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So till now, we have been looking at problem with discretization. We transformed the problem

from original problem which was, let us say, a boundary value problem or a partial differential

equation into a computable form, that computable form could be set of linear algebraic equations

or non-linear algebraic equations. The transformed form could be ODE initial value problem and

now we need ways of actually solving constructing the solution. 

So I just want to draw the picture that we started with when, so we had this original problem.
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This  original  problem was  non-linear  algebraic  equations,  boundary  value  problems,  partial

differential equations, all kinds of things that arise in modeling of engineering systems. There

could be differential algebraic equations. So we have, we have different kinds of equations that

we need to solve. So this is coming from your physics. This is coming from your modeling

transport phenomenon, heat and mass transfer and so on. 

So this will give you set of equations, most of the times, these equations are non-linear not at all



amenable to constructing an unradical solution. These are in multiple dimensions and you have

to  solve  them  using  some  numerical  techniques,  okay.  So  the  next  step  was  problem

approximation. So we constructed, we used concept of approximation theory and we got this

transformed problem. 

This is transformed computable problem. So in approximation theory, we used 3 different tools,

one was Elsevier's approximation. Basically we used polynomial approximations. That was one

of the fundamental tools but of course we used also functional approximations later. Then we

talked about least squares, right. So we had, we used concepts of approximation theory to come

up with a transformed problem. 

So here either interpolation Elsevier's approximation or least squares, these were 3 basic ideas

that  were used to  transform the problem. So I  would just  list  them here,  is  Taylor series or

interpolation.  So Taylor  series,  interpolation  or  least  square  approximation,  so  these  were  3

predominantly used tools to transform the problem to a computable form and now we want to

attack this problem. 

So we are, as you could see that this problem which you started with was a partial differential

equation,  you ended up here  sometimes  with non-linear  algebraic  equation,  sometimes  with

initial value problem, ordinary differential equations, so you, the transformed problem, from the

viewpoint  of  the  structure  of  equations,  could  be  completely  different,  okay. So  it  did  not

resemble the original problem.

Original  problem is  a  partial  differential  equation  in  space  and time,  here  you get  ordinary

differential equation only in time. Original problem is partial differential equation in space, you

just get algebraic equations, either linear or non-linear. So transformed problem is completely

different. We hope that if we solve the transformed problem, we get something closure to true

solution, not the exact solution. Now how do you attack the transformed problem? The next thing

is look at the tools. 

So I want to talk about 3 different tools,  Ax=b. I  would put this  as solving linear  algebraic



equations. This is one of the fundamental tools that we are going to use. So this tool will be used

attack this problem. Well the other one, other tool that I am interested is actually solving F of

x=0. So this is another tool which is used to solve the transformed problem, okay. The third tool

which I am going to be looking at is the ODE initial value problem. 

Initial value problems are again a fundamental block and Euler method, Runge-Kutta method, all

those methods will come under this. Here we will revisit Newton's method. We will look at its

other new answers and see how you can enhance the convergence and when the fourth tool,

which is quite commonly used, is stochastic methods but I am not going to deal with this, okay.

Stochastic methods, this is a fourth tool. 

What we expect after that, once we attack this problem with these tools or their combinations, it

is not always that you will use only one tool, you might use this and this because (()) (06:54) will

require this, okay, to solve this and so on. So there are combinations and finally what comes out

is the approximate solution.
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So this  is  my end result,  this  is  my end result.  So I  start  with the original  problem, I  used

approximation theory, come up with a transformed problem which is computable. I have only 3-4

tools with me which I use ingeniously to concoct a solution. You should get this feel at the end of

the course that, actually it is like a bhelpuri shop. You only have few things with you, okay and



with the same things  you can make savepuri,  you can make dahibatata  puri,  you can make

bhelpuri. 

So it is the same thing, it is the same ingredients, okay and by just making mixtures, you can

create different dishes. The same idea is here that we do not have too many tools, we do not

understand how to solve very very complex equations exactly. We just know after all that we

have done progressive mathematics,  we just know how to solve Ax=b, we just know how to

solve non-linear algebraic equations and all these you will realize, we know how to solve this

approximately, we know how to solve this approximately. 

So ultimately what you land up with is a third order approximation, you approximate from here

to here, okay. Then you try to use these tools but they themselves are approximate, okay and then

there are errors in computation because of inherit limitations of a computer. So all 3 combined

together, okay, you get a third order approximation which you hope is close to reality what the

real solution is, okay. 

Well there is one more approximation which I forgot. If you start with a real system, okay. So

this is the real process or a system. When you write a mathematical model, okay, that itself is

approximation. When I say that a reactor is like a CSTR, it is not CSTR or when I say it is a

PFR, it is not a perfect PFR. PFR and CSTR, these are models, these are idealised models which

try to approximate the reality. So from here to here, itself there is an approximation. What we

formulate here, we cannot solve exactly. 

So there is one more level of approximation. Then when you try to attack them using different

tools,  those  tools  are  also  approximate,  okay, because  all  these  ideas  of  Taylor  series,  then

polynomial approximation, interpolation, all these again, we will revisit when you are doing this,

okay. So they are not going to leave us. Because again many of these will be not solvable, so you

go back to again Taylor series, you go back to again and then you solve an approximation and so

on. 

So you could say it is a fourth order approximation and in between you know you have computer



which is  having its  own limitations.  So all  things put together  what  you get is  approximate

solution. Now this approximate solution should represent something that is happening in this

problem and the reality and this is where your inputs as engineer or a physicist or a chemist will

come into picture. You should make, you should know whether this makes sense. 

Often times you need to actually give a good guess. You must have realised this when you are

solving some of the problems numerically and if you do not give a good guess, the solution can

be absurd and so giving good guess is where your background in engineering or science is very

very critical, okay. So now what we do is, we have come up to this point. Now we look at A, B

and C. We will not be able to get into stochastic methods. 

Hopefully, you will be able to cover and will be able to do some justice to these 3 tools, okay. So

let us begin with Ax=b and then you might wonder well I have been doing this since my 12th

standard, so what more to it. What more to Ax=b, I have been doing this for ages. Well lot more

to it. I will at least need 8 or 10 lectures, that too we will just touch the tip of the iceberg. When

you are using or when you are solving problems in school textbooks with some 2 equations and 2

unknowns or 3 equations and 3 unknowns. 

You know simple methods work. Well the first thing that you learn is Cramer's rule, right. Now

what I will show is that Cramer's rule beyond 4 equations becomes (()) (12:27), you cannot use it

for computer implementations.  The most practical method is of course Gaussian elimination,

again  (())  (12:37)  prince  of  mathematics  Gauss.  This  method  is  probably  one  of  the  most

efficient methods of directly solving many of algebraic equations. 

But then again these methods will be good if you have 1000 equations and 1000 unknowns.

Once you start going into 10,000 and 20,000, 1,00,000 equations and 1,00,000 unknowns, you

have problems, okay. You still  get into roadblocks of time constraints.  You can use iterative

methods and we will talk about iterative methods. So iterative methods that you start with a

guess solution and then try to converge to the close to the true solution as quickly as possible.

Again iterative methods, we have to look at when you are guessing and trying to go to a solution,



you should know whether you will converge or not, okay. So under what conditions you will

converge is going to be one of the main themes. Then also optimization based methods which are

again interactive methods.  I will brief you, touch upon optimization based methods and then

finally,  I  will  also  talk  about  a  fundamental  thing,  what  is  ill  condition  systems  and  well

condition systems. 

So  how do you classify  Ax=b.  Well  it  depends  upon  this  A matrix.  So  we will  talk  about

properties of A matrix like a condition number in detail. I suppose you may have been introduced

to this idea of condition number but I will derive the basic ideas that lead to a condition number

and we will talk about well condition matrices, ill condition matrices. When the matrices are ill

conditioned, you cannot get reliable solutions through numerical computations and you should

be aware of that because now a days you have tools. 

You know you just give a matrix;  it  will  pop out a solution.  You should know whether this

solution makes sense of not, okay. One is from physics viewpoint, other is from computation

viewpoint. If the matrix is ill conditioned, okay, you cannot get a good solution and you should

know, should be aware of that, okay. So let us begin by talking about existence of solutions.

When does the solutions exist? B lies in the column space of A, so there are 2 actually pictures,

there are 2 geometric pictures that are typically used. 

I will just use this; you should actually look at a book by Gilbert Strang. He used very nice

introduction to solution of linear algebraic equation.
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This is example from Gilbert Strang, I am just taking 1 simple example which is 2 -1 1 1 x y=1

and 5, okay. Now there are 2 viewpoints by which you can geometrically visualize the solution.

Well one viewpoint which is taught in our schools is, 2 lines intersecting or when it goes to 3

variables and 3 unknowns, we talk about 3 planes intersecting at 1 point and so on. In general,

we can say that hyperplanes intersecting. So one viewpoint, I would say is this that is 2 -1 x y=1,

this is equation number 1.
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and second equation is 1 1 x y=5, okay. So this is, we would say that well, so we know these 2

lines and this is my xy plane, this is very commonly given example. So this line is 2x-y=1 and

the other line is x+y=5 and then this line and this line intersects at this point. This is the solution,



okay. Commonly your example means not this particular example but intersecting lines is or

intersecting planes. So this is the solution that is what we know. The other interpretation is of

course the column space interpretation which is coming from vector addition.

(Refer Slide Time: 17:27)

So I could view this equation as 2 -1, sorry 2 1*x+y*-1 1=1 5, okay. This is the second equation

and here, we are not drawing pictures in xy plane any longer. X and y are coefficients by which

these 2 vectors add to give the third vector. So this is your vector addition. This is your vector

addition, okay and this picture is, I will call this as, so this row picture. Row picture becomes

very very difficult to visualize in some sense beyond 3 dimensions, okay but my claim is that the

column picture is little easier to visualise after 3 dimensions, 4 dimensions, 5 dimensions. 

We are just talking about linear combination of vectors. So here what we are saying is, we have

these 2 vectors. We have this vector 1 -1 and I have this another vector. This is my vector 2 1,

this is my vector 1 -1, okay and then my third vector is this 1 5. We are just trying to use now the

law of vector additions, okay and then you can complete the geometric picture by drawing the

parallelogram here. 

So actually it is just linear combination of these 2 vectors, gives me the third vector, okay, gives

me the third vector and when will you, when will you be able to get solution for any right hand

side,  if  you want  to  specify  any right  hand side,  okay. When the  linear  combination  of  the



columns support should span the entire space. That means these 2, these 2 should be linearly

independent. If these are linearly independent, all possible linear combinations of these 2 vectors

will span all 2 and then any vector… Well, there will be a problem.
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If suppose if this was 2 -2. Suppose I change this equation to 2 -2, what is the trouble? These 2

are vectors in the same direction, okay. No linear combination of these 2 vectors can never give

me 1 5, okay. So the column picture would say that equation does not have a solution, that is

because you have one equation, you have 2 vectors which are aligned along the same direction.

 There is no linear combination which is ever going to give me this vector, okay. No linear

combination is ever going to give me this vector. So now when column picture tells you that

there is no solution, same thing will happen for row picture. If you take row picture here, okay,

for these change case, you will see that there are no 2 different lines. See we have parallel lines

which will never meet.
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So 2x-y=1 and -2x+y=5. So this will be the row picture and you will get 2 lines which never

intersect, okay. So when this picture shows that there is a problem, you cannot get a solution, the

row picture also will give you a problem, there is no solution. No hyperplanes meet or no planes

or no lines meet, okay. We can generalize this to any n dimensional case. We can talk about

linear combinations of column giving you a solution which lies in the column space, okay.

And row picture will be hyperplanes and then the solution when it exists is all the hyperplanes

meet in one point, okay. So actually line is a 1-dimensional hyperplane in 2-dimensional space.

Plane is a 2-dimensional hyperplane in 3-dimensional space and in 4-dimensional space, there

will be a 3-dimensional hyperplane and son on and those 3-dimensional hyperplane should meet,

well difficult  to visualise how 3-dimensional planes meet at one point but if you look at the

column picture and talk about linear combinations of column in n-dimensional spaces, okay. 

So we will not get beyond a certain point here. What is important is, because all of you know

this, I am just revising this very quickly. When does the solution exist, solution exist when the

columns are linearly independent, okay and same thing is true about rows if the columns are

linearly independent, the rows are linearly independent and number of fundamental theorem of

linear algebra is, number of linearly independent rows equal to number of linearly independent

columns is equal to rank of the matrix, okay. 



So with this  brief  brush up,  we will  just  get  into  the solving  problems using… okay. Now

Gaussian elimination is something which I am not going to touch upon because I assume that

you already have a sufficient background of Gaussian elimination, I have uploaded some notes

on Gaussian elimination. You should have a look at those notes. I just want to compare 2 things

here to begin with, to give a motivation for methods which are more efficient. 

One  is  number  of  computations  that  are  number  of  multiplications  and  divisions  that  are

involved.
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So 2 methods that you know for solving Ax=b. The first method you learn is Cremer's rule, okay.

The first method that you learn is Cramer's rule. Now I am going to use this psi to denote number

of  … required  to  arrive  at  the  solution.  If  psi  represents  the  number  of  multiplications  and

divisions  that  are  required  to  arrive  at  a  solution,  then  for  Cramer's  rule,  psi  estimated  is

approximately equal to, I am talking about n*n matrix, so my concern here is A is in general and

n*n matrix where n could be large, okay. 

N could be 1000, 10,000 or whatever, a large number and we have seen that  these kind of

matrices  arise  when  you  do,  let  us  say,  finite  difference  method  problem,  discretization  of

boundary value problem. A 2-dimensional boundary value problem will give rise to, even if you

take 100, 100 grid points, okay, along x and y. You will get a huge matrix which has to be solved.



So large matrices are not uncommon when you do approximate solutions.
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So here it comes out to be n-1*n+1*n factorial+n which is approximately, this is equal to, this is

exactly  equal  to,  which  is  approximately  equal  to  n  square*,  this  is  n  factorial+n,  this  is  n

square*n  factorial,  okay.  Estimated  number  of  operations,  divisions  and  multiplications  for

Cramer's rule, I am not going to derive this, you just accept this number right now. I am just to

give you estimate of what can happen if you try to use Cramer's rule for a matrix of moderate

size, 100:100, okay. 

If you take n=100, okay, this data I have taken from professor S. K. Gupta's book. So this is, you

can show that this psi is close to 10 to the power 162, okay and he says that a tech computer, take

10 90, would take 10 to the power 149 years to solve this problem, okay. So absurd number, so to

solve a problem of 100*100 matrix (()) (27:25) *100 matrices, using Cramer's rule is impossible,

okay. 

A computer would take, the DEC computer when he probably wrote the book was the fastest one

and then he has given this number that it will take 10 to the power 149 years, okay. So Cramer's

rule is ruled out. It is just good for 10th standard or 12th standard whatever, wherever you learn

it and good for solving 3 equations and 3 unknowns, may be 4 equations. If you have patience to

do determinants, then. So this is not the way to go, certainly not the way to go. What about



Gaussian elimination? Gaussian elimination seems to be the hope here.
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So in Gaussian elimination,  we start  with Ax=b, then we transform it to an upper triangular

matrix Ux=b prime or b cap, let us call it. We transform by elimination. We transform it to an

upper triangular matrix and then we do the backward sweep, okay. So what is the number of

operations that you need here? The number of operations that you need here is n cube+3n square-

n/3 which is approximately for large n which is approximately equal to n cube/3. So n cube/3 is

far far far less than n factorial. 

So this is the reason why Gaussian elimination is so popular and is a compute savy method, is

because this is one of the most efficient ways by which you can solve Ax=b, okay. So that is why

it is introduced right at 10th standard or 12th standard and then you start building on it as you go

into your higher grades, okay. So obviously we want to work with Gaussian elimination, okay

and now what I want to do is, before I move to iterative methods, I want to see whether Gaussian

elimination can be made more efficient, okay. 

By exploiting certain structures that appear in discretization,  problem discretization.  So some

time  back  when  we  read  this  discretization,  I  told  you  that  finite  difference  or  orthogonal

collocations  or  orthogonal  collocations  on  finite  element  and  so  on,  we  get  some  special

matrices. These are called as sparse matrices. Sparse matrices are ones which are filled with large



number of 0's and they may have some nice structures, okay. If you exploit these structures,

okay, you can come up with direct methods. 

So these methods which I am talking about, these are classified as direct methods, okay. When I

say direct methods, as against iterative methods, iterative methods in which you start with the

guess and from the old guess you construct a new guess and so on, okay. Like (()) (30:50) the

iterative method. Direct methods in Gaussian elimination, we do not start with a guess, right. You

directly solve the problem, okay. 

Other variance of Gaussian elimination are Gauss-Jordon method, okay, LU decomposition. So

all  these  are  variance  of  Gaussian  elimination  but  basically  the  foundation  is  Gaussian

elimination, okay. Also I have uploaded something about LU decomposition. LU decomposition

is Gaussian elimination represented as sequence of 2 triangular matrix calculations, one is upper

triangular, other is a lower triangular. 

So you can have LU decomposition also. We can have a look at LU decomposition but that is

derived from Gaussian elimination. So the order of computations are again of the order of n

cube/3. It is not 2 different, okay.
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So in direct methods, now what we are going to look at is direct methods for solving, when I say



direct method, not the Cramer's rule, of course the Gaussian elimination, okay. Sparse Linear

Systems are those set of equations, Ax=b where matrix A has large number of 0's and I want to

exploit  special  structure  of  that  matrix  A to  come  up  with  a  efficient  solution  which  will

significantly relieves the number of multiplications and divisions that you need for solving the

problem, okay, that is the motivation for these sparse methods. 

Again in this course, I cannot do a justice to Sparse methods. I am just going to introduce you to

sparse methods, okay. Everything is an iceberg and we just touch the tip of the iceberg. To look

at sparse method, in metlab, there is a sparse matrix toolbox and it will list so many algorithms, I

cannot cover all of them but what is important is to sensitize you that there exists something

called sparse methods.

And you should look at, you should try to see whether there is a nice structure in your problem

which can be exploited to relieves the computations, that is what is more important. So I am

going to touch upon 3 or 4 methods and we will move on to something else but at least this will

give you flavour of what it is, what is this sparse matrix business, okay. So we are going to look

at somethings which are some matrices, some sparse matrices. 

One is tridiagonal and block tridiagonal matrices. We will look at block diagonal matrices. We

will look at, where in general one can talk about banded matrices. So banded matrices with only

m diagonals, okay. I am not going to touch upon this. I will talk about these 2. Then I will also

mention about triangular matrices, block triangular matrices. So these are some nice forms. 

Actually if you start looking at this forms just in your text book, you might wonder where do I

get all these forms but all these forms appear in problem discretization, okay and once we rise

above these forms, we will realize where they appear and how you, so the motivation for these

looking at this sparse matrices becomes clear if you look at the problem discretization methods,

okay. 

Those will give you these nicely patterned matrices which you can actually exploit to come up

with efficient  solutions.  Let us look at  first  the simplest  one,  I  would say is  block diagonal



matrix. A block diagonal matrix would appear in orthogonal collocations on finite elements or

CFE. A block diagonal matrix would look something like this. 
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Well this original equation which is Ax=b, I am writing it in the block diagonal matrix form,

okay. Here A1 A1 up to Am are matrices which are full. They are not, they do not have too many

0's. These matrices are typically dense matrices, not sparse matrices but all these square 0's are

actually  matrices  of  appropriate  dimension  which  contain  only  0's.  So  this  is  sparse  matrix

because non-0 elements appear along these diagonals and then here, this is the dense matrix, this

is the dense matrix, this is the dense matrix, but all these are 0 matrices, null matrices.

So this is a huge matrix filled with large number of 0's only here on the diagonal, you have some

small submatrices which are dense, okay. The small submatrices which are dense. What I have

done here, x here, I have partitioned here, okay. I will talk about this partition very soon and even

b vector, I am partitioning into b1 b2… okay. Now what are these partitions? Well my matrix Ai

is actually a matrix which is ni*ni, okay. So this could, see this could be the 3*3 matrix, this

could be a 5*5 matrix. Next one could be 3*3 matrix. 

If you are doing orthogonal collocations on finite  elements,  on the first element,  you take 3

internal collocation points. Next one you take 5 internal collocation points and so on. You will

get this matrices of different dimensions. Only these matrices on the diagonal are dense. Because



if you remember when you do orthogonal collocations on finite elements, only variables in that

small segment appear in that equation, okay.

So you have this funny structure that you will get. Well, will you get this or you will get some

overlap.  Probably  in  OCFE,  you  may  not  get  exactly  the  structure.  You  might  get  some

overlapping and you will have to do some, some more tricks to bring it to this form, okay. But

there are some obligations where you get this nice banded structure and then each one of them is

a ni*ni matrix. This vector xi belongs to Rni, so it is a ni dimensional vector, okay and same is

true about vector bi which belongs to Rni. 

So these are subsystems, these are subsystems which are arranged in a diagonal form, okay. Now

what do I do when I want to solve this. Well one way is the (()) (39:17) that this entire matrix and

use Gaussian elimination, okay. I can use Gaussian elimination on this entire matrix, okay. So

what is n here, total n? My total n is summation i goes from 1-m ni, right. My total n, all number

of, how many number of, what is the dimension of this entire matrix, n*n. What is n? See these

are all subsystems. I am just adding them. 

So the entire matrix, this entire matrix is n*n where n is equal to summation of all ni, okay.

These are ni subsystems which I want to solve together. So if I use Gaussian elimination here

directly, then the number of multiplications and divisions, if I use one without trying to exploit

the structure of this matrix, if I try to use blanket Gaussian elimination, then number of divisions

and multiplications, we just listed this, will be n cube+3n square-n/3.
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The other option is, I could solve subsystems. So I could solve for Aixi=bi, i going from 1, 2, …

m. I have this m subsystems, okay. I could each small subproblem, okay. See this is 3*3 or 4*4.

Each one of them is a smaller dimensional  system. I can solve this  each one of them using

Gaussian elimination, okay. Now what is psi i? What is psi i here? That will be ni cube+3ni

square-ni/3, right. 

So this ni are 3 4 5, you know these are smaller dimension matrices whereas this one this matrix

is a large matrix. This matrix is a large matrix which has large number of rows and columns. So

instead of using a Gaussian elimination on entire one, if I do this trick of solving each subsystem

separately, then the total number of listing is sigma ni cube+3ni square-ni/3 is actually far far less

than… this will be far far less than this because see what is n, n is summation ni, summation ni

cube will have lot many terms then, okay.

So this simple trick of identifying subblocks which are dense and solving those subblocks, okay,

can actually reduce the computations multiple folds, okay. So within Gaussian elimination also,

if you are instead of solving one giant problem in which there are lots of 0's and you are going to

waste time in eliminating 0's, because they are already 0's. What you do in Gaussian elimination?

You first bring it upper triangular matrix. 

So you have to bring 0's and then if you just apply Gaussian elimination without thinking, you



will waste time in bringing 0's from 0's, does not make any sense but the computer will just do

computations without understanding that there is a 0 there. So you have to tell the computer well

there are 0's, do not worry about those 0's. Just do the subsystem calculations and then you solve

the problem much more efficiently than, okay. 

So this is very very important particularly when you have iterative calculations. Suppose you

have to solve Ax=b kind of equations inside a (()) (43:39) where A has this, the banded structure.

Then just imagine. See when you are doing this repetitively say 1000 times or 10,000 times, well

you better solve it efficiently, okay. So suppose this Ax=b, this banded structure appears inside a

loop, okay, iterative loop, okay, each time if you do these many calculations that is much more

expensive then these many calculations, okay. 

That is where this banded matrix structure helps. Well the next one we are going to look at is the

Thomas algorithm, okay. So the Thomas algorithm is for a special case of, Thomas algorithm

may be some of you have done this in your undergraduate because it is often taught. So Thomas

algorithm is for block, is first for tridiagonal matrices, okay. I am going to write this notation. I

am going to change a little bit here. Right hand side, these elements, I am going to call them as

d1 d2 …dn.
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My matrix is now going to be written with d1 c1 0, then a2 b2 c2 0, then 0 a3 b3 c3 0. So this is



a tridiagonal matrix. You have 0's here and then finally you will get an, bn. So you have this b1

b2 b3 up to bn that is the main diagonal, okay. There is one more diagonal above this which is c1

c2 c3 and one more diagonal below this a2 a3, so this starts from a2, this starts from c1 but this

ends here at cn-1 and this starts from a2, ends in n. you have seen this kind of a matrix, finite

difference method. 

You have seen this kind of a matrix, okay. So in finite difference method, you get this tridiagonal

matrix, okay and then questions is, can I exploit the spatial structure this has, so many 0's, filled

with so many 0's. How many elements are non-0? 3n-2, 3n-2. N elements of diagonal, n-1 of first

diagonal above and n-1 of first diagonal below. So 3n-2 elements are non-0, rest all the elements

are 0, okay. 

So I am going to do simple Gaussian elimination here. Can you do it? can you try this? How will

you  do  Gaussian  elimination?  You  should  just  eliminate;  I  do  not  have  to  do  Gaussian

elimination for these elements here. I just have to eliminate a2, okay. When I come here, I just

have to eliminate a3, okay and so on. So I just have to eliminate one element below the diagonal,

main diagonal, okay, that will give me the upper triangular matrix and then I just go on doing in

the backwards sweep. So if you just write the steps here, it will be something like this.

(Refer Slide Time: 47:31)

So I am going to define this gamma 1 which is c1/b1. I am just writing it algorithmically. What I



am doing this basically Gaussian elimination, okay and gamma k=ck bk-ak gamma k-1. This is

for k=2, 3 up to n-1. Then I have this beta 1=d1/b1 and beta k=dk/bk-ak beta k-1 bk… so what I

have written here, it looks probably at the first site, little complex but all that I am doing is

eliminating 1 element  below the diagonal,  okay and these gamma and beta are the elements

which appear in the… So what I am doing is after doing this operations, I am going to get this

new matrix which looks like this.

(Refer Slide Time: 49:19)

This new matrix after doing all this, will look something like this 1 gamma 1 0 0, 0 1 gamma 2

0… Of course you have this matrix x here or vector x here and right hand side is beta 1 to beta 2

beta n. These equations written here are for computer implementation, you can put it in a for loop

and just do calculations to get this matrix. This is just, these are the steps of Gaussian elimination

written in the algorithmic way so that you can put it in the computer program too. So now I get

this matrix, this is upper triangular matrix. 

When  you do upper  triangular  matrix  here,  you just  have  to  worry  about  1  row above  the

diagonal, right and now what you do backward sweep, okay. You do backward sweep, you get x1

directly from this, x2 you get right. All of you know back substitution. So now I do backward

sweep and then solve the problem. What is the number of multiplications and divisions that are

required in Thomas algorithm. 



This is called Thomas algorithm. Now I do backward sweep on this. Should I write down the

equations or you are clear about it? I think all of you know about this, right. How do you solve

from this,  it  is  very, very  simple,  okay? What  is  the  point  to  take  home is  that  number  of

multiplications and divisions for this case produce to 5n-8. This is just linear function of n as

against cubic function of n. If I were to use Gaussian elimination without thinking about the

structure, I would be doing n cube/3 calculations roughly. 

Here  I  just  do  5n-8,  significantly  lower  than  what  I  need  to  do  as  my  normal  Gaussian

elimination.  So  Thomas  algorithm  is  one  example  where  you  significantly  reduce  the

computations required by exploiting the structure. The next what we are going to see is of course

a simple extension of this is if you have, this I will do in my next class, is what if, see here we

have looked at this algorithm where a b c are scalars, what if these are matrices? 

What if b1 is a matrix, c1 is a matrix, a2 is a matrix, b2 is a matrix, those things are, those

matrices are called as block tridiagonal matrices, okay, block tridiagonal matrices. So we just

simply extend this idea to block tridiagonal matrices and still we can do much less computations,

than doing entire, solving the entire thing, okay. So that is what is going to be the next extension.

So these are some of the well known sparse matrix algorithms and you can significantly reduce

the computations even in Gaussian elimination. 

We are still doing Gaussian elimination. We are not guided into something new, okay. So we will

continue on more of this in the next lecture.


