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Iterative Methods for Solving Linear Algebraic Equations: Convergence Analysis using

Matrix Norms (Contd.)

So we have been discussing iterative methods for solving linear algebraic equations and then

after discussing algorithms, we started looking at convergence of these methods. We also derived

necessary  and  sufficient  condition  for  convergence.  Necessary  and  sufficient  condition  for

convergence was spectral radiance of matrix as inverse t should be inside unit circle and we said

that it definitely gives us lot of insight into what happens.

But we need something even simpler to calculate and we have started looking at matrix norms to

come up with something that is easier to compute in terms of assessing whether A matrix which

are used to formulate the iterations, we can apply some quick tests to come up with convergence

analysis.

(Refer Slide Time: 01:26)

So Induced Matrix Norm was defined as normal of A. Let us talk about norm in which the norm

induced by identical  normal  on both range and domain space.  So this  is  max x != 0,  norm

Ax/norm x and the way I try to explain this was, this is the something like amplification power



of a matrix. Other way of writing the same thing, so it is 2 normal here and 2 norm. If I want 1

normal, it will be A1 normal, 1 norm and 1 norm and so on. 

This is called induced normal because this is induced by the norm defined on the range and the

domain space, okay, that is why it is called induced norm.

(Refer Slide Time: 02:27)

Other way of writing this is, this is generic thing, so I need not write 2 but we were discussing 2

norm at the end of the last class. So this inequality can also be written like this. Norm Ax/norm x

is <= … So norm A is in some sense bound, upper bound on this ratio. Of course this is always >

0 or x is != 0, this is always > 0, okay or it could be always >= 0. 

Suppose A is a matrix which is rank deficient and Ax is in a null space then Ax will be 0 but

denominator is not 0. So this can be >= 0 and this is an upper bound, norm is an upper bound,

maximum of this ratio or maximum of the gain, maximum of the amplifying power of the matrix

whatever way you want to give it, okay. 

(Refer Slide Time: 03:34)



Now in particular, we started discussing 2 norm. So in 2 norm, I just started by putting Ax2

square/x2 square which I wrote as x transpose A transpose Ax/x transpose x. I can do all this

divisions because this is a scalar, x transpose A transpose A*x is a scalar, x transpose x is a

scalar, so this is ratio of 2 scalars, okay. Now this particular one, this particular norm where even

though  as  I  said  that  it  is  not  very  convenient  for  computation  but  gives  you  very  nice

interpretation. 

So this one we showed that, we made additional assumption that matrix A transpose A, this is a

symmetric matrix, positive definite matrix. We made one more assumption that A transpose A

has linearly independent eigenvalues.

(Refer Slide Time: 04:54)



So we wrote this matrix A transpose A as psi lambda psi inverse. Actually what I argued was that

since this is a symmetric positive A matrix, the eigenvectors are orthogonal, which is same as

appearing  on  main  diagonal  and  this  matrix  psi  is  nothing  but  matrix  formed  by  keeping

eigenvectors of A transpose A next to each other, okay. So I am just keeping eigenvectors of A

next to each other. 

This is a n*n matrix, not only invertible, it is an orthonormal matrix which means psi transpose

psi=psi psi transpose=I, special property of this matrix, okay. And I transform this, I transform

this ratio using this, I transformed this ratio to something very very interesting.

(Refer Slide Time: 06:42)



So I wrote this x transpose A transpose Ax as x transpose psi lambda psi transpose x… psi psi

transpose x and defining y to be psi transpose x, we wrote this ratio defining this new vector, we

defined  y  or  we  defined  z.  We  wrote  this  ratio  to  be  lambda1  z1  square+lambda2z2

square+lambda nzn square… So you can see that this is ratio of 2 positive quantities, is ratio of 2

positive quantities because eigenvalues of A transpose A are always positive, okay. Eigenvalues

of A transpose A are always positive. 

Because A transpose A is a positive defined matrix, its eigenvalues are positive z1 square z2

square, whatever is z, z1 z2 square is always positive. So this is ratio of 2 positive quantities,

okay. Now if  we order  the  eigenvalues  as,  all  the eigenvalues  are  real  positive  for  positive

definite matrix.

(Refer Slide Time: 08:16)

And then if I say that lambda1 is greater or equal to lambda2>0, okay. If this holds, well there is

an  implicit  assumption  when we started  all  this  analysis  that  A is  full  rank because  we are

assuming that when you are solving this we are talking about a full rank matrix. So that is why

you get minimum eigenvalue > 0; otherwise, you may have possibilities some eigenvalues will

be = 0. Now if I number my eigenvalue such that lambda1 corresponds to of the largest. 

Numbering, it depends upon me what I call 1 and what I call 2 matrix as eigenvalues. They do

not come numbered. We number them. So I am numbering lambda1 to be the largest, okay. So it



is very easy to see that this ratio will always be less or equal to lambda1z1 square+lambda1z2

square+lambda1zn square/z1 square up to zn square. Is everyone with me on this. I am just

replacing lambda2 by lambda1, lambda3 by lambda1, lambda 4 by lambda1, okay. Lambda1 is

the largest magnitude eigenvalue of A transpose A, okay. 

So I am allowed to do this, denominator is same, numerator, I am replacing by the larger value

for every term by term, okay. Very easy to see that you can take lambda common, okay. So this

ratio is independent of, this is lambda1, okay. So this ratio can never exceed lambda1. This ratio

can never exceed lambda1, very very nice property, okay. What did we start with? We started

with this, we wanted to find out maximum of this ratio. 

What is the maximum of this ratio? Lambda1, okay. This ratio can never exceed eigenvalue of

maximum  magnitude  eigenvalue  of  A transpose  A,  okay. So  what  is  2  norm of  matrix  A?

Lambda1. This is the upper bound and you can show that this upper bound is attained when

eigenvector is aligned in a particular direction, okay. What happens when x=v1? When will this

be an equality? For which direction?

(Refer Slide Time: 11:22)

V1 transpose , A transpose AV1/V1 transpose V1, okay but V1 can be chosen to be orthonormal.

So V1 transpose V1 will be unity, okay. So this will be V1 transpose lambda1V1/V1 transpose

… even if it is not chosen orthogonal, even then this ratio will be equal to lambda1, okay. So



when x is  aligned along the  direction  which  corresponds to  the  eigenvector  associated  with

lambda1, eigenvector of A transpose A, not eigenvector of A. 

Eigenvector is defined for a square matrix, okay. Eigenvector is defined for a square matrix. A

transpose A is a square matrix. A in general need not be a square matrix but A transpose A is

always a square matrix. So of course right now we are dealing with square matrices, we are

dealing with square matrices, so there is no question of non-square matrices. We are dealing with

solving  Ax=b where  A is  square,  in  fact  we also  have  a  problem where  is  A is  invertible,

otherwise. 

So this  ratio  becomes equality  where x is  aligned along eigenvector  of A transpose A.  First

eigenvector, first in the sense that corresponds to the maximum magnitude eigenvalue. So this is

equality, okay but this ratio for any other x is not equality, okay. For any other x, this ratio will

not be equality, this ratio will be smaller, okay. That is why the maximum amplification power of

a matrix using 2 norm is given by this, okay. So I think I have this picture somewhere drawn for

a 2-dimensional case.

(Refer Slide Time: 13:41)

Actually  when  you  have  defined  this  z=psi  transpose  x,  you  have  actually  defined  a

transformation which is rotation, okay. So suppose this is your x, y, then this is your z. So this is

x1 x2. Let  us say this  is  x1 x2 and this  will  be your z1 z2 coordinate  space.  So this  is  an



invertible transformation. You can go from one to other, okay. So actually you are just rotating

your coordinate axis when you are multiplying, okay and what happens in the rotated coordinate

axis? 

In the rotated coordinate axis, okay, this x transpose, if you draw this x transpose A transpose A

into x that is which is same as…, okay. If you draw this inside a region where norm x is < 1, you

also had other interpretation of norm, right. You remember we did one more interpretation of

norm, max of Ax cap, where x cap is a selective unit circle, okay. If you draw that in a locus of

points, then you will see here that this actually corresponds to a ellipse, actually corresponds to

an ellipse, okay and these coordinates will be nothing but this will be v1, I have drawn I think

wrong. 

The ellipse will be like this. The ellipse will be like this. This z1 will be actually aligned along

your direction v1, z2 will be aligned along direction v2, okay. It will be an ellipse. This ellipse

will be, major axis will be along the eigenvector corresponds to maximum eigenvalue. Minor

axis value along the direction which is smallest eigenvalue. All other axis are in between. So it

will be an ellipse drawn in 3-dimension.

It will be an ellipse drawn in n-dimension depending upon what kind of matrix we are looking at.

I have drawn a picture somewhere in the… you can have a look at it. But again, the problem with

this 2 norm is you have to find out eigenvalue of A transpose A. If A is large, it does not help us,

okay. So we could actually come up with a criterion which says that convergence will occur if 2

norm, 2 norm is nothing.

But eigenvalue of A transpose A which is strictly < 1 but as I said, it does not really help. So

actually this what we have found here is ratio of the squares. It is square of this by square of this.

So what is the 2 norm.

(Refer Slide Time: 17:12)



So 2 norm, it turns out is that, is square root of lambda1 that is square root of lambda max of A

transpose A. That ratio is far as square of, see this ratio was found for A2 square, okay, A2

square=lambda1. So what is A2, square root of lambda1 and this will always be positive because

A transpose A will always have positives eigenvalues, okay. So this number will be positive,

okay. 

In fact, eigenvalues of A transpose A are called as singular values of A and square root of the

maximum magnitude singular value that is what is… What do you expect when A is symmetric?

There is a problem in the problem sheet. If A is symmetric, then it will be A transpose=A. So A

transpose A will be equal to A square. 

What is the relationship of eigenvalue of A and A square? Square, it is very easy to show that if

lambda is eigenvalue of A, lambda square is eigenvalue of A square, okay. So if A is symmetric,

A transpose A will  be… and if A is symmetric positive definite,  then it is much easier. A is

symmetric positive definite, then it is lambda max of A square, okay. Lambda max of A square is

lambda square of A and you can reduce for a symmetric positive definite matrix, just look at its

eigenvalue and then you can. 

Maximum eigenvalue will directly give you the norm but then this norm is again inconvenient

because you have to compute eigenvalue, okay. Now I am going to state 2 other norms without



deriving. The derivations to some extent required for these norms are there in the, as a part of

your exercises. So if you look at, you should try to work out and then you can see whether you

are able to derive that or you end up into some difficulties. 

I am just going to write this final statements for other norms, okay. So now even 2 norms, though

it has some nice geometric interpretations, it is not quite convenient for me for computing. So I

am going to talk about one norm. So one norm is nothing but max over this. One norm is nothing

but max over this, okay. Well one small correction. I realise that I made a small mistake here.

When I wrote the earlier expression, I will just correct it.

(Refer Slide Time: 20:31)

So it is not norm 2 square = this equal to max x != 0. So earlier when I started, I had forgotten

this  max,  max operator  is  there.  Without  max operator  you cannot  proceed and then I  have

simplified this quantity, okay. So moving on to one norm. So this one norm is induced by one

norm on the range space and one norm on the domain space, okay. One norm on the domain

space, maximum of this ratio.

(Refer Slide Time: 21:22)



Now you can show that one norm. So what is one norm? How do you interpret this? What is this

row, what is this summation? Is it a column sum or it is a row sum? It is a column sum. So you

take all the elements in one column a11 a21, okay. So one is summation over 1. So I am taking

summation of mod of each column, okay and max over that. So I find out… First of all, I take a

matrix which is consisting of only absolute values, fully positive numbers, okay. 

Then I find the column sums, okay. I find the column sums, max over the column sum is nothing

but this ratio, max over this ratio, that you can show, it is not very difficult to show this. So max

over column sums, absolute of column sums that is one norm and what you can show is infinite

norm. So infinite norm is nothing but max over absolute of row sums, okay. So these norms, you

can see here, computationally is much more easy to… See what you have to do when you want

to compute one norm or infinite norms? You create a matrix a which is a11, a12… 

You create this matrix which is absolute value of each number. All of them are positive numbers

now, okay. If you take all column sums, find max over it, you will get one norm. Take all row

sums, okay. Find max of the row sums, that will give you infinite norm. This is much much

easier to compute… one norm or infinite norm are much much easier to compute. Let us close

the… See this one norm and infinite norm are much much easier to compute than computing A

transpose A and its eigenvalues, though much more complex business than doing this. 



This is very, very easy, okay. So I want to take some easy way of computing norms. Now where

am I going to use this, okay? Why am I computing norms? Because our condition necessary and

sufficient condition was spectral radius. Spectral radius is nothing but eigenvalue, okay. So what

is the relationship between norm and the eigenvalue. So that is the next part of the puzzle. Is this

clear?

Now that we have 3 different ways of computing norms, 2 norm, 1 norm and infinite norm.

Among these 1 norm and infinite norm are computationally preferable, okay. And now comes the

point, is why am I talking about norms, yes.  “Professor - student conversation starts” (())

(24:52) lambda1 was nothing but eigenvalue of lambda I, we have this A transpose AVi=lambda

iVi. So lambdas are eigenvalues of A transpose A, okay. 

Now I said that I have numbered the eigenvalues, okay such that lambda is >= lambda2 is >=

lambda3… I have  numbered them,  okay. So lambda1 is  nothing but  another  way of  saying

lambda  is  lambda  max,  okay. Instead  of  giving  a  number  and remembering,  it  is  easier  to

remember  this  as  a  formula,  lambda  max  of  A transpose  A.  That  is  why  I  called  it,  okay.

“Professor - student conversation ends” So this theorem which I am going to state is now the

crux of the matter.

(Refer Slide Time: 25:52)

For any matrix B, any square matrix B, okay, sorry, any matrix A, for any matrix A, okay, its



spectral radius is always <= any induced norm, okay. The spectral radius is always <= induced

norm. So can you prove this? How will you prove this? What is spectral radius? Spectral radius

of A is max over I or let us use the new notation that we have lambda max… Spectral radius is

nothing but max over this, right. Now what is induced norm of a matrix?

(Refer Slide Time: 27:04)

For  any  induced  norm,  this  is  true.  This  is  the  definition  right.  This  is  the  induced  norm

definition, okay. So this thing also holds when x corresponds to eigenvector of A. Let us say Vi is

eigenvector of…, okay. Vi=lambda iVi, right. So I am going to write this is equal to norm…

(Refer Slide Time: 27:48)

So AVi and if I substitute Vi here, this is nothing but lambda iVi…, right, right. But what is this



quantity? When lambda comes out of the numerator, what happens? Mod lambda I norm Vi/norm

Vi, right. Mod lambda I norm Vi/norm Vi, so this cancels, okay. What remains is? Mod lambda i.

This holds for every eigenvector. So this also holds for maximum magnitude eigenvector, right. 

See this holds for every eigenvector, okay which means it also holds for that eigenvector which

has a maximum magnitude, okay. But what is the maximum magnitude eigenvalue? Maximum

magnitude eigenvalue is nothing but the spectral radius, okay.

(Refer Slide Time: 29:16)

So this inequality that is mod lambda i is <= norm A. This holds for all i 1 to n and this implies

that spectral radius of A is less or equal to norm of A. Every one with me on this, okay. So far so

good. So now we have developed concept of matrix norms. We have expressions for computing

matrix norms. Of course in Matlab, if you give a matrix and say give A matrix and say 2 norm, it

will give you 2 norm which is nothing but this. 

If you say i and f, infinite normal, it will give you infinite norm which is nothing but this and so

on. So computing using a software these days for any huge matrix is just very very simple. Of

course computationally for a large-scale matrix,  this is much much easier. It just has to take

absolute sums of rows and find the max, very very easy as compared to doing this. And we have

a very nice relationship here, okay. 



Now I am not to exploit  this. I am going to use this relationship to come up with sufficient

conditions  for  convergence,  okay. Is  this  alright,  we  have  matrix  norms,  we  know  how to

compute them and now we know what is relationship between the spectral radius and the matrix

A, its eigenvalue.

(Refer Slide Time: 31:04)

We were at one point analysing behaviour of systems of the time zk+1, just about 2 lectures

back,  linear  difference  equations.  We were  analysing  behaviour  of  this  and  we  said  that  if

spectral radius of A is strictly < 1, then what happens? Then norm zk goes to 0 as k tends to

infinity, okay. As k tends to infinity. But spectral radius for a large matrix is difficult to compute.

You have to compute eigenvalues, okay. 

But from this inequality, what I know is that spectral radius is always < induced norm, okay.

Now suppose I take A matrix, okay, compute its induced norm, I compute its infinite norm, okay

or not A matrix. Here we are talking about, sorry. This should be B matrix here. I am really sorry.

Just I stand corrected. This should be B matrix here. B should be strictly < 1. I take my B matrix,

okay. So I take my B matrix, compute its norm, say 1 norm or infinite norm and that norm turns

out to be < 1. 

What can I say about the spectral radius, right? So if its norm of B, say infinite norm is < 1 or I

am not going to compute 2 norm, I am going to compute only 1 norm or infinite norm. So this



infinite norm or norm of B1 norm, if this is strictly < 1, either of them are strictly < 1, okay.

From this theorem, what I know is that spectral radius of B should be strictly < 1, okay. 

So which means a sufficient condition for convergence of this zk sequence to 0, norm of zk

sequence to 0 is that take B matrix, find its 1 norm or find its infinite norm, if that norm turns out

to be < 1, strictly < 1, I am done, okay. I know that zk is going to go to 0 irrespective of what

happens to, what is your initial condition. It does not depend upon what is your z0. Z0 can be

large, z0 can be small, okay, z0 can be arbitrary. 

I know that if this condition holds then the spectral radius is always < 1 because induced norm

gives the upper bound on the spectral radius, Induced norm gives the upper bound on the spectral

radius and if upper bound is smaller than 1, obvious spectral radius is < 1 and then, okay. So I

think we had lot of side stories. Now let me go back to solving Ax=b. So far so good. Is the line

of arguments clear, okay? So let us go back and look at what we were doing.

(Refer Slide Time: 34:41)

Finally, we are back to what we wanted.  I  wanted to solve Ax=b using an iteration method

xk+1=S inverse Txk+S inverse b, okay. We have this iteration method and we said that the error

behaves according to ek+1=S inverse Tek, okay. S inverse Tek and then we had this condition

that spectral radius of S inverse T, now S and T are different depending upon whether it is a

Jacobi method or Gauss-Seidel method or relaxation method and so on. 



Now typically S is a simple matrix. S is a diagonal matrix or S is s lower triangular matrix and

inverting that matrix is not that difficult. Well we will come up with conditions which even do

not require inversion further but right now even if you may want to do it by group force by

actually inverting the S matrix even though it is not difficult but now we have this condition

spectral radius < 1 for error convergence. This is necessary and sufficient condition. 

This is necessary and sufficient condition. I am now giving you a sufficient condition that if

induced norm of S inverse T is strictly < 1 okay, then spectral radius is < 1 and… Why this is just

sufficient? Why this is not necessary? It can happen that this is > 1 and this is < 1. See this

inequality says it is like saying 0.1<5 or 0.1<0.9, okay. So if you get norm of A to be 5, quite

likely that spectral radius of A could be 0.1, you do not know. 

But if norm of A is 0.9, I surely know that spectral radius of A<1, okay. If norm of A comes out

to be 1.1, I cannot say anything about being < 1 or this being… 1, sorry if induced norm okay, if

we compute 1 norm or infinite norm, if this is < 1, definitely this is < 1, okay. But if this is > 1,

we cannot say anything about what is this, okay. Inequality just says that this quantity is less than

this quantity. 

We are particularly interested in this number 1 whether this is < 1, so this is < 1, we are sure that

this is < 1 (()) (38:02) okay. So I can actually use the norm computation, 1 norm or repeat norm

computation to come up with a sufficient condition for convergence, okay. So now let us actually

apply this and come up with more practical condition because I will be talking about 1000*1000

matrix or 10,000*10,000 matrix. 

How do I know, how do I compute S inverse. If it is non-regular matrix, computing < 1 is again

not a great idea, okay. I still want simpler conditions, okay. So what is this going to be. Now I am

going to design a special class of matrices called as diagonally dominant matrices, okay. I am

going to define a special  class of matrices called as diagonally dominant matrices or strictly

diagonally dominant matrices.

(Refer Slide Time: 39:13)



I am finding the summation, I am getting a matrix, okay. I am taking summation from J=1 to n.

So I am making rows of, I am excluding 1 element from the rows of, which is that element?

“Professor - student conversation starts” Diagonal. The diagonal element, okay. “Professor -

student conversation ends” Now this mod of the diagonal element, okay, if mod of the diagonal

element is strictly greater than sum of the remaining elements, absolute sum of the remaining

elements, okay. Then and this should hold for every i, okay. 

This is for mod i=1, 2, …n. So if these inequalities hold for each I, then such a matrix is called as

diagonally dominant matrix. Such a matrix is called as diagonally dominant matrix. Now where

(()) (40:27) I will move on here. I hope you have all these in your notebook. 
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Let us go back and see in the Jacobi method, what was, we wrote A=S-T, okay. For Jacobi

method, we had S=, and we also wrote this that A=L+D+U. Then for Jacobi method, S=D and

T=-(L+U), okay. Now just  think of think S inverse T which is  -D inverse L+U. What  is  D

inverse? D is a diagonal matrix, all the elements, inversely just 1/diagonal elements, okay. 

Now if matrix a is diagonally dominant, if matrix a is diagonally dominant, okay, then what

happens? aii are all > the summation of all the row elements, absolute of those elements. What is

this matrix? Can you just write down, what is this matrix?

(Refer Slide Time: 42:24)

For  Jacobi  method,  S  inverse  T will  be,  what  will  be  this  matrix?  0  -a12/a11 -a13/a11 …



-a1n/a11, -a21/a22 0 -a23/a22 … -a2n/a22, right. This S inverse T will be a matrix which has 0

on the diagonal, all diagonal elements will be like this. What will be its infinite norm? Row sum,

row sum. Row sum will be nothing but, what will be each row sum? Summation aij, j going from

1-n, divided by aii, aii is divided each row, just look at here, okay. What is the value of the matrix

which means this sum is strictly <… right? 

This sum is strictly < this. If this sum is strictly < this, what does it mean? That all these ratios

are strictly < 1. What does it mean? infinite norm is strictly < 1. If infinity norm is strictly < 1,

what can you say about the spectral radius of this matrix? Okay. So now I have reduced checking

whether Jacobi method will converge or not just to see whether a matrix, whether this diagonally

dominant or not. 

If matrix a diagonally dominant, okay, my iterations will converge irrespective of where I start

from, okay irrespective of where I  start  from, my iterations will  converge if  my matrix a is

diagonally dominant. So after bringing all these juggling lot of arguments, (()) (45:00) matrix

norms and then spectral radius all that, you have come up with very simple criteria for finding

out whether these Jacobi iterations will converge or not. I will reduce some more theorems. 

I will not get you the roots of each one of them (()) (45:17) but I will give you some more

theorems which are very elegant and from which you can ascertain whether the iterations will

converge  or  not  or  you  can  modify  your  problem  such  that  your  iterations  are  diagonally

converge, okay. So that is what we will see in next class. We will see that then we will move on

some other norms. But this is where you can see and know I can value spectral radius and norms,

everything is actually. 

Well, we will get into analyse the behaviour qualitatively without actually having to solve it, just

looking at diagonal dominance, I can come to the conclusion for any initial case, our iterations

will converge, okay. (()) (46:01).


