve for f of x = 0 and x belongs to Rn. X is an n dimensional vector and f of x = 0 is

what I want to solve for.

(Refer Slide Time: 04:21)

I formulate an objective function phi of x which is 1/2 fx transpose fx, which is nothing but

1/2 f1x square +, so I have this function vector f which has components f1 to fn. So, we want

to minimize this with respective to x. So we solve the problem as minimize with respect to x,

phi of x, okay. What is the optimum? What is the necessary condition for optimality? The

gradient = 0, so dou phi/dou x that is dou f/dou x transpose f of x = 0.

(Refer Slide Time: 05:33)



This is the optimality criteria, okay and you can see that when the Jacobian is nonsingular at

the optimum, only way you can get the necessary condition satisfied is when f of x = 0. If this

is Jacobian is nonsingular, then only way you can get the solution are to this problem of you

know the necessary condition being satisfied, when f of x = 0, so this is when you reached the

optimum and when you reach a stationary point where the Jacobian is nonsingular, then here

is the optimum

Then, here is the solution of f of x = 0, that is the idea. Now, how do you solve this? How do

you, well we do it iteratively using different numerical optimization methods. The first one of

course the simplest one we used would be gradient method, but as I told you the gradient

method has a problem. So, the simplest would be gradient method. This is as I said gradient

method is more useful for deriving more complex method as forms the basis.

(Refer Slide Time: 07:19)



Probably, we would not use gradient method. We use conjugate gradient method, but just to

state the algorithm, gradient method would start with the initial guess x not and then you will

get x k + 1 = xk + lambda k gk and gk is -grad phi x that is evaluated at x = xk which is

nothing but if we develop a notation, I just do it here. So, if I develop a notation Jk which is

dou f by dou x evaluated at x = xk.

If I do this notation and then of course f at xk = f superscript k, if I use this notation, we have

use this notation earlier, the same notation I am using, okay. Then, this would be -jk transpose

fk. Jk would be how do you computer lambda k, this is a scalar parameter, step line parameter

and this is found by one dimensional minimization, okay. So, this is the iterative numerical

procedure by which you start from x not.

You generated new guess in the direction of negative of gradient direction and at each time,

how much to move is decided by minimizing with respect to lambda, okay. So lambda k is

min with respect to lambda phi x k + lambda gk, okay. So, lambda k is just one dimensional

minimization, gk is the gradient direction which you are computed, okay, xk is known to you.

Gk is known to you. Lambda is not known which is found by this.

So, of course more popular method are more better way, more computationally efficient way

is to use conjugate gradients, okay. So in fact in matlab, when you are solving simultaneous

nonlinear  algebraic  equations,  there  is  a  subroutine  called  fsolve.  I  think  fsolve  is  not

Newton-Raphson, it is optimization based solver. It actually forms an optimization problem

and minimizes by iterative search, okay.



Let me confirmed, but I think fsolve is not a Newton-Raphson solver, it is a optimization

based solver. So, the reason is that even though we have written here in terms of, the gradient

direction  is  in  written  in  terms  of  Jacobian  and  multiplied  by  fk,  actually  if  you  are

numerically  compute  gradient  of  phi  xk,  this  numerical  gradient  computation  does  not

involve explicitly computing Jacobian.

(Refer Slide Time: 11:32)

See this is a function phi k is 1/2 f1x square to, right. So, if I want to compute this is phi x. If

I want to compute the numerical Jacobian of this, okay, I need to compute function vector and

take its norm, okay. I do not have to explicitly compute Jacobian, okay. See computing the

numerical or computing gradient of this is equivalent to, you understand what I am saying.

See  computing  grad  phi  x  is  equivalent  to  dou f  by  dou x  transpose  f  x,  these  two are

equivalent, but numerical computation of this, if you part of this function vector. See what I

do for, how do you compute numerical Jacobian or numerical gradient? We have a subroutine

which we have written, right in the programming tutorial. We perturb each element and by +

epsilon, - epsilon and then find out.

So, see basically what I do is to compute, if I want to compute dou phi/dou xi, okay. What we

do is, we approximate this as phi xi + epsilon - phi xi - epsilon. I am just perturbing the ith

element, remaining elements are same, okay divided by 2 epsilon, right. This is how we find

out and of course, here I have not written remaining elements of x, this phi is a function of

remaining elements of x.



Just  to  show  you  that,  so  doing  this  you  know  function  calculation,  does  not  involve

anywhere explicitly computing Jacobian. You see the advantage, it only that this is equivalent

to  this,  okay. So,  actually  numerically  when you are  computing,  you do not  have  to  go

through this root. You do not want to compute Jacobian, okay. So, there are advantages in

using optimization based search because you do not have to compute Jacobian explicitly.

For a large scale problem, okay you are not required to compute 1000 cross 1000 matrix that

is not required, okay. Is this clear? Okay. So, what about conjugate gradient, okay. So, of

course we compute the conjugate gradient of course requires the current gradient information.

So, we need this gk, which is negative of grad x, gradient of phi with respect to x. This is the

direction, so this we have to compute at x = xk.

(Refer Slide Time: 14:55)

And what we do next of course is find the conjugate search direction. Now, what was the idea

in generating conjugate directions. The idea in conjugate direction was given some matrix A,

we said that two search directions are A conjugate, okay. When Sk transpose Sk-1 = 0, even

though A matrix which is positive definite matrix, okay. We call search direction Sk and Sk-1

as A conjugate.

When you take any two successive directions, you should have this property, okay. So, what

is done in the conjugate gradient method here is you find out the search directions such that A

=  I,  okay.  So,  we  find  out  the  search  directions  such  that  the  alternate  directions  are



perpendicular to each other, okay. So, we find out Sk, this = beta k times Sk-1 + gk, gk is the

gradient which we are calculated currently and beta k is given by -gk transpose, okay.

And the remaining part is similar to the gradient method that is once you know the search

direction,  then you find out  xk+1 = xk + lambda xk,  okay. Find out  lambda k which is

minimization with respect to lambda phi. Do this one dimensional minimization, okay. So,

just  to find out the step length,  see this beta k which is computed here.  This is only for

finding out the new search direction, which is conjugate with respect to identity matrix, okay.

(Refer Slide Time: 17:46)

So, this is direction computation. Once you compute the direction sk, how much to move in

that  direction,  see  one  interpretation  of  this  conjugate  directions  is  that  it  is  linear

combination of previous gradients. Because you pick of this calculation using, so you at 0,

you set that is g, so your S0 corresponds to g0. The first direction is same as the gradient

direction.

Next time, okay S1 is beta 1 g0 + g1, okay. So linear combination of g0 and g1, okay. So

linear combination of g0 and g1, when you go to g2, it will be linear combination of g0, g1,

g2,  see  because  S1 is  linear  combination  of  g0,  g1,  okay. So,  S2 turns  out  to  be  linear

combination of g0, g1, g2. So, it is like saying instead of using current, so once I get this

direction here, okay, then I know that I move in this direction.

This direction is linear combination of past all gradients, see it is like just imagine you know

you are going down the valley, okay. Now, what you mean by using gradient step, you are



looking at the current slope, okay. Now, you just looking at the current slope could be you

know too local, you do not have information about what does happen in the past. If you take

it to consideration somehow, okay.

If you make your next move based on the information about the past slopes, okay, then your

move will be much better than just basing your decision on the current slope. Because if you

take  it  to  consideration  past  slopes,  in  some  way  you  are  taking  into  consideration  the

curvature, right. You are taking consideration the curvature along the path and then making

your decision.

See here if you look at how this conjugate gradient method proceeds, so the step here would

be you know xk+1 will be xk + lambda k Sk. So, if I look at the progression of how the

direction changes, see this will be S0 = g0, the first time whatever the gradient that you get,

negative of the gradient direction, okay. What is next time? S1 = beta 1 S0 + g1, negative of

the gradient direction at a new point, okay.

(Refer Slide Time: 21:20)

What is S2, beta 2 S1 + g2 which is same as beta 2, you see this. So, as you progress you are

actually  basing  you  move  direction,  based  on  what  just  one  gradient,  but  a  history  of

gradients,  okay. That is why conjugate gradient direction you know tends out to be more

powerful, it moves much faster even when you go close to the optimum as compared to the,

what is the problem with the gradient method when you go close to optimum, it tends to

become slow, okay.



Whereas here, the move is based on past history of gradients, okay. So, it is like when you go

down a hill, you are trying to make use on the curvature other than trying to make use on the

local slope. The gradient method will just look at the local slopes, okay. Gradient method will

only look at negative of gradient or g0, g1, g2, g3, g4, okay. So that is why conjugate gradient

method is more powerful.

Now, there is one more variant. Here in the gradient method, you are only using the local

gradient  information,  right.  Now, if  you can  generate  something  more,  okay. If  you can

generate  Hessian,  what is Hessian the second derivative of the objective function.  If  you

generate  Hessian,  okay  then  your  moves  are  much  better  because  you  are  using  more

information about the local curvature than just the gradient, okay.

Hessian computation would require second derivatives to be calculated and then you know

the optimization methods that you get which use Hessian to generate the search direction,

these are called as Newton’s optimization method, okay. So, we will just briefly look at this

Newton’s method. Now, do not confuse the Newton-Raphson method and Newton method

here. This is optimization based method you know that is direct substitution kind of method.

So this  name appears  similar,  but,  so under  the category of optimization,  we have again

Newton’s method and quasi Newton method. So, the Newton and quasi Newton methods, so

now, okay, so what did we start with, we started by saying that to solve f of x = 0, we form

this objective function phi which is 1/2 f x transpose fx, right and what is the necessary

condition for optimality?

(Refer Slide Time: 24:37)



Necessary condition for optimality is grad x phi = 0, right. This should be = 0 vector, the

gradient at the stationary point, the gradient of this objective function should be = 0 vector,

okay. This is the nonlinear algebraic equation, okay. Now, this nonlinear algebraic, because

what is phi is the scalar function, phi is nothing but 1/2 norm f x, 2 norm square. This is

nothing but 2 norm square, norm is a scalar, okay.

Objective function is a scalar objective function. This is the scalar objective function. So,

what is this grad phi, is it a vector or a matrix. It is a vector; it is not a matrix. This = dou

phi/dou x1 dou phi/dou x2 dou phi/dou xn transpose, this = 0 vector. So, this is actually

because phi is a scalar, it is gradient with respect to x, okay is a vector. This vector, I want to

said = 0, okay.

If I solve this equation exactly, then I will get the solution, okay, but my problem is nonlinear,

I cannot solve this exactly, okay. What I decide to do is, instead of solving this equation

exactly, I decide to solve this using Newton’s step. So, to use Newton’s step what I am going

to do is,  I  am going to linearize this  equation,  okay.  “Professor -  student conversation

starts” exactly compute.

How will I get f of x = 0? (()) (27:25). No, no, no, if analytically this grad x phi is dou f/dou x

transpose f of x, okay. So, if Jacobian matrix is nonsingular, then this = 0 means, this will

happen only  f  of  x  = 0,  okay. So,  when you said  this  =  0,  if  this  is  nonzero or  this  is

nonsingular, only way you will get 0 here is when f of x = 0, this vector = 0, that all you get



the  solution.  Is  the  same?  Is  getting  the  solution  is  same,  okay?  “Professor  -  student

conversation ends”.

So,  now I  want  to  come up with Newton step  here.  So  what  I  am going to  do here  is

something like this, I will continue here on this side, okay. So what I need to do here is grad

phi x, okay. I am going to write this as grad phi xk +, okay and use our good old tell us its

expansion, okay. So, this is approximately = grad phi xk, okay + del square phi, if I do realize

why this is called Newton’s method.

(Refer Slide Time: 28:31)

Because this is exactly what you do in Newton’s method for solving algebraic equation. You

have nonlinear  algebraic  equation,  you linearize  and then  instead  of  solving  the  original

problem, you solved the linearize problem, right. So this we call as Hk, Hk is the Hessian and

this is the gradient in which we have shown that this is nothing but jk transpose fk. I have

shown this earlier; this is jk transpose fk.

And now instead of solving for grad phi x = 0, I am going to solve for this approximation = 0

vector, okay. Hk is the square matrix, so this is the n cross n matrix, phi is the scalar objective

function. Its second derivative with respect to x is the Hessian matrix. We are look at Hessian

matrix earlier when we talked about the conditions for optimality, necessary and sufficient

conditions for optimality.

This is the Hessian matrix, okay. This is the Jacobian transpose fk. Well again, I have written

here Jacobian transpose fk, but you do not have to explicitly compute Jacobian, it is more for



getting end sides. So now, I am going to solve for this, okay. If I solve for this, I get delta xk

= - Hk inverse, I am just solving for that approximate Taylor series expansion, okay, and what

I get here is the step, Newton like step, okay.

(Refer Slide Time: 31:10)

So this is my search direction, okay. So, the way I construct my next xk+1 is xk +, then what

you do is the same thing you know, you take lambda times delta xk, okay and then you do a

search with respect to lambda, okay. So that part remains same, so lambda k = min with

respect to lambda phi of xk + lambda, okay. So this part remains same, one dimensional

minimization.

But the steps are the direction for moving is obtained using the second order derivative, okay.

So actually if you look at optimization based method, let us say just the raw gradient method,

then conjugate gradient method and then Newton’s method. Of course, Newton method is

faster in converging that is because you are using second order derivative information, okay.

You are using second order derivative information, okay.

So this is more powerful method, but a price to phase computing Hessian, Hessian is a n

cross n matrix, if your number of variables is large, Hessian matrix is large and again the

same problem, so you know first computations are less number of steps, but large number of

computation at each time step or large number of iterations and less computations at each

time step, not each time step, iteration, okay.



So it is a balance. In some cases, you know it’s worth computing the Hessian and doing quick

steps in some cases. Hessian computation can be complex and so you might want to just use

the conjugate gradient method and search for the optimum, okay. Now of course, the gradient

direction or this direction which you get should be a decent direction and that requires that

Hessian should be positive definite and so on.

So, the convergence condition will depend up on the nature of H are the local Hessian, okay.

So  what  is  the  trouble  with,  what  is  the  advantage  of  Hessian,  you  are  second  order

information, okay. Convergence can be much better, okay. What is the trouble you have to

compute the n cross n matrix, okay? In Newton’s method, how did we get over this problem,

we got over this problem in Newton’s method using Broyden update, right.

We use rank one updates and then you know we had a way of updating Jacobian, okay, just

like a difference equation and then we use the updated value of the Jacobian and other than

actually computing the Jacobian, so same thing is done here. The quasi Newton methods,

okay actually use a rank-one update of the Hessian inverse. What you need to compute here is

the inverse of hessian matrix, okay.

So what is done is in quasi Newton methods, let us define this matrix L to be H inverse. See

what is the trouble step in doing this, see this is the gradient calculation, gradient calculation

is  just  one  vector  calculation  by  numerical  perturbation,  not  a  big  issue,  but  calculating

Hessian, see gradient you can do relatively easily because there are only n components in the

gradient of scalar function phi, okay.

(Refer Slide Time: 35:09)



Much less computations than computing the Hessian, okay. Hessian would require lot more

computations, okay. Now to avoid Hessian computations we do gradient computations by

numerical perturbation, but Hessian we do an update. So, let us define this L = H inverse,

then we have this update, this is called as variable metric called Davidon-Fletcher-Powell

method, in which you update the inverse of Hessian iteratively.

So, only once in the beginning you compute the inverse and after than you just updated

without actually having to compute it explicitly, okay. So, this is the quasi Newton idea where

you do not have to explicitly keep computing the Hessian. So here, you have this update Lk

+, so we compute L0 = H0 inverse. You compute this once in the beginning, okay and after

that what we do is, we have this Lk+1 = Lk + Mk – Nk, okay.

In quasi Newton method, this is the philosophy that is you define a matrix L = H inverse,

okay you only once compute this and then every time what you do is, the new inverse is old

inverse  +  some  correction,  okay.  This  correction  does  not  involve  explicit  Hessian

computation. What is this correction? okay. Let us move to, now the derivation of this is you

can find in any book on optimization.

So, derivation of this particular approach, I am going to just leave it to your curiosity, you can

go back to a book by S. S. Rao or any other book on optimization,  then you will find a

derivation, okay. So, you define a vector qk, I am just giving you the final formula, which is

phi  evaluated  at  k+1 -  grad phi evaluated at  iteration  k,  okay. Mk, the correction one is

lambda k delta xk transpose qk.



(Refer Slide Time: 38:29)

So this is the rank one matrix, delta xk is the previous move, okay and this is the rank one

matrix, delta xk, delta xk transpose will be a rank one matrix, okay and Mk and Nk are two

corrections which are rank one corrections.  “Professor - student conversation starts” (())

(39:37). No, no, no, this is after, see the sequence is like this that, okay, the sequence is that

you already have computed delta xk, okay.

You have then minimize and found out lambda k, okay. Then, you have found out xk+1,

okay. Once you have found out xk+1, now for the next iteration, you are preparing, okay. So,

once I have found out xk+1, I actually go back here and find this new gradient at k+1, take

the difference between the new gradient and the old gradient, okay and use that and delta xk

and previous inverse, okay.

Previous inverse, okay difference between the old gradient and new gradient and delta xk

move and the lambda k which you have found out, all of them are used to come up with the

approximate you know inverse of the Hessian at the next time step. So that is how this quasi

Newton method proceed. Well, we do not have this is not a full course optimization, I am just

trying to give you the idea that nonlinear algebraic equations can be very efficiently solved

using optimization based methods, okay. “Professor - student conversation ends”.

So, we are just as I said or I keep saying throughout this course, we are just touching the tip

of the iceberg, we are not really getting into the deep, okay Where the last thing which I want

to talk here is a method which is very, very popular in solving nonlinear algebraic equations.



This is called Levenberg-Marquardt method is a combination of gradient method and Hessian

method, okay.

(Refer Slide Time: 41:31)

See what is the nice thing about gradient method, gradient method when you are far away

from the  optimum,  it  makes  very long straights,  you know it  tries  to  move towards  the

optimum very quickly, okay. But once it come close optimum, you know there is a problem.

It becomes very, very slow. The optimization, the Hessian based method on the other hand is

very fast when you come close to the optimum, okay.

So, there is a meriting having a method which is mixture of the two, which initially starts like

a gradient method and later on becomes like a Hessian method. So, this  or in the model

parlance, it is like multiple agent you know optimization method there are two agents, one is

the gradient method, other is a Hessian method and when you tried to mix them, in such a

way that one is dominant when it is useful.

The other is dominant when that becomes useful, okay. So this is just a small modification, I

am just going to give the philosophy, I am not going to get into details. So, what you do here

is that you have this gradient direction which is -, I have this gradient direction, okay. What I

do is my search direction Sk is found by - of this is if I put this beta k = 0, it is nothing but the

Newton step.

If you go back and check this should be nothing but a Newton step, okay. The Newton step

actually  does  involve  negative  of  the  gradient  direction.  It  does  involve  except  it  is



premultiplied by H inverse, okay. It is premultiplied by H inverse. Otherwise, it  involves

negative of the gradient direction. So, what we do is okay we start with this eta to be very

large, okay.

(Refer Slide Time: 44:05)

So, you start with large value of eta, say 10 to the power 5 or something, you take a large

value of eta. So actually your H0 + 10 to the power 5 times I, okay. See, Hessian elements

will not be typically very large, okay. So, you want to take this number sufficiently large

compared  to  elements  of  the  Hessian.  So,  this  inverse  when  this  is  a  large  number  is

approximately like 10 to the power 5 I inverse.

This term dominates over this, okay. So, initially you would start with very large data, okay.

So eta 0 is chosen to be 10 to the power 5 and then what you do is you go on reducing eta,

okay as k increases. So, initially since this is like I inverse, this direction Sk direction is along

the negative of the gradient direction. So, initially you are moving along the negative of the

gradient direction, okay.

And then you go on, okay, so we reduce eta k as k increases by some logic, okay., As eta k

reduces, this terms becomes smaller and smaller and this starts dominating, the Hessian starts

dominating,  okay.  So,  initially  the  method  behaves  like  gradient  method.  Later  on,  the

method behaves like the Hessian based method. So, Levenberg-Marquardt I think you have

programming matlab tool box or any other tool box, scilab toolbox you will find this.



So,  this  is  one  of  the  popular  methods  which  is  used  for  solving  nonlinear  algebraic

equations. So with this we come to an end of algorithmic part of solving nonlinear algebraic

equations.  We  have  looked  at  different  methods;  we  have  looked  at  gradient  free  or

successive substitution methods. We have looked at gradient based or sloped based methods.

So in that was wegstein method, Newton method, damped Newton method, okay and so on.

Then, Broyden update for Newton’s method, we moved onto optimization based methods, we

looked at to gradient method again, okay. Then we looked at Newton’s method, quasi Newton

method, I have just quickly looked at these things and Levenberg-Marquardt which tries to

merge the two gradient and Newton’s method.

So, to solve nonlinear algebraic equations, you know it’s a complex problem and more and

more, we became advanced in computing, we want to solve the larger and larger problems.

So, it is an ever challenging problem how to solve nonlinear algebraic equations and there are

many, many methods, okay. So, a question that would naturally arise is that which is dou

method, there is dou method.

If there are dou method, we would not be required, right. We would be out of business. So,

you need an expert,  you need a person who understands the physics of the problem, you

should know how to concoct the solution, how to concoct a recipe, just like you cook and you

will do know the recipe or you will do form a recipe, so here also you have to form a solution

for a particular problem and sometimes Newton’s method will work.

Sometimes optimization method will work, sometimes wegstein method will work. So, you

have to develop an expertise beyond the point as to how to go about solving these problems,

okay. So, it does require this human element, otherwise matlab would do everything. It just

gives a problem to matlab, but it does not happen that way that is good, that is why we get

jobs, okay. So we will now continue with, I will say a few things about the convergence of

this nonlinear algebraic equation.

We cannot give justice to that in this course, it is a very, very advance topic. But at least you

should be sensitized to what is involve when you talk about convergence, okay. So, early

more  complex than  I  talking  about  convergence  of  iterative  schemes for  linear  algebraic

equations, because here you have nonlinearity and things do not work out as nicely as linear



algebraic equations, but we will have a peak at that and then move on to ODE initial value

problems, okay.


