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Linear Least Square Estimation and Geometric Interpretation of the Least Square Solution

Okay so in our last lecture we looked at optimization multivariable optimization unconstrained

optimization.  So,  we  derived  conditions  for  optimality  necessary  and  sufficient  condition

followed by the next lecture we looked at application to solving linear in parameter least square

problem. Okay, what is nice about linear in parameter of the least square problem is that the

solution  optimal  solution  for  the  optimal  value  of  parameters  least  square  estimates  can  be

computed analytically. So, just to have a recap.

(Refer Slide Time: 01:03)

So, this is just solution of linear least squares okay we have collected data and we have some

model. This model could be in general I said could be y=theta1 f1x theta m+error in general you

have a model of this form where f1, f2, fm are some known functions simplest one we looked at

was polynomials.  But it  did not  be polynomials  it  could be any functions  which are known

function and then you are doing a function approximation.

If it is polynomials it is polynomial approximation. We have collected data we said this is u not y

and one minute we did not use x we use z here. So, let me correct that, so z is the independent



variable it could be anything it depends upon. In this case it need not be space it could be any

independent variable. We looked at many examples from chemical engineering where we could

use this method for and then we have this data collected which is u1, u2+un at points z1 z2 zn,

And using this data we wrote number of linear equations.
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And finally, we put it in a matrix form U=A theta+E where E is the modeling error and then you

know we found out theta least square=minimum or minimize with respect to theta E transpose.

Now  I  am  going  to  make  a  little  small  modification  here  as  compared  to  the  previous

development. I am going to say here E transpose WE okay where E=U-A theta I want to solve

this problem where W is a positive definite matrix is a symmetric positive definite matrix.

In general, you can solve a problem earlier we had looked a special case of this service that is E

transpose E where W was identity matrix. Identity matrix is a symmetric positive definite matrix

okay this is a special case which we have looked at earlier I am just generalizing this. W can be

see for  example  in  some situations  when you collect  data  and fit  a  model  you know that  a

particular observation is more reliable okay or particular observation is less reliable.

So, you could attach weight positive weight okay small weight if it is less reliable a large weight

if it is more reliable. So that when you optimize okay the optimizer will give more importance to



those which are accurate measurements include less important to those which are less accurate

good means we could actually twist this or sometimes you need to do this because of you know

the variables have different values and so on. So, this is in general general formulation.

In which I have some weighted matrix here which a symmetric positive definite matrix is. As

you know that this will define 2 norm and so on. Right so take a positive definite matrix it will

be defining a 2 norm.
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If I have this phi which is E transpose E E transpose WE then if I use necessary condition for

optimality, then it is dou phi/dou theta=U-A theta transpose U-A theta and then we had rules of

differentiation of a scalar function. So, this  is a scalar function from N to R this  is a scalar

function so M to R RM to R theta is M dimensional vector this is a function of theta theta is M

dimensional vector.

In general,  this  is  a this  is  a  scalar  function and we had rules  of differentiation  of  a scalar

function. With respect to a vector and using that we came up with a formula which is we will get

this equation if you use it A transpose WA theta least square=A transpose WU okay and finally

we argued that if columns of A are linearly independent then this matrix is invertible this is a

symmetric matrix symmetric positive definite matrix very nice matrix.



And theta least square=, so my least square estimate my least square estimate can be written as A

transpose WA inverse. We also said a special case where W=I we look at a special case when

W=I A transpose A inverse A transpose is called pseudo inverse of matrix A. Okay remember

here A is a non-square matrix, A is a n cross m matrix theta is a m cross 1 vector E is n cross 1

vector okay this is a non-square matrix say non-square matrix.

And then we talked about its inverse or we talked about it pseudo inverse. Pseudo inverse is

defined by A transpose A Inverse A transpose. Okay so far so good so we have this derivation

one of your classmate was asking me after the last lecture is that she knows about this formation

formula  using  summations  you  know  least  square  estimate  using  summation  summation

summation yeah actually this formula.

And that is not different they are one and the same and deriving that summation formula starting

from this formula is part of one of the exercise problems okay. So, the exercise problem which I

give you next for least square estimation will have that problem. You will derive that summation

formula for least  square estimates.  Okay so those two things are not different this is a more

elegant compact way of expressing the same thing which it is not different.

It is one and the same thing. Okay so the regression formula which you know with multiple

summations can be very elegantly expressed through this A Transpose A Inverse A Transpose the

same thing  exactly  identical  thing.  When you solve  the  problem,  you will  realize  that  it  is

nothing different the same same problem. Okay what I want to do now is so far so good we have

done lot of algebra.

We have found out the condition for optimality then we said the second derivative here what is

the second derivative here the second derivative here that is dou2 phi/ dou theta square this is

nothing but  A transpose WA to A transpose WA that  will  be  second derivative.  The second

derivative is always symmetric positive definite okay which means the stationery point which

you have got through this is a stationery point.

This is a point at which the gradient=0 okay at this point at this point the second derivative is



given by this matrix and this particular matrix is symmetric positive definite you have reached

the global minimum. Okay so this is fine this is lot of algebra, I want to give some geometric

insights into what is really happening okay, how do you relate this to your school geometry okay

that is what I want to elaborate next.

So, what was the thing here here you had a non-square matrix right you had 100 data points may

be only 3 parameters. We saw the example of CP versus temperature okay, so m was small, and n

was large you are fitting some function some polynomial and the number of parameters were

much much less than the number of variables. Okay to get in an insight into what is happening

let does not work with 100 dimensional spaces.

We cannot visualize in 100 dimensional spaces right but in 3 dimensions I can visualize. Okay so

I am going to create a dummy problem from this which is very, very simple 3 equations in 2

unknowns okay 3 equations in 2 unknowns. It is a representative problem for this equation see

what is the what is the main thing number of equations is more than number of unknowns and

then you are not able to satisfy all the equations simultaneously.

If you are able to satisfy all the equations simultaneously okay, you know error would be 0 but

error is not 0. You are finding out least square solution okay what is the error? How do you

compute the error here? what is the error vector. If you substitute this theta you will get the error

vector* this equation.
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Okay so if I substitute here if I substitute E=U-A times A transpose WA inverse A transpose WU.

Okay so I can write this is I-A A transpose WA inverse A Transpose W Times U unless this

matrix  is 0 you will  not get exact  satisfaction.  So, these equations are such that  you cannot

satisfy all of them simultaneously you are trying to find out a least square trying to find out of

this square.

And then there is always going to be an error vector such that probably no equation is satisfied.

Okay so the curve which you get here will not probably pass through any of the points quite

likely okay it only captures the tendency in the data. Not going through every point in the data

because okay let us try to get some insights by taking a simple dummy problem. So, I am going

to take a simple problem in which I have this equation.
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To be satisfied I want to solve this equation 123= I hope that this vector cannot be defined by this

linear combination of these 2. I have not I have just created this problem right I do not know

whether. So, when can you solve this exactly just think about the geometric inside of it about it

when can you solve this  when can you actually  exactly  solve this.  How can you write  this

equation is there another way of writing the same equation? 

Okay I will move to here, so I can write this as 123=theta 1 101+theta 2 110+ e1 e2 right I have

taken very simple problem 3 equations 2 unknowns. 2 unknowns in the terms of actually there

are 5 unknowns, actually there are 5 unknowns e1 e2 e3 theta1 theta 2 there are 5 unknowns but

well far as the parameters are considered there are 2 unknowns theta 1 and theta 2 2 parameter

unknowns. Okay if I write it like this do get some more insight.

“Professor - student conversion starts” (()) (15:09) yeah so theta 1 times this vector let us call

this as v1 and let us call this vector as v2. When can you solve this exactly when will the error

be=0.  Can  you  say  something  about  a  span  do  not  forget  the  last  quiz  all  possible  linear

combinations of v1 and v2 what will it give you (()) (15:42). 
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Okay let us say this is my v1 and this is my v2 let us say this is my v1 and this is my v2. Okay

what will it span what will it span v1 and v2 all possible linear combinations of v1 and v2 what

will span. It will be a plane passing through the origin right when will the error be = 0 (())

(16:20) say it louder this is when this vector on the left-hand side lies in the plane okay if this

vector left hand side vector exactly lies in this plane which is span of these 2 vectors “Professor-

Student conversion ends”. 

Okay all possible linear combinations any vector in this two-dimensional plane can be generated

by a linear  combination.  If  it  does  not what  it  means when it  is  vector  outside okay let  us

picturize this as with this vector. So, this is my u vector this is my u vector this is u. Okay, so this

is here this is my u vector, so u does not lie in this plane, it does not lie in this plane, so I need to

find out what do I need to find out a least square approximation.

See  because  ultimately,  I  am  finding  out  an  approximation  which  is  theta  1  times  this

vector+thetha 2 times this vector. That approximation is going to lie where the approximation

will lie somewhere here right a vector this vector will be theta 1 times v1+theta 2 times v2. This

vector theta 1 times v1+theta 2 times v2 cannot leave this plane right it is linear combination of

these 2 vectors it cannot leave this plane.

Okay in your school geometry you have studied this problem point which is closest point which



is closest to the vector in this plane how do you get it drop a perpendicular. Okay I just want to

show  that  what  we  have  done  till  now  by  so  called  least  square  is  nothing  but  drop  a

perpendicular. Okay the point which you will hit the point which you will hit here if you drop a

perpendicular what is the best approximation in the least square sense.

I will show that this point is nothing but the point which is the least square approximation of this

vector in this plane okay, I want to find out best approximation of this vector in this plane in the

least square sense. From the school geometry I know just draw a perpendicular okay this is the

point which is closest to this plane okay point which is closest to this plane. Okay so this point

and what I actually get by solving theta least square.

So, what should be the theta that gives you this  theta least  square should be A Transpose A

Inverse A Transpose U this will give you the theta and this this particular vector would be you

know this approximation. Let us call this U cap will be A times theta LS this will be U cap okay

U cap is my approximation. What is this vector error vector this is if this is U cap this U cap is A

times theta LS okay my equation is error=U-A times theta LS my equation is U-?

Okay if I just complete this you know law of vector additions this is nothing but error vector. In

least square approximation the error vector is perpendicular to the plane this you know from your

school geometry right. I am just generalizing that result in any inner product space what is very,

very elegant is that same result can hold in any inner product space in any Hilbert space. You can

have the same result.

Which you know from school geometry finding minimum distance of a point from a plane. Okay

so this problem this problem see you cannot visualize when suppose this suppose here let us go

back  here  suppose  you had 10 equations  in  2  unknowns.  Okay  I  cannot  visualize  in  a  10-

dimensional plane but linear combination of 2 vectors in 10 dimensions what is it like? it will

look like it will look like a plane like this something like this.

If I were a creature in 10 dimension I could be you know it would be possible for me to visualize

a 9-dimensional plane, but we cannot so, but it will look something like this. And then what you



are doing you are just finding out the point in the plane which is at a minimum distance from this

point which is lying outside the plane. Okay geometrically what you are doing is what is called

as projections okay I am projecting this vector onto this plane. 

Projections you probably would have done when you have done your engineering drawing right.

So, projections is something which you know from your engineering or right from your school.

Okay so even though you cannot visualize 10-dimensional thing conceptually or it is not going to

be different. I mean if you were able to visualize that it would look almost the same. So, I just

want to show that if I just proceed through this geometric idea I will get the same thing.

Okay that is my next that is my next task. Okay let me do a derivation with only 2 vectors okay

in my notes there is a derivation with only 1 vector. 1 vector means distance of a point from a

line. I will start with that and then I generalize it to distance of a point from a subspace actually

in general if there were 3 if there were 3 vectors okay see if this problem.
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If I just modify this problem and then here left-hand side is let us say this is not coming from

some physical problem. I am just arbitrarily creating some set of equations. Let us say I have this

problem okay now here here what can you say the least  square solution will be lying in the

subspace spanned by this column vector this column vector and this column vector. The least

square solution will lie in the subspace spanned by this column vector.



This column vector and this column vector. Okay the component which is outside the subspace is

given by this error okay we are able to split actually geometrically speaking we are able to split a

vector into 2 components. 1 lying in the subspace and 1 orthogonal to the subspace. Okay we are

able to split the vector theory the least square, what is the subspace? Subspace we find by linear

combination of columns okay linear combination of column will give me subspace.

This e1, e2 to e5 will give me the component which is outside the subspace together they form

this whole vector. Okay together they form this whole vector. Now I want to generalize this and

then just show you that what we have derived but I am going to take a case where W=I Okay

weighted matrix=I. I am not going to complicate life by so that will give me some handle to okay

let us write.

So, this is let us call this okay in my notes I am calling this vector as a1 this vector as a2 and this

vector as a3. 
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Okay so in general in general I can write my model as U=capital U this is my original model is

U=A theta+error and I am writing my A matrix as a1, a2 and am, there are m columns these are

column vectors, there are M columns in this case, here there are 3 columns, here there are m

columns. Okay so I can write this equation as U=theta1 a1+theta2 a2. I can write this vector



equation.

Okay  now  to  simplify  life  let  us  take  a  case  where  there  are  only  3  vectors.  Okay  so

generalization to m is not so difficult so I will just take theta 1+theta3 a3+E this is the case when

we have taken m=3, there are 3 parameters theta1 theta2 and theta 3. I want to find out least

square estimates of this okay using okay I am going to call this vector see this vector belongs to

the subspace which vector this vector p.

I am going o call this as a is this as a projection vector projection vector theta 1 a1+theta 2

a2+theta 3 a3, this is the projection vector this is the projection projection of U on okay this is

projection of say it is linear combination of a1 a2 a3. So, this p vector has to lie in the subspace

spanned by a1 a2 a3 right it has to lie in the subspace spanned by a1 a2 a3.

So, this is a projection I am going to call this as projection of u onto subspace spanned by what is

it that I want to minimize, how do I find out this, I find this out by minimizing square of distance

right.
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I want to find out, so my problem is find theta such that error 2 norm is minimum right, 2 norm

of error  is  minimum right.  Okay let  us  start  doing this,  so what  does  it  mean so I  want to

minimize a phi which is 2 norm error square which is p-u or u-p right but what is this is a 2



norm, we are working on an inner order space so 2 norm square is related to the inner product

how? so this is u-p, u-p right inner product of vector u-p, u-p.

Now my model is this U=theta.
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So, I can write phi to be inner product of u-theta 1 a1+theta2 a2+theta3 a3*u-p, p is again this

vector, I can write this vector again here right, what is p? theta1a1+theta2 a2+theta3 a3, I can just

put this vector in place of p it will be a longer expression. Okay now how do you find out the

minimum what is the necessary condition can you do this see my necessary condition.

See my necessary condition for optimality is dou phi/dou theta1=0 dou phi/dou theta2=0 and dou

phi/dou theta 3=0 right these are my 3 conditions is everyone with me on this, these are my 3

conditions. Okay if I differentiate this phi with respect to theta okay what will I get okay just

look at it you are differentiating only once okay if I differentiate only to this first vector what

will remain only a will remain. 

Okay you can check this, but I am just going to write the final result that dou phi / dou theta1 this

is nothing, but you will get here a1, okay if I am differentiating this I am skipping in between

steps you can actually expand you can expand this entire inner product. Okay you will get many

terms; okay you have to patiently find out the inner product of each element by element you



know the rules of expanding an inner product.
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So, what I will get is a1 inner product with this=0 so actually what I am getting here is that a1

inner product u-p=0 because this is projection vector, this is my projection vector okay so what I

am getting is a1 inner product u-p=0, what is this? u-p error vector, so what it says is that error

vector is perpendicular to a1 direction same thing If you do with theta 2 okay setting dou phi/dou

theta2=0 you will get a2 u-p=0 okay you will get this equation.

And well the third equation you will get is.

(Refer Slide Time: 34:09)



The third equation that you will get is dou phi/dou theta 2=0, so that is=a3 u-p this is=0. So, what

is  the  meaning  of  this?  what  is  the  geometric  meaning  of  this?  that  this  error  vector  is

perpendicular  to  a1,  a2  and  a3.  Okay  if  error  vector  is  perpendicular  to  a1  a2  a3  will  be

perpendicular to linear combination of a1 a2 and a3 yeah what is linear combination of a1 a2 and

a3? it will be in s apan of a1 a2 3 and it will be in a subspace of a1 a2 a3.

Okay so this  error vector  is  perpendicular  to the span of a1 a2 a3.  Okay which means best

approximation of u in the span of a1 a2 a3 is obtained just by dropping but you know it is a

generalization of result from school geometry to have a perpendicular from a point to a plane.

Okay that is the best approximation of that vector in that plane, that is all okay that is all we are

generalizing into a general function space or into a general inner product space.

Okay now when is this possible? This is possible only when you have inner product defined that

is  very,  very  important.  Okay  why  we  why  we  are  so  much  why  we  like  least  square

approximation as against to the 1 normal approximation or infinite or approximation because this

least square approximation comes attached with you know inner product inner product can be

related to the geometry.

You can talk about perpendicularity you can talk about projections. The same idea of projections

which we use in 3 dimensions okay distance of a point from a plane just drop a perpendicular

okay same idea is actually being is actually being said here. So, all that we have proved is if I

redraw this figure in 2 dimensions if I have this plane which spanned by say v1 and v2. So, this

is my a1 and a2 and this is a vector this is my vector U.

Okay this is my U vector then this is the p vector projection vector this is a projection vector

Okay this is a projection vector and here what we are getting is this projection vector and this

error vector e here is u-p. Okay this is a special vector such that this error see if I take any other

vector here this error will not be perpendicular. There are some many ways of approximating you

know this in this plane.

I  could  approximate  here  I  could  approximate  here  somebody  will  say  that  this  is  the



approximation. This is one possible way of approximating what is the least square approximation

perpendicular okay least square approximation is the perpendicular. Now I need to go back from

here and saw I should start with these 3 equations and show that well what you have got actually

is nothing but the same formula of A transpose and A inverse.

I need to derive that right, I just showed geometrically that these 3 vectors so if I take a1 a2 and

a3 the plane spanned by this and the error is perpendicular to this plane, the plane is spanned by

this and so on. So, I need to go back and connect A Transpose A inverse business I will do that.

Okay how do I get theta 1, theta2 and theta 3 by solving these 3 equations.
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You know  a1  inner  product  u-theta1  a1+theta2  a2+theta3  a3=0  right  well  in  3  dimensions

generally in M dimensions, how do you with real values real values what is the inner product

simple inner product A Transpose B you know if there are A and B 2 vectors. So here this will be

first equation this first equation I can rewrite as a1 transpose u= I am just skipping 1 step in

between.

Okay I am just writing theta1 a1 transpose a1 right a1 with a1 a1 with a2 and a1 with a3 right

theta  2  a1  transpose  a2+theta  3  a1  transpose  a3  right  what  is  the  second  equation,  second

equation  is  a2 u-p=0 right  u-p=0 right  what  will  it  give you? a2 transpose u=a2 theta  1 a2

transpose, by the way a1 transpose a1 is it a scaler, always a scaler a1 transpose a2 is it a scalar



always a scaler right.

So, I will get another equation theta2*a2 transpose a2+theta 3 a2 transpose a3. Okay I will just

write the third equation this follow the same thing. I will get a3 transpose u=theta1 a3 transpose

a1+theta2  a3  transpose a2+theta3  a3 transpose a3,  is  everyone with  me on this,  I  have just

rewritten those equations. I started with the geometric I started by saying that well what we have

done is nothing but projections.

Okay this error vector is perpendicular to a1 error vector is perpendicular to a2. Okay these are

the equations which I have written error vector perpendicular to a1 error vector perpendicular to

a2  and  in  this  case  error  vector  perpendicular  to  a3,  How many  equations  and  how many

unknowns? 3 equations and 3 unknowns. What are the 3 unknowns? theta1, theta2 and theta 3

So, what do I get here?
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Right hand side I can write this as a1 transpose a1, a1 transpose a3 and we can just collect it in

the vector matrix form this is a3 transpose a1, a3 transpose a3 this *theta1 theta2 theta3 right the

right-hand side I can write as 3 cross 3 matrix. Okay just check this matrix is nothing but if I start

with A=a1 a2 a3 they are the 3 columns of A matrix. Okay very, very easy to check that this

matrix is nothing, but A transpose A multiplication of A Transpose A is this matrix.



Okay the algebra ties in with the geometry very, very nicely okay algebraically we arrived at this

condition A transpose a theta=A transpose u. Now just look at this left-hand side what is left hand

side, the left-hand side I can write here the LHS.
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I  can write  as  a1  transpose a2 transpose  a3 transpose u what  is  this  A transpose u right  A

transpose u okay that is the result which we got purely by doing you know algebra of necessary

conditions of optimality. So, A transpose u=A transpose a times theta least square solution right.

So, this is my theta okay I started with geometric argument of projection onto a subspace. I was

able to recover the least square formula which is A transpose a times theta=A transpose u.

What is the least square estimate this theta will be least square estimate of course? We call it

estimate so we give a hat above it. So, this is estimate of theta this is not there is no way unique

way of finding out theta there are multiple ways, but least square estimate is unique. How is it

computed A transpose a times theta=, A transpose u, A transpose a if columns of a are linearly

independent okay A transpose a is always invertible.

It is always a square invertible matrix symmetric positive-definite square invertible very, very

nice matrix. Okay this matrix which we study linear algebra does appear in a very, very practical

application. We are trying to fit a curve in some data or fit a function in some data positive

definite symmetric invertible matrix. So, this this particular result A transpose a times theta least



square=A transpose u.

We could recover this  result purely through geometric arguments of projection.  We said that

basically what is happening here is we are trying to find out that vector in the plane spanned by

a1 a2 which is at a closest distance from a vector vigil which is outside this plane. Why we need

least squares because this vector is not lying in this plane. What will happen if this vector is lying

in this plane error would be 0.

Okay  what  is  the  extreme  situation  thus  U  is  perpendicular.  okay  so  what  is  the  best

approximation 0. Okay if U is perpendicular probably you have done wrong modeling you know

error should be small not the error the vector is perpendicular. So, this is a very, very nice result,

this ties in with actually there is 1 more angle to hold the whole of this thing. So, we derive this

result through algebra. We derive this result through geometry.

We can derive the same result through statistics and you will get those summation summation

which you are familiar with. I am not going to go with statistical interpretation of the same thing

I will upload my notes on statistical interpretation. But if go into statistical interpretation of this

result. It will take at least two weeks of you know I have introduced so many concepts but finally

finally you will derive the same results.

We will get a different insight from the statistics view point. See I got a different insight into the

same result through geometric view point. Okay algebra did not tell me much you know it just

said that derivative=0. Here I can relate to my school geometry that is very, very important okay

so that is the beauty of this result. You can actually show that the least square estimate obtained

algebraically is nothing but projection of a point onto a subspace.

Okay finding out a vector in a subspace which is at a minimum distance from a point outside the

subspace. Okay that is the that is the that is where that is why we work with inner product

spaces, Hilbert spaces because you know angle comes you know attached with the inner product.

you can talk of orthogonality. Okay all these are not possible in other you know banach spaces.

So, that is why Hilbert spaces are so special. 



Okay so next lecture we will continue on some more algebraic properties of least square. I will

show something more and then we will move to variety of fields engineering applications that is

functional  approximations  and  also  solving  partial  differential  equations  or  boundary  value

problems. We will revisit our problems again through this least square approximation.


