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Lecture - 27
Iterative Methods for Solving Linear Algebraic Equations

So in  the  last  lecture,  we were  looking at  iterative  methods  for  solving  linear  algebraic

equations and in particular we looked at 2 different methods. One was Gauss-Seidel method

another was Jacobi method.
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I  want to solve linear  algebraic  equation Ax=b. We looked at  2 methods one was Jacobi

method other was Gauss-Seidel method and I want to look at one more variations of these 2

methods. In fact, there are many variations. I am just going to indicate few of them, but this is

over relaxation or relaxation method is slightly conceptually different from these 2 in the

sense that you are trying to introduce a tuning parameter which will accelerate convergence. 

So what we are really going to look at is what I told you that in general Jacobi method is

slower than the Gauss-Seidel method. Gauss-Seidel method the difference is that as and when

a new iterate  is  formed we use that  in the next  calculations  that  is  a difference between

Gauss-Seidel and Jacobi method. So Gauss-Seidel method actually tends to converges much

faster than the Jacobi method.

Now I want to see whether I can do still better, can I still further enhance the convergence?
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So this relaxation method this is a variant of these iterative schemes. Basic idea is like this.

Suppose I am at this point y let us call this point y and I want to reach y *. I want to reach this

point y *. I am currently at this point y and to reach from here to here I apply some method.

So let us say my method takes me from here to this point which is y cap. So I will denote this

point as+.

I am at initial point y. I have some method by which I am going to reach y *. Y* is where I

want to go. And I have a method of going from here to here. Then I apply this method I go

from y to y cap. Now if going from y to y cap is taking me closer to y *. I could move more

in this direction and then go closer even closer try to go even closer. So what I can do is I can

go to a point y tilde which is y+ omega times y-y cap.

So y cap is where my first method takes me. Y tilde is where if I enhance movement in this

direction will take me. So let us say this is my y tilde. So I am going to move further in the

same direction. So I am going to enhance movement in that direction. So my next iterate is

not going to be y cap, but I am going to have my next iterate as y tilde which is obtained by

moving further in a direction.

So the idea here is like this that if I start using Gauss-Seidel method I will get let say I am at y

through Gauss-Seidel I reached y cap. So instead of taking y cap as my next iterate what I

could do is I can look at this direction y-y cap and then you know multiply that and add that

to y. So I will reach a point which is even further even probably closer to y *. This is the basic



idea in this relaxation business.

There are 2 kinds of relaxation One relaxation is over relaxation so we are going further in

some cases it is under relaxation. Sometimes you know this direction in which you are going

might be too far away from y*. You may have to contract you may have to come back.
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So there are 2 possibilities. One is omega is < 1 so this is and well there should be some limit

in this case it turns out to be for linear system it turns out to be 2. So this is over relaxation.

So basically what I am going to do here is something like this. Well I am not going to use in

the present case under relaxation I am going to use over relaxation. I am going to have omega

which is>1.

So see I am starting from initial guess xk and applying Gauss-Seidel method. Let us say we

get. See xik I am now talking about the ith element of the vector. From xik if I apply Gauss-

Seidel method let us say I get Zi k+1. I am not calling this x again. This is my intermediate

variable because this is not going to be next iterate. What I am going to do is I am going to

come up with the next literate xk+1 by enhancing the movement in this direction. 

So my xik+1. This is going to be xik+ omega times Zi k+1-xik where omega is>1. If omega

is=1 we are not interested in that case because we will reduce to Gauss-Seidel method, I want

to enhance. I want to go further than what Gauss-Seidel method is giving me. Just try to

understand this. What I am going to do is I am going to start applying Gauss-Seidel method

to find a new point, but the new point I am going to take it as an intermediate point.



This new point which I get through Gauss-Seidel I am going to take an intermediate point.

And the next iteration will be calculated using old guess+ this correction. Now this correction

is developed by enhancing or moving further in the direction of the Gauss-Seidel. This is

Gauss-Seidel step. This is the original point so difference between this will give you direction

in which you have to have to move and omega times that.

So this is why I am going to generate the new iterate. What happens if I put omega=1? It will

be  Gauss-Seidel.  If  omega=1  it  is  just  Gauss-Seidel  method  if  omega  is>1  it  is  over

relaxation. You are moving further than that and the hope is that if I do this I will reach my

solution faster. So in general you can even make it move faster to the solution if you choose

this omega between 1 and 2.

Now the question that naturally comes is well how to choose this omega and when will it

converge and so on. So we will of course in a due course I will answer all those questions,

but is the idea clear. We just want to enhance the direction in which we are moving that is

Gauss-Seidel direction and move a little further so that maybe we will reach the target faster,

yeah but when you are reaching covers the solution this will be also small.

So there might be some oscillations it  depends upon whether it  will  cause oscillations or

whether it will cause a smooth decay will depend upon eigenvalues and I am going to talk

about that. So that is a good guess. You may have a problem when we are close to solution

you might overshoot so that may happen. So we have to understand how the convergence

occurs.

So the actual details you can see here the algorithm I have given here how to implement. The

idea  is  clear  algorithm will  not  be  difficult  to  understand.  Now let  us  start  getting  into

analysis.  Implementation  part  will  be  covered  when  you do programming  and  I  am not

worried about implementation part or the algorithm. How will you efficiently implement this

is given me the table sin the notes and you can have a look at that.

The critical part is convergence analysis. So what I am going to do now is rearrange my

equations in the matrix vector form. Now this will give me a way to analyze the system of

equations  or the convergence behavior  that  is  what  I  want to analyze.  The vector  matrix



notations which I am going to develop here. I am going to use maybe for next 2 or 3 lectures

is not meant for programming.

Programming will be done row by row you put a for-loop and each row you do calculations

that is how you do the programming first. The analysis which I am going to do is going to be

using matrices and vectors and that is mainly because analyzing convergence becomes very

easy using vectors matrix notations. So do not confuse the 2 things. Whatever we did till now

was meant for actually programming.

Now what I am going to do is for analysis because getting insights into the analysis of these

method using summations becomes very, very difficult instead of that if you do everything

using matrix notation it is very easy.

(Refer Slide Time: 12:45)

So let us get on to the Gauss-Seidel method. So what is my Gauss-Seidel method. My first

equation in the Gauss-Seidel method. I can write as a11 x1 k+1=b1-summation i going from

2 to n or j going from 2 to n let say. a1j right or let us write it more explicitly. Let us write this

instead of summations it will be better to write this explicitly. So this will be a12 x2k-a13

x3k, a1n xnk. This is my first equation in the Gauss-Seidel method.

Earlier when I wrote the algorithm I had divided by a11. Now my intention is different I want

to get some convenient vector matrix notations so I have multiplied by a11 so this is the

equation which I have to solve. My second equation here is actually a22 x2 k+1=b2-a21 x1

k+1-a 23 is this fine this is my second equation. The iteration in Gauss-Seidel method. This is



Gauss-Seidel method.

The first iterate that was formed is used here. The first iterate that was formed is immediately

used here. So I am going to rearrange this I am going to take this on this side. So I will get

a21 x1 k+1+a22 x2 k+1=b2 a23 x3k everyone with me on this. I have taken k+1 on one side

and I have side k on one side. I have left all xk on one side. I am taking k+1 on one side now

clear.

I have just taken this which was substituted on right hand to left hand side. Likewise, I can go

on doing this so what will  be the third one can you guess a31 x1 k+1+a32 x2 k+1+a33

x3k+1=v3-a34 x4k up to a4n xnk. I am taking x k+1 on the left hand side. I am leaving

everything that is xk on the right hand side. Now I want to use put this into a vector and

matrix notation. It is going to be a long equation.
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So this here is a11 a21 a22 do you see this. On the left hand side is the lower triangular part

of A matrix=lower triangular part and the diagonal part. What will I get here 0 a12 up to a1n

0, 0 a23 a2n. This will be last element here will be 0 and this will be a n-1 n. This * x1k x2k

xnk+ what will be on this side? Well I have made a mistake one mistake it should be – here

this should be -, -.all this is -signs will appear here because we have all – signs coming there.

And here will be b vector if you see it is b1, b2, b3, b4. The b vector will appear here. This

matrix appears here; this matrix appears here. What is the relationship of these matrices to

original matrix a. What LU decomposition? LU decomposition is completely different do not



mistake LU decomposition or LDU (()) (20:24) transpose that is not this. This is physically

the lower triangular and the diagonal part of the matrix.

This is physically the upper triangle part –lower triangular part. Pardon me. You add it. You

add it so this is if I write this matrix if I decide to write A matrix as sum of 3 matrices.
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See if I decide to write A matrix as sum of 3 matrices L+D+U do not confuse this LDU

transpose. LU decomposition is different from this. I am just using the notation L and U here.

This is not LU decomposition. This is I mean if I draw a picture this is splitting a matrix into

3 parts. This is diagonal this is strictly upper triangular part of this matrix and this is strictly

lower triangular part of the matrix.

This is diagonal elements this is all elements that are in the okay this is my U this is my L and

this is my D. So writing this matrix as if I just do pictorially I am just writing this matrix as

addition  of  3 matrices  strictly  lower triangular  part.  The diagonal  part  and strictly  upper

triangular part. I am just using the same notation as LU decomposition this is not same as

A=LU that is multiplication that comes through Gauss elimination.

This is just simply separating 3 physically separate parts so this and this do not confuse I am

just using same notation that is all or also you might see in some books or (()) (22:41) you

also have this sometimes you write A as LDU transpose so do not confuse that and these only

notations are same. So I have written it like this so this makes me or this particular way of

writing this matrix A allows me to do express this method Gauss-Seidel method in a vector



matrix notation.

So this equation which I have written in matrix form I am going to rewrite this as L+D *x

k+1= -U xk+ b (()) (23:36) just  look at  the matrices.  This is L+D on the left  hand slide

multiplying xk+1. Here it  is  U strictly  upper triangular  part  of A matrix.  A is  written  as

L+D+U and then I  can write  this  method next  iterate  is  obtained by solving this  matrix

equation is equivalent to solving this matrix equation.

Actually we are going to do line by line as I told you. Algorithmically we are not going to

write this matrix equation ever. We are going to do line by line calculations, but what you are

doing line by line is actually equivalent to this calculation is that okay. So which means my

next iterate is obtained as x k+1= -L+D inverse U xk+. Conceptually what you are doing is

obtaining a new iterate by this method.

Sometimes I talked about inverting the matrix or approximately inverting the matrix and so

on. If you look here we are trying to say well I cannot invert the full matrix easily, but I can

invert the lower triangular part. It has a nice structure I can exploit that and invert that to

come up with a new iterate. If I do a similar rearrangement of equations in the case of Jacobi

method then what will I get if I do this is for Gauss-Seidel method.
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For Jacobi method what you can show is that doing the iterations is equivalent to D times x

K+1= -L+U xk+ b x k+1=-D inverse L+U xk+ D inverse times b. For Jacobi method if you

do  rearrangement  of  the  calculations  you  can  show  actually  doing  one  Jacobi  step  is



equivalent to solving this equation. What is nice about Jacobi method inverting the diagonal

matrix is very easy just write one upon the diagonal element.

That is why we chose to do this so this is very, very easy as compared to inverting the whole

matrix. If all the diagonal elements are non 0 if you arrange the matrix in such a way that all

the diagonal  elements  are  non 0 then doing this  is  very, very easy. So Jacobi  method is

equivalent  to doing this.  Now what about relaxation method. Relaxation method you can

show that  you have  to  do  a  little  more  algebra  to  come up with  these  matrices  for  the

relaxation method.

But nevertheless finally you get this equation D+ omega L. For relaxation method it turns out

that it is this matrix right hand side is this and solving this equation iteratively at each point.

So likewise there are other variations what I have taught you is called as actually Forward

Gauss-Seidel method there is also Reverse Gauss Seidel method then there is a Reverse or

Backward Gauss Seidel method.

Then there is a symmetric Gauss-Seidel method in which you first do Forward Gauss-Seidel

method then you Backward Gauss-Seidel method so there are all kinds of variations which

makes convergence faster. So all of them you can actually express iterations in terms of these

fundamental 3 components L D U and so I have listed some of these variations here. Now let

me generalize this.

So in general if I look at this equation I can have a pattern here what is this pattern? 
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This pattern is like this and every time constructing a new iteration by following formula S

inverse T x k +S inverse b. What is S matrix,  what is T matrix changes from method to

method, but essentially my equation looks like this whichever iteration method I take I will

take Gauss-Seidel what is S in Gauss Seidel L+D. What is T here –U.
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So I can actually list this. So my basic fundamental iteration equation is x k+1= S inverse T x

k+ S inverse b. Now Jacobi method S corresponds to D and T corresponds to –L+U. Gauss

Seidel method S corresponds to L+D T corresponds to –U can you guess this is Forward. Can

you guess what will be Backward Gauss-Seidel. See here it is L+D what will be Backward

Gauss Seidel U+D and here it will be –L.

Backward Gauss-Seidel will be S corresponds to U+D and T corresponds to –L. In this case



relaxation method what is S? This will be S matrix, this will be T matrix actually you will

have to probably divide by omega and then get that. To divide everything by omega then you

will get S and T matrices. If you divide everything by omega you will get S matrix T matrix

and then same idea. The fundamental equation is this.
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My fundamental equation is this. So basically what I need to do is I need to analyze behavior

of this equation. How does this equation behavior? What is this equation have you seen this

kind of equation? New value=matrix* old value has you seen this kind of equations these are

called  as  linear  difference  equations.  New  iterate=  matrix*  old  iterate.  This  is  linear

difference equation except you might have seen this in time.

Here this equation with respect to that iteration index of iteration.  So if  I put it  in some

standard form which I am going to do soon then things will fall in place, but you should be

able to connect things what you have done some abstract form and when it is going to be

applied somewhere. Now let  us say these iterations converge. We still  have not analyzed

whether they converge or not, but let say they converge and say x * is the solution. 

Let us say my x* is the solution. So what will be the final equation? What do you mean by

converge, what will happen if this converges? It will give itself right. The final value should

give itself. So x *= S inverse T x*+S inverse b. Is this fine. So finally this is where I want to

reach. Let me call this as equation 1, let me call this as equation 2. I am going to subtract this

equation from this equation can I do that.



What will cancel this term will be 0.
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So if I subtract 2 from 1 I get this equation x k+1-x *= S inverse T x k-x*. Let me call this as

error is this fine. This is new error. What is error? Error is the distance from the true solution.

X* is the true solution well I will show you that x* actually indeed is a true solution. When

you do this method we have to show that we should reach finally the point which is solution

of Ax=b that also has to be shown. We will do that of course.

Is everyone with me on this? This is a linear difference equation and then finally I want to

reach the solution of Ax=b. So far so good. So now let start analyzing this equation. So we

started from those complex row summations. Now we have come to a very compact nice

form everything  looks  like  just  you know one simple  equation  x  e  k+1.  How does  this

equation behave?
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Let us say I start with some initial guess say x0 is my initial guess. What is the error at time

x0? It is x*-e0=x0-x*. What is this error I do not know if I knew then I would know x*. I do

not know what is this error? Nevertheless, I can do analysis without requiring to know the

error. I am going to analyze the behavior of this equation the beauty of this analysis is that

you can analyze without requiring to know what is e0 or what is e1?

I am just going to look at properties of S inverse T. If S inverse T has certain property and I

am guaranteed that this sequence of errors generated by this difference equation will go to 0.

If  error  goes  to  0 I  am reaching the  solution.  What  is  the  meaning  of  error  going to  0

difference between the iteration and the true is reducing that is what I want to happen. So let

us start applying this equation.

So what is e1 S inverse T e0. What is e2? S inverse T even which is S inverse T square e0 this

is okay. I am just substituting for even. What can you say about the error at instant K at ek

can I write this is S inverse T raise to k can I write this? Well while denoting vectors this e is

a vector by the way. X is a vector x* is a vector. So x0-x* is a vector e is a vector. This

notation of superscript in the brackets is intentional you should not confuse it with raise to

something.

This is not e raise to 0 this is 0th vector. So in the iterations at any point k in the iterations I

have to now analyze what happens to this matrix when it is multiplied with itself multiple

times.
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So what should happen now is do you agree with me. What I want to happen is this limit as k

tends to infinity. If I do more and more iterations I go closer and closer to the solution that is

what should happen. So which means limit as k tends to infinity S inverse T raise to k e0

should be 0 vector. Is e0 a 0 vector? No it is not a 0 vector. So what I want to happen actually

is S inverse T raise to k should tend to 0 to null matrix as k tends to infinity. What should

happen is S inverse T.

So I should choose S inverse T is such a way that this condition holds looks quite formidable

how do I choose a splitting of a matrix in such a way that this condition holds. Well not that

bad as it looks like we will look at the theoretical basis then it will be clear that it is not that

difficult to do this. Let me first show that we are indeed going to go to the solution by doing

this.

Error is going to go to 0 if error goes to 0 where will you reach? You will reach the solution.

Actually if I apply the difference equation again and again
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I can start with this difference equation xk=S inverse T or xk+1= S inverse T xk+S inverse b I

can start with this difference equation apply it from 0, 1, 2, 3, 4 and I can show that actually

xk= S inverse T x0. X0 is my initial guess. I am not deriving this you can derive this very

easily what expression that I am writing finally just recursively write the equation and you

will get what I am writing+ S inverse T k-1+S inverse T+2k-2 (()) (42:28) up to S inverse

T+I* S inverse b.

If you use this difference equation again and again starting from x0 we will able to derive this

expression. Now this expression has 2 components if you look here this expression has 2

components? What are the 2 components? One component is this S inverse T raise to K. I

forgot to put K here. So this as S inverse T raise to K* x0. Now what we wanted to happen

was S inverse T raise to K should go to null matrix.

So which means if this goes to null matrix this part will be nullified.  If I chose S and T

intelligently such that this condition holds then this part  will be nullified.  Where will the

iteration go? Iteration will go to this. Now whatever I am writing here is this same as solving

Ax=b we have to prove that. Are you getting what I am saying. See here I started with the

argument that well look here I started with this argument here.

I said that error should be defined like this then there is difference equations that governs the

error if I apply the difference equation actually I will get that error at time k will be S inverse

T S 2 k error at time 0. Error will go to 0 provided this matrix goes close and close to null

matrix.  That is why next argument. This matrix should go close and close to null matrix.



Then I looked at my original equation. This is my original equation iteration equation

I applied it again and again, again and again and then I could derive this it is very easy to

derive this expression. You start with x0 x1= something x0 this then x1= or x2=S inverse T

x1 and instead of x1 you substitute for you can eliminate and get everything in terms of x0

and then right hand side. It just repeated application of this equation starting from 0, 1, 2, 3, 4

you will get this expression not very difficult to derive.

Now if this part goes to 0 what it means is that as you progress in the iterations the effect of

initial  guess goes to 0 even if our initial  guess is wrong if you have chosen S inverse T

correctly this part will become 0. And whatever is your initial guess the solution will start

going towards this vector on the right hand side.

So now what I have to show is that vector on the right hand side is indeed the solution that is

first what I am going to show. Second what I want to do is to give you insights how do you

choose S and T such that convergence is guaranteed that is my next mission.
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So my claim is that if this condition happens that is S inverse T raise to K if this goes to 0

null  matrix  if  this is tending to null  matrix.  The solution that  is  xk tends to okay if  this

happens then iterations tends to this vector. I want to use one matrix identity. I suppose you

have studied this in your first year or in your 12th standard I-A inverse can be written as a

series. So this is actually a series where K is increasing.



So actually I can replace this by this. So which means if I use this particular series expansion.
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I can say that actually xk is tending to I-S inverse T inverse S inverse b. So this S inverse is

going to be there. I am just replacing this square bracket. I am replacing the square bracket by

its limit as K tends to infinity this is the limit. This equation is as k tends to infinity as K

tends to infinity I can replace this thing in the bracket by I-S inverse T whole to the inverse is

everyone with me.

So what is this= can you expand this further. This can be very easily shown to be S-T inverse

just expand this. You will get S-T you will take S inverse common you will get S. See this

thing in the bracket can be written as S inverse * S-T whole thing inverse. What is S inverse

S multiplied by S inverse will give you I. What remains is S inverse T inverse, but what is S-

T? S-T is nothing A. So this is nothing, but just go back and see this is nothing but A.

So this sequence is going to converge to the true solution that is A inverse B this method of

constructing sequence of iterates  is  actually  equivalent  to inverting  A matrix and solving

getting the solution provided you choose S and T correctly. What do you mean S and T

correctly? S and T should be such that S inverse T raise to k should go to null matrix. So now

the next part of the puzzle is that well under what conditions this will happen.

How do you choose S and T such that you will go to under what kind of matrices will look at

class of matrices that will guarantee convergence then we will look at we will come to the

point where we will be able to tweak these matrices using relaxation method? Basically what



you may not expect right now or what is going to come is eigenvalue (()) (50:23). Now what

I am going to do is relate convergence to eigenvalues of this matrix S inverse T.

And what I  am going to show is that if  eigenvalues  of S inverse T are strictly  < 1 then

convergence will occur then the problem is transferred to how to choose S and T such that

eigenvalues is of S inverse T are strictly < 1. The problem is transferred to how do I choose S

and T such that. So we are going to relate this to eigenvalues a very, very fundamental and

actually analyzing difference equations of this type is where the eigenvalues problem arises

that is what I want to also highlight.

When we are taught  in  the  linear  algebra  course eigenvalues  problem where the teacher

comes and write comes lambda Av= lambda V I mean why Av= lambda v. So you must have

seen  that  eigenvalues  problems  pop  out  when  you  are  trying  to  solve  linear  differential

equations.  I  am going  to  show that  it  pops  out  when  you  try  to  solve  linear  difference

equations.

Same thing happens when you are trying to solve linear partial differential equations you get

Eigen function problems. Eigen functions and eigenvalues. Here you will get Eigen vectors

and eigenvalues same idea used in different, different domains to understand how matrices

behave without actually requiring to solve it. So the beauty of that analysis is that we will be

able to talk about convergence without actually solving for it.

We can just look at the eigenvalues and say whether this will converge or not converge that is

what we are going to go towards. So we will continue that with the next class. I will start with

analyzing linear difference equations and their behavior and then go that to analysis of this

equations.


