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Iterative Methods for Solving Linear Algebraic Equations: Convergence Analysis (Contd.)

So, in the last few lectures we have been looking at convergence of iterative schemes for solving

linear algebraic equations. Starting from the basic equation for way the error evolves.

(Refer Slide Time: 00:39)

So, we have this iteration scheme to solve Ax=b and A was written as S-T and we said that the

error which is defined as iterative xk-the true solution x star. This evolves according to e k+1,

this is a linear difference equation. It evolves according to this linear difference equation.
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Now, from this we abstracted a linear difference equation problem. We said essentially we have

to look at equations of this type and Z 0 is initial condition and then we wanted to come up with

the way of analyzing asymptotic behaviour of the solution as A tends to infinity. So, we came up

with analysis based on Eigenvalues, we came up with a condition that if rho B is nothing but m a

x/i lambda i, that means if lambda i are Eigenvalues of matrix B, we find out its absolute value

where Eigenvalues can be complex.
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So, we find the absolute value and rho B this is called as spectral radius and we showed that the

necessary and sufficient condition if rho B that means spectral radius of matrix be strictly < 1, we

said that if the spectral radius of matrix B is strictly < 1, then the sequence Zk, norm of that, we



tend to 0 as k tends to infinity and from this, we again connected to our original problem we said,

which means that spectral radius of S inverse T is strictly < 1.

Then, this is necessary and sufficient condition for convergence of error, okay. The error between

the true solution and the guess solution will diminish to 0 if this condition is satisfied, okay. I am

just  doing a  recap of  what  we have done till  now. So,  from this  point  we again  had some

difficulty because we have to compute Eigenvalues. So, we said that Eigenvalues computations

are difficult and then we used one more result to come up with a sufficient condition.
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So, we said that spectral radius of matrix B is always <= any induced norm of matrix B, spectral

radius of matrix B is < induced norm of matrix B. What is induced norm. This is induced norm,

induced by the norm defined on the rain space and the domain space. So, this norm of matrix is

nothing but amplification power or something like gain of a matrix if you can think about it as a

gain or amplification power. 

Then, we came up with a sufficient condition that if induced norm is < 1, obviously spectral

radius is < 1 and convergence is guaranteed. If induced norm is > 1, we cannot say anything,

okay. If induced norm is < 1, we are sure so we had another condition that if induced norm is

strictly < 1, then spectral radius of B is strictly < 1 and then this implies that asymptotically norm

of iterate Zk or difference equation Zk will go to 0 as k goes to infinity.



So, this we can say without actually having to solve it. Now, in particular we talked about infinite

norm or one norm which are more convenient to do calculations. Now, based on this I wanted to

derive some results which is even more simpler. I do not probably have to even compute the

norm. I can compute what is called as diagonal dominance. So, in my last lecture, I talked about

diagonal dominance.

So, I wanted to further cash on this result that if the induced norm is < 1, then of course the

spectral  radius  is  <  1.  Induced norm is  very-very  easy to  compute,  particularly  (())  (06:37)

infinite norm as compared to computing the spectral radius, so checking whether a particular

iteration will converge or not is very-very easy, okay. Now, let us move back to the thing that we

have done in my last lecture.

(Refer Slide Time: 07:00)

So, this was overview of the entire stability arguments that we have been giving but I wanted to

derive something more specific from the previous results. So, we come back here. We are trying

to solve for Ax=B and A has been split as S-T. So, for Jacobi method, in particular I analyzed

Jacobi method, okay. For Jacobi method, S=D. Well,  we are also writing A=L+D+U. This is

strictly lower triangular part of A, this is diagonal part of A and this is strictly upper triangular

part of A.
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So, S=D and T=-L-U and then I defined the concept of strict diagonal dominance. If you take

sum of absolute values of elements of matrix A in a row, except the diagonal element and if that

sum is strictly less than the diagonal element, then the matrix is called as diagonally dominant

matrix, okay. Just to give you a simple example.

(Refer Slide Time: 09:12)

Well, you just write any matrix. Let us say, this is my matrix A. These are the diagonal elements

here. Just have a look, if I take absolute sum of this, this, this, it is smaller than this. I take

absolute sum of this, this, this, this, smaller than this, okay. I just look at this matrix. I look at its

diagonal  elements,  okay.  This  particular  matrix  will  obey  this  condition.  This  is  a  strictly

diagonal dominant matrix. Just look at this, this is 2+4+3+1 is always < 15, okay. 



Same thing here, okay, 5+3+1+9 is < 23. So, I am taking absolute values, okay. So, for this

particular matrix can you calculate what is going to be Jacobi matrix which is S inverse T, can

you calculate that. Just do it. What is S inverse T? Well mind you again that Jacobi matrix when

you actually do computations, you never compute S inverse, you do row by row calculations,

okay. This is for analysis, this is for getting insights but what you will realise is that you just look

at the diagonal elements, you look at the sum of all diagonal elements. 

You can say whether the iteration are going to converge or not which is very-very powerful

reason. You do not have to actually solve it and this is true of 5x5, for 10x10, for 1000x1000. If

this condition holds, iterations will converge, okay. So, you have guarantee convergence if this

condition is satisfied.
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So, what will be S inverse T? What will be Jacobi matrix? let us call this Jacobi matrix. For

Jacobi matrix, S inverse T, what will it be. This will be 0, it will be -1, 1, 0,2/-5, -5, -5. Then, this

will be 1, 0, 3, -2, 2/9, 9, 9, 9, okay, -L-U. Then, what is this 2, 4, 0, 3, -1. This divided by 15, 15,

15 and 15, okay. Then, the next one is 1, -5, -3, 0 and -9/-23, -23, -23 and the last row is -1/5,-

1/5, 1/5, 0, 0, okay. What will be the infinite norm of this matrix? You take absolute of rows, so

absolute of this plus absolute of this plus absolute of this, okay. Absolute of these things, all these

numbers.



Is it always going to be < 1. It is always going to be < 1 because this matrix is strictly diagonally

dominant,  okay. In the numerator  this  will  appear, okay. Actually  for a diagonally dominant

matrix what you know is that this divided by norm Aii, this will be strictly < 1. You can see here.

You add absolute of each one of these rows, okay. If each one of them is < 1, the maximum is

also going to be < 1. What does it mean.

Spectral radius of this matrix is strictly < 1. So, if A is diagonally dominant, the Jacobi matrix

which you get by S inverse T has spectral radius strictly < 1 which means Jacobi iterations will

converge.  Without  having  to  solve  it  for  arbitrary  initial  guess,  very-very  important,  for  an

arbitrary initial  guess,  okay. So, any initial  guess I  give even if  it  is  completely wrong, my

iterations will converge to the true solution, okay if diagonal dominance condition is met. 

So, you can just check diagonal dominance of a matrix very-very easily and then you know

whether the solution is going to be obtained or not, that is straight forward. Now, there are many

more results of how do you analyse the convergence behaviour and all of them I am not going to

prove. I have stated those results here and I am just going to state them and show you how to

apply them and the proofs for each one of them or at least most of them.

Some of them you can derive yourself, for most of them are included at the end of the chapter

notes in the appendix, okay. I do not want to go over it in the class. You go the philosophy of

how it is done and you have to look at the proofs in the appendix to understand more of this

because we cannot spend time on this beyond a certain point. As long as you get the philosophy

it is fine. Now, what are the more results.

There are  some more results  which exploit  the structure of matrix  A. One structure that  we

exploit  is  diagonal  dominance,  right.  The  other  thing  we  will  show  is  that  if  matrix  A is

symmetric positive definite, okay. If matrix A is symmetric positive definite, then Jacobi and

Gauss-Seidel method converges. Also you can show that if matrix A is diagonally dominant,

Gauss-Seidel method will converge, okay.



 The proof is little more involved and you should look at the proof given in the appendix. I have

given  details  of  the  proof  in  the  appendix.  So,  if  matrix  A is  diagonally  dominant,  Jacobi

iterations will converge. It is also true that if matrix A is diagonally dominant, then Gauss-Seidel

iteration also will converge, okay. So, you just have to check for diagonal dominance. You know

that Gauss-Seidel iteration will converge and in fact (()) (17:18) is that most of the time Gauss-

Seidel iterations converge faster than Jacobi iterations, okay.

So, if you know that a matrix is diagonally dominant, your preferred choice of using the method

should be  Gauss-Seidel  method,  not  Jacobi  method,  okay.  For  other  theorems;  so,  the  first

theorem  that  you  should  know  about  convergence  of  iteration  scheme  is  that  if  matrix  is

diagonally dominant A matrix, okay; then Jacobi method as well as Gauss-Seidel methods will

converge to the true solution, okay.

By the way, remember this, this is a sufficient condition, this is not a necessary condition. What

does it mean that if this condition holds? Jacobi and Gauss-Seidel methods will converge. You

cannot say if this condition does not hold, you cannot say anything about convergence. You have

to go back and check something else. You have to go back and check spectral radius, okay. So,

this is only a sufficient condition. 

If this happens, you are guaranteed convergence will occur. If this does not happen, we do not

know, we cannot say anything, okay. So, this is a sufficient condition, not necessary condition.
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So, the second result I would say, very-very important result.  So, the symmetric and positive

definite seems to be something very-very nice. It seems to help us everywhere we go, okay. Now,

you might start saying well I have been given this matrix A and you know only in very-very

special cases, this A will be symmetric and positive definite, isn’t it.

A is a square matrix. I am not talking about the square where we had a tall matrix. I am just

talking about A is a square matrix and the problem which is given to me is such that A is not

symmetric and positive definite, okay. But I know that Gauss-Seidel method will converge, okay.

Sufficient  condition  for  convergence  is  that  if  the  matrix  in  my problem is  symmetric  and

positive definite,  is there something I do to solve this problem, to convert this problem into

symmetric and positive definite matrix.

I just pre-multiply this equation with A transpose. So, this gives me A transpose A, okay. I do not

have  to  solve  for  Ax=B.  I  can  instead  solve  for  A transpose  A=A transpose  B,  okay. I  am

guaranteed convergence. So, I am using my theory to change the problem in such a way that I am

guaranteed to get converge solution, okay. I am going to solve this problem using Gauss-Seidel

iterations making use of this theorem, okay.

How do I make use of this theorem to modify my calculations, I pre-multiply both sides by A

transpose. This becomes a symmetric positive definite matrix, okay. Now, if I apply Gauss-Seidel



method  to  this  matrix  and  this  transform problem,  I  am guaranteed  to  get  a  solution.  This

solution is obviously a solution. If it is a solution of this, it is also a solution of this. You have no

problem with that. So, I could solve this transform problem instead of solving this problem. I get

a symmetric positive definite matrix here, okay. I am using theory to modify my calculations.

(Refer Slide Time: 21:30)

I will just give you an example here. So, I want to solve for Ax=b and my A matrix=4, 5, 9, 7, 1,

6, 5, 2, 9 and my n vector is 1, 1, 1, okay. Let say I want to solve this by Gauss-Seidel iterations,

okay. Well what I will do is I know this is not a solution procedure, this is analysis okay.

(Refer Slide Time: 22:33)

From analysis, what I know is that if I write this matrix as A matrix, if I call this S and if I call



this as T, then doing Gauss-Seidel iterations is equivalent, then my S inverse T will be 4, 0, 0, 7,

1, 0. This is my S inverse T if I am able to use the row matrix A. In this case, the spectral radius

of S inverse T turns out to be 7.3 which is strictly < 1, okay. If I use Gauss-Seidel iterations,

iterations are not going to converge.

Because if I just choose the row matrix A that matrix is neither diagonally dominant, just check it

is diagonally dominant, it is not. Is it symmetric matrix, it is not a symmetric matrix. Forget

about positive definite, it is not symmetric matrix, but if I know this little bit of information,

okay.
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If I do this transformation that is A transpose Ax=A transpose b, okay. Then, this A transpose A

matrix turns out to be 90, 37, okay and this is A transpose A. A transpose b becomes 16, 8, 24 and

now if  I  apply  Gauss-Seidel  method to  this  transformed equation,  then  spectral  radius  of  S

inverse T turns out to be 0.96, okay. So, for the transform problem, guaranteed convergence of

Gauss-Seidel method. This is a symmetric matrix, just see this, symmetric matrix. It is a positive

definite matrix by definition.

A transpose A is always positive definite, even if A is not positive definite. We have seen this

several  times,  okay.  This  is  positive  definite  matrix,  symmetric  matrix  convergence  is

guaranteed,  just  pre-multiplying  both  sides  by  A  transpose,  I  can  ensure  that  I  will  get



convergence  by  iterative  method,  okay. So,  in  the  case  where  obvious  things  like  diagonal

dominance are not there, if you want to ensure that you get convergence, just pre-multiply by A

transpose both sides and then use Gauss-Seidel, you have guaranteed convergence,  very-very

powerful result.

“Professor -  student conversation starts”  Yeah. For any given (())  (25:50) no matter  how

would (()) (25:55). Always (()) (25:56). So, that spectral radius should be < 1 is necessary and

sufficient condition.  If necessary if the convergence occurs, spectral  radius should be < 1. If

spectral radius is < 1, convergence will occur, okay. "Professor - student conversation ends.”

But that is not the case with the norm. If induced norm is < 1, convergence will occur but if

induced norm is > 1, convergence may or may not occur, you may not know. That is not the case

with spectral radius. Spectral radius is the absolute measure which is necessary and sufficient

condition, okay. So, it is possible to transform. There are more results of this type. Again, I am

not going to go into the proof.
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For relaxation method, we have this result. For relaxation method, what you can show again is

the proof again given in the appendix. You should go and have a look at it. If omega is chosen

between 0 and 2. Well,  actually for relaxation method we want to choose it between 1 and 2

because we showed that omega = 1 is equivalent  to Gauss iteration.  So, we want to choose



between 1 and 2 but in general, if omega is between 0 and 2, okay. This is a necessary condition

for convergence, okay.

So, you know how to choose omega, you have a guideline here, okay. So, again remember this is

only  a  necessary  condition.  This  is  not  sufficient.  If  you  choose  <  2  that  does  not  mean

convergence has to occur. But convergence occurs only when you choose omega is < 2. This is

result 3 and the necessary condition becomes necessary and sufficient conditions if extension to

this theorem is another result. This is for an arbitrary matrix, okay.
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Now, if A is symmetric and positive definite. So, if matrix A is symmetric positive definite, okay,

this necessary condition becomes necessary and sufficient condition, okay. Now, you know how

to transform the problem which is usually not symmetric positive definite to symmetric positive

definite matrix, okay. So, what I want to do, the take home message is that all these theorems are

very-very useful in shaping your calculations. 

You  should  know  how  to  make  sure  that  convergences  occur.  Convergence  is  very-very

important. Whenever you are not sure in an arbitrary large scale problem, you are not sure of A

matrix, how it is going to be. If you want to use iterative schemes for solving Ax=b it is better to

use  a  relaxation  method  in  which  you transform the  problem because  in  general  relaxation

method will converge faster than Gauss-Seidel method.



I  will  just  show you  a  very  small  example  that  Jacobi  method  is  the  slowest  to  converge

typically. Gauss-Seidel method is faster and if you choose omega properly, then the relaxation

method will even converge faster, okay. Now, how do you choose omega such that you get very-

very fast convergence. It is very difficult to tell the (()) (30:11). You probably have to compute

Eigenvalues but that is not desirable. You do not want to really compute Eigenvalues.

So, you have to develop some kind of experience  beyond the point.  You have use all  these

theorems and understand the theory and then develop experience to tweak with the calculations,

that is very-very important, okay.

(Refer Slide Time: 30:39)

So, I will just show you one simple example. This is taken from (()) (30:39) book but it is very-

very illustrative. Very simple problem. So, I want to solve and such a simple problem of course

you do not need any of the iterative methods, 2x2 systems you can solve it by hand. So, my A

matrix is 2, -1, -1, 2. Well, we will say that this is Jacobi and Gauss-Seidel will converge why,

symmetric diagonal dominant, okay. Anyway that is not the point. The point is that for Jacobi

method S inverse T will be 0, 1/2, 1/2, 0 and the spectral radius is = 1/2, okay.
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For Gauss-Seidel method S inverse T, this turns out to be 0, 0, 1/2, 1/4 and spectral radius is S

inverse  T,  okay.  The  spectral  radius  is  given  by  this.  Actually  spectral  radius  maximum

magnitude Eigenvalue of S inverse T is an indicator also of the performance, okay. Now, there

are 2 aspects, it should be < 1, okay. Now, how much it is < 1, how close it is to 0, that also

matters in terms of the rate of convergence.

Whether the convergence is guaranteed or not is decided by whether it is strictly < 1, okay that is

the stability criteria. The performance is given by how much it is < 1. So, this Jacobi method in

which spectral radius is 1/2, okay converges slower than the Gauss-Seidel method, okay because

the spectral radius here is 1/4. In fact, if you start with calculations you will see that one step of

Gauss-Seidel will be almost equal to 2 steps of Jacobi, okay.

So, the Gauss-Seidel can move much faster. You cannot show it for every matrix. This is no

proof that Gauss-Seidel always converges but in general Gauss-Seidel convergence faster than

and the reason is typically spectral radius of S inverse T for Gauss-Seidel is <, okay, that is the

reason. Now, what if I formulate the relaxation method. So you can almost show that because of

this one GS iteration is equivalent to 2 Jacobi iterations, okay because spectral radius in this case

is even smaller.
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Now for relaxation method, S inverse T turns out to be inverse of this matrix 0, omega, -omega

here,  2  inverse  2*1-omega,  omega,  0,  2*1-omega  and  of  course  we  should  choose  omega

between 1 and 2. We want it to be > 1 because if it is = 1, it is nothing but Gauss-Seidel method,

if we want to be > 1. Now, for this simple case 2x2 matrix you can actually find out what is the

best value of omega that will enhance the convergence. What is the optimum value, okay.

For different choices of omega, you will get different spectral radius, okay. You can actually find

out which value of omega, this is just again to tell you emphasis it, this is only to get insight. In

real problem, I am not going compute optimum omega by doing some. I have to tune give a

guess for omega.
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So, if you use some properties (()) (35:39), then you know that lambda 1 and lambda 2, if these 2

are Eigenvalues of S inverse T then that is equal to determent of S inverse T which turns out to

be in this case, if you take determinant of that, it will be 1-omega whole square, okay. You know

this property, multiplication of Eigenvalues for matrix is same as determinant and then what is

the other property trace. So, lambda 1+lambda 2=trace of.

So, this will turn out to be 2-2omega+omega square/4. Now, if you plot this, that is if you plot S

inverse T versus omega. If you plot spectral radius using these 2 relationships, you can find out

lambda 1 and lambda 2 and spectral radius; and if you plot this, you will find that getting the

optimum is not very difficult.

If you plot this, you will find that the optimum value for which the spectral radius is minimum,

you know you will get a point where you will get a minimum value of the spectral radius.
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So, that value turns out to be omega optimum=1.07, okay and the spectral radius of S inverse T

for this omega is 0.07, okay. I am skipping some steps, you can see here in the notes, that is not

important. What I want to point out here is that if you are able to choose omega properly, then

this is 0.07.

So, we had 3 situations; you know Jacobi method, then Gauss-Seidel method, and relaxation

method, the S inverse T spectral radius in this case was 1/2, this was 1/4 and this is you know 0.7

which is almost 1/4 of this. So, we said one iteration of Gauss-Seidel was 2 Jacobi iterations.

What can you say about one relaxation iteration. It is like one relaxation iteration is like 4 Gauss-

Seidel iterations, almost like eight Jacobi iterations.

So, relaxation method can converge even faster. Typically, values close to 1, 1.1, 1.2 are used,

this is thumb rule and not substantiated. I think (()) (38:57) gave some clue that you can use it

close to 1.2 but it is hard to say generally what value of omega will make convergence very-very

fast, okay. So, the tricks that you should use is first of all make sure that either the matrix is

diagonally dominant. If is not, okay, to ensure convergence he should pre-multiply both the side

by A transpose that will make it symmetric positive definite, I have guaranteed convergence,

okay.

But I want convergence faster than Gauss-Seidel, Gauss-Seidel is better than Jacobi, so I will



apply Gauss-Seidel and I can make convergence faster even going to relaxation method. So,

probably I should all these tricks and use relaxation method to enhance my convergence, that is

how I should proceed with arranging my calculations. So, this brings us to end of this analysis.

What is important here is that there are many take home messages.

One  of  the  things  is  that  Eigenvalues  is  one  of  the  prime  tools  for  analyzing  behaviour

qualitatively, asymptotically. I do not have to solve, that is the beauty of this tool. I do not have

to solve the problem. I can just look at Eigenvalues or in this case it turns out finally that I can

just  look at  diagonal  dominance,  I  can  see  whether  to  convert  the  problem to  a  symmetric

positive  definite  matrix,  I  am  guaranteed  convergence  of  my  iterative  scheme,  very-very

powerful result. 

In fact, Eigenvalues are used for convergence analysis in engineering literature, in many, many,

many ways, okay. Well most of you I think have done the first course in chemical engineering or

process control and in process control well you may not have connected it to the Eigenvalues in

the first course but actually what you can show is that if you write a differential equation for

local linear differential equation for evaluation of the system dynamics, then the so-called roots

of the characteristic polynomial are nothing but Eigenvalues of certain matrix which governs the

system dynamics, okay.

If  the  Eigenvalues  are  on  the  left  of  plane  and then  you know, what  was  nice  thing  about

Eigenvalues there or roots of the characteristic polynomial, you do not have to solve. You just

look at the roots whether they are lying on this half of the plane or this half of the plane. You can

tell how the system is going to behave asymptotically without having to solve, okay. Same thing

is here, without having to solve, I can tell whether my iterations will converge or not, okay.

Also using necessary sufficient conditions, I can go and modify my problem to make sure that

convergence will occur, okay. This is more important than the algorithm per se. Algorithm you

will learn to program it or nowadays I think these algorithms will be available on the net, you

might download it. Algorithm might be very well written that does not mean that does not mean

that convergence is going to occur, okay.



You should know why convergence occurs and then make sure that you transform the problem in

such a way that convergence occurs, that is important, okay. There are 2 more things that I need

to do, because we missed one lecture, some timetable is disturbed but I will try to make up for it.

I will try to cover optimization based iterative methods for solving Ax=b, okay. So, till now I

formulated  iterations  in  one  particular  way  by  splitting  the  matrix,  in  fact  row  by  row

calculations, not really splitting the matrix. 

The way the iterations were derived where doing row by row calculations.
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My next aim is going to be instead of doing that can I iteratively solve this problem, well. If I

want to solve Ax=b, okay. Well, if I take a guess solution, the true solution is let us say x star,

okay and if xk is my guess solution, then obviously ek, now my ek has a different definition, ek

is b-Axk, okay. This is not going to be 0. When this is equal to x star, it will be = 0. If xk is = x

star, this is = 0.
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The way I want to solve this problem is minimized scalar objective function phi is defined as e

transpose e, that is Ax-b transpose Ax-b with respect to x, okay. I do not want to solve this. Well,

you will say that if you apply it on a necessary condition for optimality, you will get you know

dou phi/dou x=0 and we will give you A transpose Ax. If you apply this condition, dou phi/dou

x-=0, then you will get A transpose Ax=A transpose b.

I do not want to solve this, I do not want to go by this route. I want to go iteratively, okay. I want

to guess X0 and by some method I want to go to x1, then I want to go to x2, and so on and then I

want to see whether this iteration converges. We are going to use what is called as the gradient

search, okay. One of the fundamental methods in optimization, gradient based search. So, we

will look at gradient search and then there is one more method called conjugate gradient search

which we will look at next, okay.

That is one thing which I want to do. After having done that, we have talked about iterative

schemes  for  solving  Ax=b  and then  we  move  on  to  a  very-very  fundamental  issue,  matrix

conditioning,  which  problems  are  inherently  ill-conditioned,  which  problems  are  well-

conditioned, how do I classify and say that this is ill-conditioned problem, whatever I do I am

going to end up into some trouble. This is a well-conditioned problem. 

If I am getting wrong solution, I have made a mistake. So, well-conditioned problems you know,



absurd  solutions,  you have  made  a  mistake.  Ill-conditioned  problems,  absurd  solutions,  you

cannot do much. How do you classify ill-condition from well-condition is the next thing, that

will bring this to end of this module.


