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Lecture - 35
Matrix Conditioning (Cont) and Solving Non-Linear Algebraic Equations

In our last lecture we were looking at matrix conditioning. So matrix conditioning allows us

to separate  bad matrices from good matrices  and we know when the calculations  can go

wrong because the matrix  is  bad and we are able  to  make a  judgment on the quality  of

solution for linear algebraic equations.

(Refer Slide Time: 00:49)

So I gave a very simple example polynomial approximations. Some continuous function we

are trying to  approximate of f  of x.  F of z  is  of some function which you are trying to

approximate and then if you develop an approximation which is polynomial approximation,

but  in  polynomial  approximations  we have  shown that  you get  equations  of  the  type  H

theta=U.

So h is  the Hilbert  matrix.  Theta is  the parameter  vector  parameters  of  your  polynomial

coefficient and U is the depending upon how you have formulated the problem. U will be a

vector which is a finite dimensional vector are and this is exactly like solving Ax=b. X is

theta, b is u and A is matrix h and what I showed you last line was that H3. H3 is Hilbert

matrix which is 1, 1/2, 1/3, 1/2, 1/3, 1/4 and where I will just write it here.
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So this is my H matrix and then I took a solution here my right hand side was 11/6, 13/12 and

47/60 when theta=, 1, 1, 1 transpose. When theta=1, 1, 1 vector containing three 1, 1, 1 your

right hand side will be this and this is the exact solution. I just showed you how things can go

wrong even for this  matrix  for which the condition number is not so bad. The condition

number we found here was 748.

So for this particular matrix condition number C infinity or C infinity of H3 was 748. I just

showed you how things can go wrong.
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Instead of solving the original problem we solved slightly modified version of this problem

which is 1, 0.5, 0.333, 05, 0.333 and 0.25. This matrix I would say is my H3+delta H3. This

matrix  has  a  slight  error  as  compared  to  the  original  matrix  H3.  So  if  I  start  doing



computations with this matrix and instead of this U if I take slightly perturbed U which is

1.83 actually I have done is I have just truncated the fractions.

1.08 and 0.783. So this is my U+ delta U. I am just calling this U+ delta U because I have

truncated  it  I  decided  to  truncate  and write  the  same equation.  My solution  changed  so

drastically 1.09. So this is my theta+ delta theta. This is for a matrix for which you have

condition number of 700. So actually if I try to estimate what is the fractional change that we

have made on in H matrix or in U matrix.

It is of the order of order of 0.3% change, 0.3% error. I can find this error using norms. Norm

of  delta  H3 by norm of  H3 or  norm of  delta  U/norm of  U.  I  can  find  out  what  is  the

percentage change it is of the order of 0.3%, but the solution changes by almost 50% drastic

change in the solution just because and here whatever you try to do you do maximal pivoting

you do whatever reordering of the calculations you will get into trouble.

That  is  because this  matrix  is  ill-condition.  Now the example that I gave you earlier  (())

(08:04) might lead you to believe that it is something to do with singular matrices this is

nothing to do with singularity. What matters here is the condition number. Condition number

if  you take in  terms of 2 norm. Condition number is  ratio  or square root  of ratio  of the

singular value of the matrix.

Largest singular value by smaller singular value finite angle values of A transpose A and take

ratio of maximum eigenvalue of A transpose A by minimum eigenvalue of A transpose A find

the square root that is what matters. If that ratio is small then the matrix is well conditioned

that  ratio  is  large  individual  eigenvalue  may  not  be=0,  but  if  that  ratio  of  the  largest

eigenvalue of A transpose A to smallest  eigenvalue of A transpose A if that ratio is large

matrix is ill-conditional.

That  can  create  problem  for  you  using  any  sophisticated  program  or  any  sophisticated

computer it will create a problem for you. So that is inherent problem with the matrix not the

problem with the computer or the program. So there is one more example which I have given

here I will not write the numbers because numbers are very small.
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But I have tried to show here in this example is that very, very simple example. I think I

demonstrated this to you this A matrix this is simple A matrix 1, 2, 3, 4, 5, 6, 7, 8, 9. This is

not called by any name. This particular matrix is highly ill-condition. Condition number of

this matrix it appears what is there you have just written 1 to 9 numbers at the particular

sequence. The condition number of this matrix if you ask matrix the condition number that is

C 2 of A.

So which is square root of lambda max of A transpose A by lambda min. This turns out to be

3.81* 10 to the power 16. Condition number of this matrix is very, very large. You can do a

simple experiment in MATLAB or Scilab or any software take this matrix find its inverse.

Well MATLAB will give you a warning. This matrix is highly ill-conditioned the result may

not be reliable and you can check that.

If you find inverse of this matrix and what should happen if you find inverse of this matrix

and  multiply  with  it  the  matrix  itself,  you  should  get  identity  matrix.  If  you  do  that

experiment and numerical experiment in MATLAB you will get matrix which has nothing to

do with identity matrix. You will get some other matrix. You get numbers like 2, 8, 18 when

you multiply A* A inverse for this matrix.

Because this is highly ill-conditioned matrix and then I have given one more example. So

what I want to stress here is that inherently a given matrix is every matrix will come with its

own characteristics and then that will dictate how the calculations proceed and should be able

to recognize bad matrices or ill-conditioned matrices.
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There is one more matrix I have shown here. Okay for this matrix if you do A inverse you can

do that  experiment  in  MATLAB you will  never  get  identity  matrix,  but  I  will  give  you

another matrix in 10 to the power -17, 1, 2, 1, 2, 1, 2. I have taken this matrix. You might say

that is it like a null matrix 10 to the power -17*1. 10 to the power -17*2 it looks like a null

matrix. All the elements of this matrix are close to 0 though I have written here 1, 2, 1.

It is multiplied by 10 to the power -17. Now if I do inversion of this matrix and then multiply

inverse of this matrix * B matrix MATLAB will give you perfect identity matrix back. Why

condition number of this matrix even though this is like a null matrix all elements are close to

0. The condition number of this matrix C 2 B it turns out to be 5.474 very well conditioned

matrix no problems in the calculations.

That  is  because  if  you  take  B  transpose  B  find  out  its  maximum  eigenvalue  minimum

eigenvalue take a ratio that will come out to be this and square root of that it will come out to

be this. So this means inherently you are not going to get into any trouble when you do

calculations with this matrix which is close to null matrix. Its eigenvalues are very close to 0,

but that does not matter.

What matters is the condition number, what matter is the ratio of maximum to minimum

singular value square root of that is what dictates the calculations. So with this we come to an

end of discussion on linear algebraic equations. We looked at many things, we looked at I

suppose you have learned much more than what you know about solving linear algebraic



equations as compared to your undergraduate courses on Ax=b.

You probably thought you knew everything about  Ax=b you probably thought  you knew

everything about Ax=b right. Gaussian elimination and then you are done, but what you see

here is far, far more than what you know. We looked at sparse matrix methods, efficient way

of calculating. That too I just could cover a few of them just to give you a taste of what it is it

is much more to it.

There is a sparse matrix toolbox in MATLAB or Scilab you know there are many routines

which  exploits  special  structure  of  a  matrix  and  do  fast  computations.  The  reason  for

introducing sparse matrix was to sensitize you that there exist something called sparse matrix

computations. So in your problem in your M. Tech problem or PhD problem when you hit

upon large scale matrices try to look for sparse matrix, try to exploit sparsity if you can.

You can make your computation very, very fast. Then next thing we looked at was iterative

methods like Jacobi method, Gauss-Seidel method and so on. Iterative methods in general it

is  difficult  to  prove,  but  in  general  they  work  faster  than  this  Gaussian  elimination

particularly for large scale matrices.  We looked at  2 classes of iterative methods one was

Gauss-Seidel those kind of method the other one was optimization based, gradient method,

conjugate gradient method and so on. So we left here 2 classes.

In particular, for Jacobi method and Gauss-Seidel method those kind of methods we also

analyzed the convergence behavior. When are you guaranteed to converge to a solution of

Ax=b. So we looked at convergence properties, we also looked at how to tweak my problem

to ensure convergence. So now we have broadened our toolkit  for solving Ax=b we have

many more methods now for solving Ax=b.

Moreover, we know what really matters in iterative methods eigenvalues.  Eigenvalue you

know  probably  unexpectedly  prompt  up  when  you  try  to  analyze  this.  It  is  not  really

unexpected  eigenvalues  problems  have  come  when  you  try  to  analyze  linear  difference

equations and then we related spectral radius. We related maximum magnitude of eigenvalue

of certain matrix. If it is inside unit circle we said that we are guaranteed convergence and so

on.



We also looked at some theorems to ensure convergence and then finally we move to this

matrix conditioning try to weed out good matrices and bad matrices. Weed out bad matrices

from the set of matrices. So we know now how do judge whether a matrix is bad and that is

why you are getting wrong answers or your problem formulation the strategy for computing

is bad and matrix is good, but you have made mistakes.

So you know where how to distinguish between these 2. So with this you have a good idea of

how to deal with Ax=b. Now let us move on to solving non linear algebraic equations so that

is what I am going to do next. I update my notes. For this so we now start with the next tool.
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Let me draw the diagram again that just to bring you back to the entire theme of this course.

We have this original problem. We have this mathematical model and some problem which

we cannot solve directly. So we use this. We had a mathematical model and some original

problem that we wanted to solve. So using approximation theory we transform this problem

to a computable form and then we said we are going to look at 4 different tools or there are 4

different approaches typically to solve this problem.

I am going to cover 3 of them. So one is solving Ax=b. We could be using this tool to solve

this problem or I could be using F of x=0. It is quite likely that to do this I might be using this

Newton method I am using Ax=b to solve. So this could be directly being used or it can be

indirectly being used we do not know. The third tool is ODE initial value problem solver IVP

solvers all this Euler method, Runge–Kutta methods.



So the third one which we are going to look at is that IVP solver and of course the fourth tool

is the Stochastic tool. I am not going to look at the Stochastic tool. So this one we are done

with. I am moving to this tool now and towards the end of the course we would be covering

this. This will be left untouched because it probably would need one more course to cover

Stochastic tools and what do you get here is the approximate solution.

This is the approximate solution for the original problem that you get. So this is done we are

moving to this. Eventually we will move to this and that is end of the course. So this is the

overall structure just to give you a global picture of what has been happening. So now let us

move on F of x=0 solving non linear algebraic equations. We have already done something

about this.

We have already derived Newton method starting from Taylor series approximations.  You

might wonder where (()) (22:13) Newton method what is there, why do I need many more

things, but just like Gaussian elimination is one way of solving linear algebraic equations you

have realized that Newton method is just one approach there are many ways of doing it and

the reason why there are many ways of doing it is because there is no method which is NaCI.

one method which works for everything.

Sometimes one approach works better sometimes the other approach works better. So you

have to be ready with multiple tools and you know use appropriate tool whenever required. In

some cases,  you do not  require  Newton method.  Some cases  it  is  not  possible  to  apply

Newton  method  because  Newton  method  requires  Jacobian  calculation.  If  I  have  100

equations in 100 unknowns, you have seen that kind of scenario in solving partial differential

equation.

Developing a matrix even if it  is numerically developing a matrix 100  cross 100 at each

iteration it is painful. It is computationally intensive and just imagine if you are trying to

solve steady state  stimulation  of a complete  chemical  plant  thousands of equations to  be

solved simultaneously. If you are trying to simulate a section of a plant many, many thousand

equations non-linear algebraic equations to be solved simultaneously.

If  you  have  to  compute  Jacobian  even  numerically  it  is  not  an  easy  task.  So  what  has

happened is as computers have become more and more powerful we are also trying to solve



problems  which  are  larger  and  larger  problem.  Okay  25  years,  30  years  back  probably

nobody thought of solving 1000 equations of 1000 unknown in the classroom now you can

do it as a part of your assignment which would be probably an M Tech thesis sometime back.

So things have changed because of what we want to solve with growing power of computers

also has changed. So there are problems which earlier with slow computers would take days

to solve. Well, now also there are problems which takes days to solve except what you are

trying  now  is  different  from  what  you  are  trying  earlier.  So  even  with  very,  very  fast

computers and very fast good software.

You still have problem which are and there is no end to this. This will just keep on growing. 
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So now let us look at different methods for solving non-linear algebraic equations. So I can

now just work with abstract form because you have seen many, many example where you

have to solve non-algebraic equations. So my intention is to solve fi x=0 where i goes from 1,

2 to n x belongs to Rn or now we are comfortable with a notion of a function vector or I can

write this into function vector Fx=0 same problem Fx=0 where F is a map from Rn to Rn.

More sophisticated way of writing the same thing is that f is as function vector you are trying

to look for that value of x where F of x will give you 0 vector this is 0 vector. F of x=0. F is a

map from Rn to Rn N dimensions to N dimensions. So these are the kind of equations that we

are interested in solving. What would be the simplest method? So first of all for solving non-

linear algebraic equations except for some very, very special cases where you can solve them



magnetically.

If  you  remove  those  small  set  of  problems  where  for  example  you  can  solve  multiple

dimensional quadric equation simultaneously. You can construct just like you can solve one-

dimension  quantification  simultaneously.  You  can  solve  multivariable  quadric  equations

simultaneously, but these kind of analytical solutions are very, very few. In general, even if

you have a polynomial of (()) (27:25) in one variable you cannot solve it analytically.

It is very difficult to construct solutions or routes of that equation. So we need methods that

can  solve  non-linear  algebraic  equations.  Well  one thing  I  would say is  that  if  there  are

methods which require less computations better it is. Now first of all let us look at methods

which do not require derivatives calculations. I want to solve F of x=0 without having to

compute derivatives or even if I have to compute derivatives I can do it in some simple way.

Rather than computing entire Jacobian. So I am going to give you up gradation of methods.

Finally, we will of course move to Newton methods, but in Newton methods the problem step

in terms of large computations is Jacobian calculations. So there are methods which can do

what is called as a Jacobian update. Jacobian updates do not require explicit differentiation.

They try to construct an approximate Jacobian by using last value of the Jacobian and adding

some correction because you have moved to a new point.

These methods broadly called as Broyden's Updates or Quasi Newton method is also what we

look at.
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So the first method class of methods I am going to call these are known as well in iterative

scheme  everything  is  successive  substitutions,  but  this  class  is  also  specially  known

successive substitution methods. What I mean here by successive substitution method is this

sub class of methods by which you do not have to compute any derivative that is what I mean

right now.

In general, every method that we are looking at iterative method is Successive substitution.

So the question is can I arrange my calculations in such a way that you know I start with

some initial guess x0 and then I generate a new guess from the old guess. I want to solve for

F of x=0. In some situations, in some problems for example tubular reactor with axial mixing

that problem which we have been taking as a theme example throughout the course.

You can rearrange these equations f of x=0 into a spectral form Ax= G of x where A is a

constant matrix and G is some non linear function. So actually if you want to what is F of x. F

of x is nothing, but Ax-Gx. I am trying to solve f of x=0 in this particular case reduces to this

problem. In some cases, like tubular reactor axial mixing or some other things you might get

naturally this kind of a form.

Another way of creating this form is just added x on both sides. If I add x on both sides and

call this as G of x. So this is x= G of x or I could do in general more some matrix here  Bx =

so the form is same. So I can do either do this transformation or in some cases the problem

discretization  will  yield  this  kind  of  a  form depending  upon  what  kind  of  structure  the

problem has. So you get this special form now what can I do with this.



(Refer Slide Time: 32:20)

So if I have the special form Ax=G of x I could convert this into solving linear algebraic

equations by very, very simple trick. So if I start with some initial guess let x0 is my initial

guess then what I am going to do I am going to solve for Ax k+1=G of. Is everyone with me

on this. See I start with x0 if I substitute x0 here I can compute this G of x this is known to

me. What is not known to me x k+1 x1 is not known to me.

But then it becomes a linear algebraic equation. This is b this is A this is Ax=b. I can solve for

x k+1 then you know I can solve for x k+1 using any method of Ax=b Gaussian elimination

or Gauss Seidel method or whatever. So this will generate an iteration and when do you

terminate what is the advantage of doing this. I am not computing Jacobian.
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So I  will  terminate  my iterations  when x k+1-.  So this  is  less  than some epsilon.  I  will

terminate when this becomes < epsilon I will terminate my iterations. This method in general

it looks very simple to formulate no Jacobian you can compute. Well this method in some

cases does work and when we move on to implicit methods for solving ODE initial value

problems we will see merit in using this method.

What is very, very critical here is that this method will converge if you give a initial guess

which is very close to the solution. When will this method converge, how will it converge we

will be postponed that discussion to a later part. I will discuss about that towards the end at

least I have mentioned about it. Though we cannot go too much into detail. This particular

method if you give a good initial reasonable initial guess. This method will converge to the

solution. 

Okay  generating  good  initial  guess  may  not  be  always  possible  particularly  for  large

problems. If you are solving simulation for (()) (35:33) simulation of an entire section of a

plant generating initial guess is not joke it is quite difficult. So it might be difficult to use it

there,  but  in  some  small  problem  where  you  can  generate  initial  guess  quite  well.  For

example, implicit Newton method or trapezoidal rule where you can use explicit method to

create a good guess for the implicit method this method will work quite well.

Now while implementing these kinds of methods I can also have variations which are similar

to Jacobi method which are similar to Gauss-Seidel method which are similar to relaxation

method. So I am now going to talk about variants of successive substitution method which

are like Jacobi method or which are like Gauss-Seidel method. So when I do that I cannot of

course use this vector matrix notation.

What we did in Jacobi we went equation by equation. So the same thing I am going to do

here.
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So I go back to my original form. So instead of writing if the equation that I want to solve I

am going to rearrange into this form. x1=gi x for i= 1, 2 where G of x is nothing, hut g1x, g2

x a small g is nothing but one element in the function vector. I am looking at element by

element converting into this  form is not difficult.  I  can pre multiply both the sides by A

inverse. So it will be x= removing A matrix is not a big deal. So now suppose I have this

equation.
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And then how will you form Jacobi like iterations. My Jacobi iterations will be xi k+1= gi of

x k. I am going to use the old value and create a new value for i=1, 2, n. How will you create

Gauss-Seidel like iterations use the new value as it gets created. So Gauss-Seidel iterations is

as concept you can use it in context of linear algebraic equations, you can use in the context

of non linear algebraic equations to understand the concept you can do relaxation iterations



the same ideas.

So my first equation will be x1 k+1= g1 x k is my first equation.
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My second equation that is x2 k+1 will be g2. Now here I will use x1 k+1. I will x2 k x3k,

xnk. Well unlike the linear algebraic equations x2 will appear on both sides because these are

non linear equations you may not be able to separate them. What will my x3 k k+1 this will

use g3 x1, k+1, x2 k+1, x3 k. Is this clear? See as and when the new value gets created I am

using it in the next equation.

I  am solving  n  equation,  equation  by  equation.  I  am solving  equation  by  equation  one

equation at a time. This would be Gauss-Seidel iteration and I can write a generic form for

this for ith case to use new values up to i-1 and old values for I to n. So you write a generic

form for this. How will you create the iteration for relaxation method? X nu will be x k+

omega times the Gauss Seidel steps where omega is>1 or<1 depending upon.

Here it is difficult to say whether the convergence will occur between 0 to 2 and all that it is

not possible to say here. In linear case we could say that we could give necessary sufficient

conditions for convergence it is not possible to do that here. So inherently because you are

using the new value every time it generated one would expect that this Gauss-Seidel iteration

will converge faster than the Jacobi iterations and so on.

So these iterations would be better in terms of convergence properties. This cannot be proved,



but at least we can hope that this correction.
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So one can device relaxation iterations here by saying xi k+1= x1k+ omega times. So you

make one Gauss-Seidel iteration choose that omega which is positive omega>0 and create a

new guess which amplifies the change predicted by the Gauss-Seidel step and so on. So one

can have all these kinds of variation here. So advantage of these methods is that no gradient

evaluation no Jacobian calculations.

The flip side is that they will converge if you have a good initial guess. If without gradient

calculation  if  you are  good initial  guess  and  if  it  works  great.  You are  able  to  save  on

computation you can do solve the equations very fast. If not, you have to go for gradient

based calculations. Now I want to talk about one method which is in between. This method

will use gradient evaluations, but will not do the full Jacobian.

It only calculates some gradient and so this particular method is called as Wegstein method or

multivariate Secant method. So let us move on to now gradient based method.
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So in the class of derivative based methods we already looked at Newton method. Now I

want to revisit Newton method for the univariate case. Why I am looking at this will become

clear soon because I want to talk about this intermediate method called Wegstein method. So

the motivation comes from univariate methods. So univariate method Newton method if I

have f of x=0 where x belongs to r.

I want to solve one variable equation f of x=0. Newton method of course if this function is

differentiable you can write x k+1=xk-f of xk. I can write this as f of xk/f prime x k derivative

of f with respect to x. We can have a slight variation of this method. This is the classical

Newton method. In a slight variation of this method called Secant method.
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In secant method what we do is this f prime xk we approximate this derivative using last 2



iterates. So we approximate as fxk-fx k-1/ this small variation is called as secant method

where this f prime xk is replaced by an approximation of the derivative. Here it is not in a

true sense a may not be a good approximation because delta xk-xk-1 need not be small. So

this may not be a good approximation, but this method works quite well for many simple

problems.

So this variation is called a Secant method where now to kickoff the Secant method you need

2 initial  guesses not 1 initial  guess. X0, X1 then you can create  the next (())  (46:47) x2

starting from x0 x1 because this gradient calculation will require x0 x1 then you compute the

gradient from 2 initial guesses. And then you can move on to the x2 then x2 x1 you can create

x3 from x3, x2 you can create x4 and so on.

So you start with 2 initial guesses x0, x1 create x2 using x2, x1 create x3 and so on. 
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There  is  one  more  variation  of  this  method  is  called  as  Regula  Falsi  probably  all  these

methods names which I am talking about right now might be familiar to you from your B

Tech background because one variable Newton method, secant method and Regula Falsi are

typically taught in undergraduate curriculum. The slight variation this is based on observation

that if you have this is my x and I am plotting f of x.

F of x has some behavior like this I am looking for this point where f of x=0. I am looking for

this  point or I  am looking for this  point  where f  of x=0. I  am looking for routes of the

equation f of x=0 which means I am looking for point where f of x (()) (48:23 of x becomes



0. Now one observation is that whenever there is an interval in which f of x has positive sign

on one side and f of x has negative sign on the other side f of x crosses 0.

F of x is a continuous function it will cross 0 somewhere at least once it may be multiple

times we did not know but at least once it crosses 0. So this Regula Falsi method actually

tries to use this idea and make some modification to Secant method. So it starts with 2 initial

guesses. So it will start with x0 and x1 such that function evaluated x0 and function evaluated

as x1 have opposite sign.

And then as it does proceed in the calculations it tries to maintain this. It tries to maintain the

fact  that  there  are  2  successive  guesses  should  always  have  function  values  which  are

opposite sign if that is maintained then convergence to the solution can be faster. So this is

where f of x k is>0 and this is where f of xk<0. If you have a scenario where you know

function value changes sign from positive to negative.

This is only true for a one variable function. It is difficult to say something like this for a

multivariable function. For one variable function multivariable function vector. I am talking

of 1 variable scalar function changes sign at 2 different points then there is route somewhere

in between that is the idea. So the modification here is that
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I will just write down this modification here. You carry out the iterations by this formula if it

is less than 0.
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And the second case is. So whether you use xk or whether you use xk-1 then you move

forward to compute the derivative approximations that will be based on the sign of f of xk+1

which you get. So when you go for the new iteration calculations you keep checking the sign

and based on the sign you make a judgment as to how to proceed further. So this is Regula

Falsi approximation.

Now what I am going to do next is use this univariate method. I am going to use univariate

Secant method and create a multivariate Secant method. This multivariate Secant method is

called as Wegstein method. The advantage of multivariate Secant method is that number of

derivative calculation is very, very small equal to number of equations whereas in Newton

method the classical Newton method you have to compute the full Jacobian and N cross and

elements which can be quite large.

So if you see this software like Aspen plus they seem to be preferring this Wegstein method

which works quite well which is multivariate Secant method. So we will look at it in our next

lecture.


