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Solving Non Linear Algebraic Equations: Wegstein Method and Variants of Newton’s

Method

So we have been looking at methods for solving non linear algebraic equations and initially

we looked at these successive substitutions very, very briefly. So which are derivative free

methods no gradient calculation and then I move to this Univariate Newton method basically

a variant called Secant method.

And then the motivation for doing this is to look at a method which is intermediate between

univariate method and multivariate method. This method is called as Wegstein iterations and

then we will move on to modifications of the Newton method. The derivation of Newton

method we have already done using Taylor series expansion. So this is application of Taylor

series expansion.

But  there are  many more modifications  which are useful  for implementing in  a practical

scenario. So I will discuss about them today.
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So first is this Secant method. So Secant method I want to solve for f of x=0 x belongs to R

univariate problem I want to solve for f of x=0 and the way this is done. So this is update rule



for the Newton method.

(Refer Slide Time: 02:30)

And  then  in  Secant  method  you  just  approximate  this  you  replace  the  derivative  is

approximated as f at x. We approximate this instead of using exact derivative you use last two

iterations and then you find the next guess. So to kickoff Secant method, you need 2 initial

guesses and now what I want to do is come up with a multivariate analog of Secant method.

So now my problem is so this is multivariate Secant method.

So it is known as Wegstein iterations or Wegstein method and what I am going to do now

here is I am going to solve for f of x=0 where x belongs to Rn and f is a n cross 1 function

vector. So this  is n cross 1 function vector. Let say there is some way by which we can

arrange this set of equations.
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So we essentially have fi x=0 x belongs to Rn I going from i to n and let say we have some

way of arranging these equations as x1-gi x=fi x=0. Okay I have some way of arranging this

into this kind of a form. The simplest way could be just added if I start from this if I add xi+

fi x if I rewrite it like this I could call this as gi x. So basically I want to rearrange it. I want to

rearrange it as some xi- this is just adding and subtracting xi on both sides.

So this why I am putting into this form because a particular way this method is implemented

that is the reason why I am putting into this form, but what you will see soon is that this

method is nothing but a multivariable analog of the Secant method. So now what I am going

to do is something like this.
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I am going to define this S i. I am going to define this slope not exactly partial derivative, but



this is some kind of a crude derivative of g S i is a crude derivative of g with respect to xi or

the rate of change with respect to xi that is how you can look at it. Now I am going to apply

the Secant method to ith equation. I have these equations fi x=0 just for the time being keep

this Si this side.

Why am I defining this Si will become clear soon? I am going to apply. Now look at this, this

is ith component of x vector the new one is old value of the ith component +a correction

which is like Secant method apply it only to the scalar function Fi. F i is a scalar function.

Capital F is the vector function. Fi is the component of the vector function f. So I am taking

one scalar function ith scalar function.

And this is if you look carefully this is fi x k-fi xk-1/ this 1 upon that will become right.
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So this derivative has been computed for the ith function with respect to ith element in x and

that is how I am going to generate. If you do this is nothing but a Wegstein method if you

generate  iterations  like  this.  See  what  is  the  advantage  of  doing  this  way  over  Newton

method.  First  of  all,  you  do  not  require  explicit  derivative  calculations  this  is  only  an

approximation.  How  many  such  derivatives  suppose  you  call  this  as  a  derivative

approximation how many such derivative approximation you need = number of equations

compared with the Newton method.

You need to compute Jacobian how many elements in the Jacobian N cross n. So if you have

100 equations to solve you have to compute derivatives which are 100 cross 100 if your



thousand equation is solved you have to compute numerical derivative even if you compute it

numerically this thousand cross thousand huge number of calculations whereas here you have

less number of calculations.

So this  is  somewhere in between. It  does use some kind of rate information,  but not all

possible  rates  some partial  rate  information  is  used,  but  not  all  possible  rates.  So this  is

computationally more let say attractive because it requires less calculations. So it does use

some kind of (()) (11:39) rate information but not fully some partial rate information is used.

Now this is not the way it is normally reported or implemented.

A slight  variation  is  done  not  in  terms  of  the  formula,  but  in  terms  of  the  way  it  is

implemented now which is what I am going.
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Now this derivative is same as now fi is xi-gi. I am going to substitute that here. So if I

substitute that here it will be x1k-xi k-1-. Okay let us develop slightly simplified notations

then the things will become. So let call gi k is defined as gi of xk. So that if gi k-1 which

means gi evaluated at xk-1 and so on.
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So with this notation this derivative here I am going to write this as xi k-xi k-1-gi k/xi k

which is=1- how was Si k defined. See this will give you 1 and this divided by this is Si k. So

this formula which I have here now in terms of Si k this can be written as xi k+1=xi k. Now

what is fi- xi k-gi k what is fi K. This is xi k- we have defined it like this* 1/1 upon –si k

same formula I have just re-written in the different form same formula we have written in

different form.

Well if you were to implement if I just go back here if you were to implement this formula as

it is it is fine nothing wrong with it. That will be Wegstein method. Why I am doing this is

because I want to clamp some values I want to introduce some heuristic into my iterations so

that is where I am just doing this rearrangement.
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So this particular  equation now I can rearrange this  as follows. I  will  just  rearrange that

equation nothing else just put it. Now I am going to define another variable which is omega I

k which is 1 upon 1- Si k. I am going to introduce a new variable omega ik which is 1 upon

1-Si k. And in terms of omega ik I am going to rewrite this as 1-omega ik xik+ omega ik. The

reason why I am going this is draw some parallel with successive substitution with relaxation

method this is like relaxation iterations except that omega in relaxation is typically fixed. 

Here omega is not fixed omega is changing with the iterations from one iteration to the other

iteration omega is changing. So time varying omega it is like successive substitution with

relaxation and now what we are going to do this is some kind of thumb rule to make your

computations.
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Typically, we tried to restrict omega between 0 and some alpha suggested alpha for this alpha

is 5 typically you restrict this between 0 to 5. So you are doing something like a relaxation

method,  successive  substitutions  with  variable  omega.  And  omega  you  want  to  restrict

between some number between 0 and 5. So all this jugglery I have done because I wanted to

put this limit that is why I am doing all this jugglery otherwise I could have.

So this multivariate version of Secant method together with this limit imposed on omega this

is called as Wegstein iterations this is very popular method and if you go to many of these

plant wide steady state simulation software like Aspen HYSYS you will one of the options

they will  give this  Wegstein  iterations.  Wegstein  iterations  can be performed even if  the

function  fi  is  not  differentiable  you do not  require  differentiability  here  you just  require



evaluation of functions at two points.

And divide it by you know you may have discontinuities when you are writing equation for

some unit operation. You may have different equations in different regions depending upon

the operating region and so on. If flooding occur, you may have some different equation

normal operation you may have some different equation. In chemical plant you can have this

kinds of situations.

So we actually many times prefer this as in between way of doing calculation completely

gradient based and completely gradient free. So this is somewhere in between. So given a

large scale problem what I would do is well I would first try Wegstein method if it works

great.   If  it  does  work  probably  I  should  look  for  something  else.  So  because  this  is

computationally more friendly, but is this clear any doubt about this.
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Let  us  move on to  now the  Newton method which  we have  derived from Taylor  series

approximation, multivariate Taylor series approximation then we also did some exercises in

which we solved some problems using Newton methods. So you already know something

about Newton method now what more is there to it. So the next one is on our radar is Newton

method and you will say that we already know about Newton method.

I want to solve for f of x=0 x belongs to Rn and then all that you do is at each time period you

solve for this let us define this Jacobian at time k to make my writing simple I am going to

use this terminology Jk. Jk is dou F/dou x evaluated at x=x k.
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And then one more notation that I am going to introduce here is F k this is function vector F

evaluated at xk. I am just introducing this notation so that my subsequent derivations become

simpler in notation. Just remember that f superscript k is nothing but function f evaluated at x

k.  So my formula which you have implemented is  xk+1=x k+ delta  xk.  And delta  xk is

computed by solving this linear algebraic equation.

This  is  what  you  know right  now as  Newton  method.  Well  one  variant  which  is  often

implemented rather than doing this is to make this equation well conditioned you pre multiply

this by Jk transpose. So instead of doing this equation often this is done in fact the computing

tutorial which I have given you I asked you to modify this step like this and then solve this

resulting problem using Gauss-Seidel method.

What  is  the  reason  this  become  positive  definite  Gauss-Seidel  method  is  guaranteed  to

converge?  In  general,  when  we  work  with  positive  definite  matrices,  matrices  are  well

conditioned easier to work with positive definite matrices. So this is instead of this step we

often implement this step one more modification.
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This is called as Damped Newton method. So what we do here is that so one modification I

told you is this. Other modification is we change this particular equation we modify it to x

k+1=x k+ lambda times. So lambda is chosen between 0 and 1. Now what is the reason? First

of all remember when you took Newton step it was based on local linearization of function

vector f of xk.

How did we take this step it was based on the local linearization this Jk is a local Jacobian

local derivative. So actually what should happen is that when you take this step the function

vector should reduce because I want to go to f of x=0. When I go from xk to xk+1 this

function vector should reduce. Now a step which is based on linearization may not ensure

that at a new point actually the function is reducing.

Because you have done a local approximation of a non linear function make some decision of

(()) (25:59) based on the local approximation. This may not lead to a good value of xk+1. See

what should happen I should move towards the solution. Now what is the guarantee that if I

make some decisions based on the local slope alone it will lead to decrease or it will lead to

small value of f.

To put it in little more mathematical words see what should happen I want that f of norm of f

k+1 this should be less than norm of do you agree with me. When I take a new step if I

evaluate the function vector at a new point. See I want to finally go to f x=0. When I make a

new step so this function evaluation at a new step that is xk+1 should actually reduce as when

compared to this.



Now this may not happen if I set lambda=1 it may not happen because delta x has been

determined using local slope. So what is the way out? So why should we choose lambda less

than 1 let us look at our rational behind it. So essentially I chose a lambda by some means

such that this condition that is function evaluated at k+1 is less than function evaluated at k.

You could do this let me go back here before I move on to the rational.

So what I want to do is first I check lambda=1. If for lambda=1 if this condition is satisfied I

am happy. I accept delta x chose lambda=1 and proceed with the next iteration. If it does not

happen okay I will reduce lambda to say 0.9 for example I will give you a very crude way of

doing it. I will reduce it to 0.9. Then for lambda= 0.9 delta x is fixed. I am not going to

change.

Delta x has been formed by using the Jacobian so I want to reduce lambda, I will reduce

lambda and check whether this condition is satisfied. If not, I will further reduce lambda I go

on reducing lambda till this condition is satisfied. The moment I get one lambda for which

this condition is met. I will take that step and so how this is done. One algorithm for doing

this is called as Armijo line search.

And I am not going to go into details of that I have given this here in the notes it is in table 1

Damped Newton algorithm with Armijo line search. So those are detailed as to how do you

select iteratively lambda. What I want to do on the (()) (29:23) is not the algorithm as to how

to select lambda such that this is met. So that is matter of implementation I want to give the

rational why this is done.

This is done this lambda which is less than 1 is done because we are doing Taylor series

approximation and Taylor series approximation is actually valid in a small neighborhood and

then this lambda actually helps us to find out what is that neighborhood where you should

apply Taylor series approximation. So what I am going to do now is I am going to look at this

function.
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I am going to look at this function phi which is I am going to look at this function vector. F is

my function vector, Fk transpose what is this, this is nothing but ½ F k+1 2 square nothing

but norm 2 square. I am going to look at this function. Now this particular function is nothing

but ½ f of xk+ lambda delta xk transpose actually the raw method which we have studied in

the beginning and which we have implemented for some simple problems works only for

simple cases.

To make it work for large size complex problems we have to do all kinds of tricks. So this is a

scalar function phi is a scalar function. I am going to now expand phi in the neighborhood of

xk.
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So my phi  xk+1=phi  so  this  Taylor  theorem is  like  foundation  it  helps  you everywhere



wherever you move in applied engineering mathematics it is one of the cornerstone. Now

when you are writing it like this what is unknown to you here only lambda. Delta x we have

already calculated xk is known to us. So this vector is known I am just now worried about

choosing lambda correctly.

So lambda dou phi/dou lambda + lambda square/2 dou 2 ph/ dou lambda square and so on. I

am expanding this as a function of right. So now what should happen is phi xk-1-phi xk what

should this quantity be positive or negative? It should be negative this quantity should be

negative. This is nothing, but look here. This is if I were to square this and subtract okay I

will  this  quantity  just multiplying by ½. ½ is not going to make much difference ½ is a

positive quantity. So this quantity is what I am worried about.
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Now we know that delta xk=-Jk inverse Fk and lambda times dou phi/ dou lambda this is

same as lambda times grad phi  x  k transpose delta  x k.  Just  check this  I  am just  doing

derivatives by in succession. I first differentiate phi with respect to entire quantity and then so

this is dou phi/dou x* dou x/dou lambda I am not writing that just skipping the in between

steps okay.


