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Okay, so good morning, we are looking at projections and projections general projection theorem

in Hilbert spaces. so in the last class I talked about distance of vector or a point from a subspace

in a general Hilbert space so we wanted to project just like we projected, in 3 dimensions we

projected a vector onto a 2 dimensional surface, in the same way we could project a vector in

general  Hilbert  space  which  could  be  infinite  dimensional  onto  a  subspace  which  is  finite

dimensional okay.

So this we derived a formula or we derived equations for computing the coefficients of the least

square approximation, and so we are looking at what is called as the normal equation, I just go

through over at very quickly.
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What we wanted was we have a Hilbert space, and we have these subspace S, S is a subspace of

X, and then we are given a vector u that belongs to X, a vector u is given to you that belongs to

X. Now X may or may not belong to these subspaces okay, I want to find out the point in the



subspace which is at the shortest distance in the least square sense from u. So what I essentially

want to do is, so let us say S=span of some basis vectors.

So these are the linearly independent basis vectors there are m basis vectors, and so this is a

finite dimensional subspace S is a finite dimensional subspace, I want to find out so any vector

that belong to this subspace will be of the form alpha 1 a 1 any vector that belongs to S will be a

linear combination of these basis vectors okay. What I want to do is to find out alpha 1 to alpha

m such that 2 norm of u- or let us say to norm square.

I want to minimize sum of the square of errors when it is finite dimensional, I want to minimize

the integral I want to minimize the integral if it is infinite dimensional space, I want to minimize

this integral over the domain this is 2 norm square that means inner product of this vector with

itself, this is the error vector u is the original vector in X, this is the projection this P here is the

projection, and then we want to find out a vector P that belongs to the subspace S which is at a

minimum distance from.

So whatever I want to emphasize again and again it is not different from say this is the point

okay, and this is my plane here okay, this  is 2 dimensional  subspace and this is a point the

shortest distance of this point is obtained by dropping a perpendicular okay. So what classical

projection theorem in Hilbert spaces says is that the way to go about the way to find the vector P

which here is the shortest distance is to use the fact that this error vector e that is u-P this is

perpendicular to ai, i going from 1 to m okay.

This  error  between  the  original  vector  and  the  projection,  this  error  vector  is  orthogonal

remember that orthogonality can be used only in the inner product space or Hilbert space, and

that  is why we work with 2 norm or least  square approximation,  so that  is why this  square

approximation are so popular, because you can use orthogonality ideas okay. So this is the basic

idea with this we derived what is called as normal equation.

Tis normal equation give as way to compute the least square estimate of alpha 1 to alpha m and

that we constructed as follows.
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So we got this normal equation this was a 1 inner product of a 2 a 1, a 2 am likewise okay, so

using the fact that the error is orthogonal to each of the basis vectors a 1 to a m we arrived at this

equation, this equation is called as the normal equation in Hilbert spaces, this when I solve this

these inner products these are the inner products here, once you compute this a 1 to a m, this

basis vectors are known to you, you can compute their inner products okay.

So this will be a matrix, what is the dimension of this matrix this will be a m cross m matrix,

there are m vectors this would be m cross m matrix, this came across a matrix is invertible in fact

it is symmetric positive definite invertible matrix you can check that. And then you can solve for

alpha 1 to alpha m, you can get a least square solution, what you will get here is the least square

solution of alpha 1 to alpha m okay.

You will get the projection vector, once use this you get the projection vector onto this subspace

S, which is at the least distance from u okay, so this is the best approximation of. Now I began in

the working on this using finite dimensional spaces, I had derived a formula which said that a

transpose a inverse theta, so this in the finite dimensional spaces this just go back and I will look

at what we have done this will reduce to the same think will reduce to a transpose a.



This will reduce to theta, this will reduce to a transpose u, in the finite dimensions this equation

will reduce to okay, the matrix equation which have derived earlier. So I am just extending the

idea from finite dimensions to a general Hilbert space, here I could work with any of the. See for

example I began my lecture last time by saying I have this vector u t which is a+b t and t belongs

0 to 2 pi okay, I want to find out an approximation P t which is alpha sin t+ beta cos t.

I want to find out approximations alpha sin t+ beta cos t okay, let us say we can so for the time

being let us take only 2 vectors, what are the 2 vectors what is a1 a2 here this is my a1 vector this

is my a2 vector okay. How do you find out alpha and beta, so what I have to do here to find out

alpha beta, how do I set up the problem to find out least square estimates? So I have to find out

sin t sin t sin t cos t, what is sin t cos t over 0 to 2 pi, can you do this integrals?

What is the inner product defined here? How is the inner product defined? Inner product between

some f and g is integral 0 to 2 pi f t g t inner product is defined here like this okay, inner product

is defined here like this, so now we know that over 0 to 2 pi sin and cos are orthogonal, so this is

0, this is 0 okay. If you notice what we are actually deriving are the first 2 coefficients of the

Fourier series, I am doing Fourier series expansion of u t in terms of sin and cos okay.

The nice property of sin and cos over 0 to 2 pi with this as my inner product is that they are

orthogonal, so this is 0, this is 0 I get a diagonal matrix, solving for this level matrix is very, very

easy it is not so difficult to solve for, so what is integral sin t sin t it is pi inner product of sin t u t

and inner product of cos t u t, so this is=pi this is=pi this is 0 this is 0 okay, the least square

estimate the best estimate of in the least squares sense in terms of sin and cos of this function u t,

u t in this particular case I have taken a+b t.
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It could be it need not be you know this kind of function, I can take for example u t to be any

other complex functions, I could take this as you know 1+5 t square-7 t cube sin t let us say this

is my function does not matter, this is the function okay in the space of in the set of continuous

functions over 0 to 2 pi okay. I want to find out best approximation to this function using sin and

cos okay, I can go on if here I have included only 2 basis vectors.

Well, somebody might say just using 2 is not sufficient you want to use 4 okay, in which case I

would use sin t cos t sin 2 t cos 2 t and so on okay, so the approximation could become more and

more complex if you want, so I can have alpha 1 beta 1+ alpha 2 sin 2 t+ beta 2 cos 2 t+ alpha 3

sin 3 t+ beta 3 cos 3 t, let us say I want to develop approximation like this to this problem, how

will you do it? We just methodically apply this formula okay.

Now there are 6 vectors the subspace, what is the subspace spanned? Subspace spanned by 6

vectors sin t sin 2 t sin 3 t, cos t cos 2 t cos 3 t we want to find out best approximations of the

given function  okay best  in  the  least  square  sense  okay, in  the  subspace  spanned by this  6

vectors. What I do is, I find out these inner products okay I validate these inner products between

6 vectors, this gives me this matrix on the right hand side.

I have to compute inner product of the given function with each of the vectors okay, and when

this vectors are orthogonal actually what we recover is the Fourier series expansion the Fourier



coefficients okay, when these are orthogonal you know only the diagonal elements of this matrix

will be non 0 okay only diagonal elements will be non 0, all the of diagonal elements will be 0

because orthogonal vectors inner products are 0.

If  I  take  an  orthogonal  set,  why  do  we  actually  want  to  approximate  something  using  an

orthogonal set? That is because the projection problem approximation problem gets very, very

simple okay, also there are some other advantages like actually what we are doing here is when

you do these  orthogonal  projections  you are  expressing  a  vector  in  terms  of  its  orthogonal

components, why do we work with x i y j+z k in 3 dimensions.

Because x is a component along unit vector in the X direction, y is the component along okay,

they are orthogonal they are not related to each other okay. The same way what we are doing

here is that we are expressing a vector in terms of a basis okay, we are projecting onto orthogonal

basis, now the complete vector you can write if you take all when you see if I take a vector x

which is given by 3 coordinates x, y, z okay.

When  will  I  get  the  entire  vector  if  I  take  all  the  3  components  together,  in  the  infinite

dimensional space when will I get entire vector if I take all the basis vectors and take you know

projections along each one of them okay if I take projections along each one of them, then I will

get the Furious series I will just write down this whole thing it will become more clear, but there

is one more thing I just want to tell you.

See this vector right now I had chosen them to be orthogonal I have not chosen them to be

orthonormal, if I choose them orthonormal what will happen suppose this vectors are orthogonal,

what is the property of orthonormality? Inner product is =1 right, and inner product between a i a

j is 0 and with itself is=1. What will happen to this matrix, if I take orthonormal vectors this will

be identity matrix. 

If I take orthonormal vectors to find out the projection all that I have to do okay is to okay.
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So the concept is not different from I will just leave this and come back there. So the concept is

not different from see if  I  have this  3 dimensional  vector, if  I  have 3 dimensional  vector V

belongs to R3 okay. How do you find out the component of V along x-axis, I take inner product

of V with i, i is the direction, so I am talking here about this is my i, j, k orthogonal basis for 3

dimensional space okay.

If  I  take  inner  product  of  V with  i,  what  will  I  get?  I  will  get  x  component  right  I  get  x

component inner product of V y component is inner product of V with z, and z component is

inner product of V with k right. How do we write this vector? How do we express this vector?

We express this vector as V=x i+y j+z k, where i, j, k let us put this cap here let us say they are

unit vectors i cap, j cap and k cap are unit vectors okay.

But this this writing is same as inner product V i+ inner product V j, I could as well write this

like this right, this and this is same you agree with me okay.
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Here, what we can do is that in a general inner product space, if you are given a basis now this X

is my inner product space or Hilbert space okay it is a Hilbert space and I give you a basis, so

this Hilbert space could be any of the Hilbert spaces that we have looked at okay. So not be just

finite dimensions it could be any of the infinite dimensions Hilbert spaces that we have looked

at. And then I give you a set of orthonormal basis in this.

See for example I can create if it is 0 to 1 you know I can create shifted Legendre polynomials

with which are orthonormal okay, I can create a basis which is shifted Legendre polynomials

which is orthonormal and you can use that to you know define the subspace. So in general you

are given the basis set you are given a basis, I will call this as e1, e2, en this could be a finite

basis, this could be an infinite basis depending upon what kind of inner product space you are

looking at okay.

If you are looking at set of continuous functions twice integrable continuous functions then this

will be infinite basis okay, so I may have finite number I may have infinite number of elements

in my basis set, these are orthonormal vectors. What is the meaning of orthonormal vectors?

Orthonormal vectors which means e i e j=0, if i !=j, and this is=1 if i=j if i=j then this is =1, these

are orthonormal vectors their magnitude is 1 and they are orthogonal to each other okay.



So this is the orthogonal basis, which orthogonal basis is same as i j k that we considered in 3

dimensions, why do we like i j k in 3 dimensions? It is orthogonal basis it is very nice okay. I can

express any vector in terms of components along each direction okay, the same thing is true

about any inner product space. Now how do I express an arbitrary vector u that belongs to the

inner product space? How do I express this vector in terms of this basis?

How do I get those components? I can use the I want to project, what I want to do? I want to

project this vector onto the space spanned by all possible linear combinations of this okay, let us

say there is an infinite set okay, so if you start writing the normal equation, what will be the

matrix? Matrix will be I because you know because of orthonormality this is 1 if it is diagonal

elements will be 1, of diagonal elements will be 0 okay.

So by virtue of this okay you will get the coefficients, if you start writing the normal equation

you will get coefficients I*this vector say alpha 1 alpha 2 and so on this is=inner the product of u

with e 1, inner product of u with e 2 and so on, because this is I on the left hand side you have

orthonormal vectors okay, the inner products are between i !=j or 0, inner product of with itself

is=1, so the left hand side is all I, and I which is of infinite dimension let us say if there are

infinite vectors I of infinite dimension okay.

So these are the coefficients how did we write the vector here,  we wrote the vector V as V

component of V along i times i, times in the sense this is the direction i+ component of V along j

times j and so on okay. Same thing I can do here in the inner product space, I can write the vector

u as inner product of u, e 1 e 1+ inner product of u, e 2 e 2+ is everyone with me on this this is

clear? I am just writing this vector u now I am not approximating when I take the basis.

When I take this e 1 e 2 e 3 e 4 e n or e infinity whatever it is when I take this as a basis okay, I

am not approximating it is equality okay, if you have infinite basis you will get infinite sum here,

so this is=sigma i=1 to infinity u, e i e i okay, actually what I have written here is generalized

Fourier series expansion of any vector u in terms of orthonormal basis in fact okay.



So actually when you write this just remember this when you are writing this you are actually

writing  Fourier  expansion  of  V you  are  writing  Fourier  expansion  of  V okay  in  terms  of

orthonormal basis that is what you are doing. I am just using the same idea in any other space,

probably when you studied Fourier series for the first time in your second year of engineering?

You start wondering why I mean somebody comes and says take this function and it write as sin

and cos, what do I gain out of it okay.

Actually, what  you are doing is  the same thing as writing  x i+  y j+  z k what  you do in 3

dimensions,  it  is  nothing different,  same idea extended to any other  Hilbert  space any other

general  face.  What  is  nice  about  orthogonal  basis?  You  know  you  can  look  at  individual

components separately okay, you can look at into your individual components separately, it is

very, very easy to work with orthogonal vectors.

We know that in 3 dimensions that is what we want in any other 3 dimensional vector space that

only we want to do it any other vector space which is a Hilbert space, it is possible only when

you have inner product. You have definition of you know angle generalized, otherwise it is not

possible  to  do this  that  is  why Hilbert  space  that  is  why least  square approximation  are  so

important know, in engineering or most of the applications.

Why we look at least  squares? Why we use 2 norm all the time? Why not 1 norm why not

infinite  norm  okay,  because  2  norms  comes  tied  up  with  angle  orthogonality,  you  know

everything that is nice in 3 dimensions okay. So this is generalized Fourier expansion if I give

you a general function say or specific example of this would be the classical Fourier series which

you studied in second year of engineering is for the space X for this  in a set of continuous

functions over either -pi to pi.

Or we study over 0 to 2 pi right square integrable functions over -pi to pi or 0 to 2 pi, this is

where you look at this expansions, and then we are given this basis vectors unfortunately sin cos

are not  orthonormal  they are orthogonal  okay. And if  you remember  you get  when you are

thought this Fourier series you get this you know ai=1/pi integral remember this formula ai=1/pi,

then 0 to 2 pi f t sin i t dt something like this right.



Where does this pi come from? This pi comes, why does this pi come? I mean I used to have this

problem when I studied this why suddenly put pi there, first of all remember that this is nothing

but inner product of f t sin i t/inner product of sin i t sin i t okay, this is the normalizing factor

1/pi which comes because sin i t is not an orthonormal vector. I want to get an orthonormal

direction, so this is what it is okay.

In this Fourier expansion just look at, how will you find the coefficients? See this is my Fourier

expansion okay if I take inner product of u if I take u, e j, what will I get? u, e 1 inner product of

u, e 1=0, u, e 2=0, u, e 3=0 right, what will I get? You will get u, e j back because inner product

of e j with e j is 1 right, and inner product of e j with e i i !=j is 0 okay, so all the terms in this

series will cancel only one time will remain that is projection along e j okay.

So this is very, very nicely ties up with your x i+ y j+ z k, which you know from 3 dimensions

just remember that Fourier series is nothing but extending this idea into a okay. So far nice we

have little bit diverted because we are not going to use Fourier series in this course, but Fourier

series will  be useful in the mathematical  method course, you will  be looking at  all  kinds of

Fourier series you know in terms of Bessel’s function.

And in terms of some other familiar names will appear, but now they should fall in a place you

know you should be able to see them in light of this general development of what is projection

onto  orthogonal  basis.  “Professor  -  student  conversation  starts” yeah,  (())  (33:01)  not

subspace in R3, 3 dimensional subspace in R4 or 3 would be, (()) (33:08) perpendicular will lie

in R4, perpendicular will lie outside R3 okay.

So actually  you are  splitting,  you are splitting  the  vector  into  2 components  1  along R3,  1

orthogonal  to  R3,  which  will  of  course  lie  in  the  general  space.  “Professor  -  student

conversation ends.” So this Fourier series is just a side note, it is important here of course but it

is more important when you develop analytical solutions okay. So before we move on I know I

still not coming to applications to boundary value problems or PD.



Before I move on I want to explain something which is very, very important, well I have been

telling you that you know using polynomial  approximation okay or polynomial  interpolation

high-dimensional binomial interpretation is the problem, same thing is to actually polynomial

approximation, if you start developing a polynomial approximation which is even if you have

large data set, if you have a polynomial approximation of this form.

(Refer Slide Time: 34:26)

I have a function f t in which belongs to set of continuous functions over 0 to 1 okay, and then I

want to write I want to develop an approximation P t which is you know alpha 0+ alpha 1 t+

alpha 2 t square+ alpha m t to the power m, I want to develop this approximation okay. So how

do I go about doing this? What are the basis vectors now? 1 t t square up to t to the power m

okay, I should set up the normal equation.

How should be the normal say here my inner product is defined as 0 to 1 f t my inner product is

defined like this okay, well there are 2 ways of looking at this problem, let us say I know the

continuous function over the entire domain, then I can approximate. The other problems that we

looked at earlier is you know if you know this function at the finite number of points okay, if you

know this function at finite number of points, let us say n points.

Then it is the we will take this not f t this is u t, if I know u at finite number of points, then I

found that formula write a transpose an inverse that least square approximation formula which is



which can be used to okay. This is knowing the function at every point, if I know f t let us say f t

is some function like t2 +5 sin t or whatever okay, so this is the function which I know over the

entire domain everywhere and I want to do an approximation.

Well, so just to give you an insight, why polynomial approximation are ill-conditioned? I kept on

telling you that you know polynomial approximation are ill-conditioned higher order polynomial

approximation that is why you have to do in orthogonal collocation, we do piecewise polynomial

approximation  we have  this  spline functions,  so spline  is  fitting  a  low order  polynomial  by

dividing the entire region into smaller segments okay.

Why we do all these business? So that is why now I want to explain you through this okay, so the

question is now here a classic problem, I want to develop a mth order polynomial approximation.

Now what I know from Weierstrass theorem is that I can develop an approximation arbitrarily

close to the function, see this only tells you is there exists a polynomial which is it does not tell

you how to reach that polynomial, how to find is a different story okay.

Weierstrass theorem only gives you existence, now when it comes to actual computing there can

be in trouble, unless you do some smart tricks okay, so what are the smart tricks? We will come

to that okay. So let us first look at this problem mth m is let us a large I want to have some 10th

order polynomial fitted here okay, and my u t is let us take some u t which is u t=5 t square-7 t

cube sin t, this is the u t I want to develop a 10th order polynomial approximation of this function

in the least square sense.
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What is the meaning of least squares sense? That means the 2 norm of difference between u t and

P t should be smallest okay, we know that this can be found by using normal equation. So we go

about you know finding out this inner products, so my inner product is 1 with 1, then 1 with t, 1

with t to power m right, I am constructing the normal equation okay. I want to estimate least

square estimates of alpha 1 to alpha m okay.

Then sorry t with 1, t with t and t with t to power m and so on, so this times alpha 1 alpha 2 alpha

m, and then how do I get the right hand side? Inner product of 1 with my u t, inner product of t

with u t and so on inner product of t to power m with u t. And you know classical projection

theorem tells us that if you solve this you will get alpha 1 to alpha m okay. Now let me tell you

what is this integral, but these integrals may not be that difficult to evaluate right.

Because you know binomial integrals 0 to 1 okay, you can actually write a general formula for

this, so if this matrix in my notes I have call this as H matrix, this is m+1 cross m+1 matrix, there

are alpha 0 alpha 1 right. We start with alpha 0 alpha 1 not alpha 1 alpha 2, so this is the matrix

which is this matrix is m+1 cross m+1 okay, what is the element of this? So ijth element of this is

given by 0 to 1, t to power i+j-2 dt this is=1/i+j-1, well why I have called this h will become

clear soon.



Because this what you get here is a famous matrix called Hilbert matrix okay, you can show that

elements of this matrix, see these are inner products of t square, t cube, t to the power 4, t to the

power 5, so I was just given a formula for general ijth element of this we can very easily verify

this, you get this okay.
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Now if I actually compute this, and then fill in the matrix okay, the matrix that I get here is like

this, it is a very, very nice looking matrix 1/2 1/3 1/m, 1/2 1/3 1/4 1/m+ 1, 1/m 1/2m-1, this

matrix is very, very difficult to invert it is highly ill-conditioned matrix. Now yet we have to

define what is ill-conditioned matrix, you have to wait a little bit for defining ill-conditioning

formally okay. But what you get here is a matrix okay just to preempt what it means is that.

This  is  basically  first  of  all  remember  that  this  is  symmetric  matrix  okay this  is  symmetric

matrix, not only that it is positive definite matrix okay, this follows from the fact that this is

actually you know what we have obtained in the case of projection, this is the projection matrix,

this is obtained by you know projection matrix is obtained from projection matrix related to the

projection matrix. So this is actually a symmetric positive definite matrix.

But it is highly ill-conditioned, because the eigenvalues of this matrix are very, very strange, the

ratio of the highest eigenvalue to the smallest eigenvalue okay which is what for a symmetric

positive  definite  matrix,  which  is  what  will  define  ill-conditioning,  we  will  see  this  later



systematically. It is so large that computations become impossible very, very difficult okay, so

Hilbert matrix more than 4 or 5 m that is third or fourth order polynomial becomes difficult to

invert okay.

If you ask mat lab to invert Hilbert matrix, it will give you some junk and say that do not believe

the results okay, we will tell you that this matrix is ill-conditioned it will say it in a nice way not

it will not tell you do not believe the result, it will say that the solution may not be reliable okay

this  matrix  is  highly  ill-conditioned  it  will  give  you  a  number  or  conditioning  is  equal  to

something, when you do not know what when you are not done all this theory.

You just send ignore mat lab is giving something very, very important message that your results

could be completely unreliable. Now to get alpha 1 to alpha m I need to invert this matrix okay,

but  if  this  matrix  is  highly  ill-conditioned  you know the  inverse  is  unreliable,  if  inverse  is

unreliable alpha 0 to alpha m calculated are unreliable okay, and then you are fitting you know

wrong  polynomial,  not  because  you  know  your  formulation  is  wrong,  but  you  just  cannot

compute properly know.

There is no way of computing, you are stuck because this is an ill-conditioned problem okay, this

is an ill-conditioned problem. And but well if you are smart enough and done this course and still

remember things that I have thought you, you will say well that is not the way to go, I do not

want an ill-conditioned matrix here okay. So if I want to do polynomial approximation, what I

will do instead is instead of using this raw polynomial like this I would choose to use orthogonal

and orthonormal polynomial okay.

On  0  to  1,  what  is  the  orthonormal  polynomial  that  we  have  constructed  earlier?  Shifted

Legendre polynomials okay, so instead of developing this approximation. See this if you want an

equivalent of 3 dimensions what you are doing here is you are trying to express a vector in terms

of vectors which are not orthonormal or orthogonal. See a given vector if I give you one vector

let us say this one okay.



I can choose to express this in terms of 3 orthogonal components or basis need not be always

orthogonal, basis can be any 3 linearly independent vectors okay, so see the basis need not be

like  this,  even  basis  is  like  this  3  linearly  independent  vectors  okay, but  in  the  3  linearly

independent  vectors or something like this which are very close to each other we may have

trouble expressing this any vector in terms of these 3 vectors.

Just because they are linearly independent does not mean they are convenient okay, orthogonal

vectors are convenient you know because you can express them in a very nice manner.
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So what you would do instead of using this polynomial, you would say I will express this P t as

alpha 1 say L1 t + alpha 2 L2 t+ alpha m Lm t, what are this Lm these are shifted Legendre

polynomials okay. I do not have to worry here now about the order I take, why I do not have to

worry? Because when I use shifted Legendre polynomials  I am not going to get the Hilbert

matrix.

By the way in mat lab if you want to play with Hilbert matrix just use command hilb and given

to you know into bracket the dimension you want hilb 5 will give you Hilbert matrix of 5 cross 5,

it will generate this matrix same matrix okay, I am just use inverse of that hilb okay it will crip

that this matrix is ill-conditioned, try to multiply inverse into that matrix, mat lab is fairly good

tell 12th x 12 it does a very nice job, but beyond x12 that is 12 cross 12 it starts breaking okay.



So amazing that even for so highly ill-conditioned matrices, it is able to do it now okay. If I used

the Legendre polynomials what will happen to this matrix, this matrix will not be a full matrix

because okay, let us call them instead of alpha 1 alpha 2, let us call them some other numbers

you will  get  confused otherwise,  say beta  1 beta  2 some other  the coefficients  are  different

because the basis has changed the coefficients are different.

So now if I want to find out beta 1 beta 2 to beta m, I have to take here inner products will

change, this will be L1, u, this will be L2, u and this will be Lm, u, now what about this matrix

what we know is that for shifted Legendre polynomials okay inner product of Li, Lj=0 if i !=j.

What  will  happen to off diagonal  elements? 0,  what  will  be the diagonal  elements  if  I  take

orthonormal 1 okay, so it should be just 1, 1, 1, this will be a 0 here, this should be here 0 here

right.

I do not have problem of, so if I want to develop a high order polynomial approximation okay, it

is easier to go through the roof of orthonormal polynomials then to use the raw you know 1 t

square, t cube, t to the power 5 and so on, is it clear. Why we are obsessed with orthogonality?

Why we want orthogonality so much in every application? That is because of this nice property.

If I take shifted Legendre polynomials which are orthonormal this matrix which in earlier case

was the Hilbert matrix of highly ill-conditioned I could not invert.

Now see this is the best matrix, there is no better matrix to invert then identity matrix right, so

you get identity matrix okay you get the projections, and now there is no problem with what

order  you  go  okay.  So  it  is  not  that  you  are  not  developing  a  higher  order  polynomial

approximation, except you just turn around change the basis you get much better solution okay,

you get much better solutions that is why we always want to work with orthogonal polynomials.

Now this orthogonal business will form, we looked at orthogonality, we looked at roots of the

orthogonal  polynomials  in  orthogonal  collocations  right,  so  this  in  this  case  here  if  I  use

orthonormal set approximations are you know just taking inner products with the vector. In fact,

what you are done here is find out the Fourier series coefficient that is it, this is conceptually



same, same as writing a vector V as x i+ y j+ z k that is all you have done that is all you are

generalized to any other dimensional space.

If you remember this that Fourier series is nothing but x i+ y j+ z k extended to any other space

that is enough okay. So now you know how to make approximations, not only that you know

how  to  make  good  approximation,  you  can  make  good  approximation  to  use  orthogonal

polynomials that is why we are concerned about generating orthonormal series or orthonormal

functions or orthonormal basis and so on okay.

So the next class we will  now start  with the 2 things,  one is  how is  least  squares  used for

developing different engineering models, I will briefly go over that in the beginning. And then

move on to you know using these methods for discretizing ODE boundary value problem or PD

and so on. So this will lead to so-called you know the Galerkin method or finite element methods

FEM you may have I am not going to 2 full of FEM.

Because that will consume rest of the semester, I am just going to touch the tip of the iceberg and

say that this is what it is rest is for you to discover okay. So we continue in the next class about 4

applications of orthogonality.


