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Criteria for deciding whether a point is maximum or minimum. How do you qualify a point

to be maximum or minimum? The problem at hand was minimizing a scalar function from m

dimensions to one-dimension Rm to R and we wanted to qualify which point in the state

space qualifies to be an optimum point.

So we said the point at which the first derivative the gradient goes to 0, that point is the

stationary point to be very precise. It could be a maximum, it could be a minimum, it could

be a saddle point. We do not know okay. So to come up with you know further qualification,

we have to look at the second derivative the Hessian matrix and if Hessian matrix is positive

definite  or positive  semi-definite  it  uses  way to qualify  the point  to  be a  minimum or a

maximum.

So it should be strictly positive definite if it is to be a minimum, it should be strictly negative

definite if it is to be a maximum okay. So let me just summarize what we looked at.
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So we are looking at necessary and sufficient conditions for optimality. We have this function

phi x from Rm to R and we said that this phi function is twice differentiable okay at any

point. Right now this x belongs to Rm m dimensional space okay.
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And then we said that if a point x=x bar, if this point x=x bar we want to see whether this is a

stationary point. Then gradient of phi with respect to x at x=x bar. So this is nothing but dou

phi/dou x1 dou phi/dou x2. This gradient vector should be=0 and the way this  necessary

condition was proved by considering the fact that if you take it non-zero, it contradicts the

fact that x bar is the local minimum.

Well we are talking only about local minimum. This is the condition to be satisfied at a local

minimum  because  all  the  arguments  regarding  a  point  to  be  local  minimum  or  a  local

maximum. That is a stationary point were made using Taylor series expansion. Taylor series

expansion  holds  only  locally;  it  does  not  hold  everywhere  globally.  So  this  necessary

condition is a local condition, just remember that.

So first thing is given an objective function, first thing is to compute its gradient and set it=0.

If you can find such a point, then that qualifies to be a stationary point. A stationary point

where  you have  gradient=0.  We further  qualify  so this  x  bar  is  the  stationary  point  and

whether the stationary point further qualifies to be optimum.

That is maximum or minimum that will depend upon this matrix so by the way this, this, this

derivative is computed at x=x bar. This is computed at x=x bar okay.



(Refer Slide Time: 04:55)

Now phi of x bar+delta  x we wrote this  as you know phi of x bar+grad x phi at  x bar

transpose  delta  x+1/2.  If  we  approximate  this  locally  using  Taylor  series,  it  is  delta  x

transpose del square phi and now we have said that this is a stationary point. So this is 0 right

and then locally we want to look at this difference, which is governed by locally in a small

neighborhood of x bar.

This difference is governed by this delta x transpose; this term governs the local behavior in

the neighborhood of x bar okay. Now if x bar is a minimum what should happen? If I move

away from the minimum what should happen? Value should increase so this difference should

always be positive. If x bar is a minimum any direction, I try to move away from x bar I

should have this difference to be positive.

That will be possible only when this matrix  is positive definite.  If this matrix  is positive

definite what is the definition of positive definiteness? x transpose Ax is always>0 for any

non-zero x. Anyway, any direction I try to move okay this will always be positive. That is

positive definite matrix. If this is always positive irrespective of whichever direction, I try to

move away from x bar then x bar is a minimum okay.

Just whatever  you can visualize  in 2 dimensions  or 3 dimensions  same thing holds  in  n

dimensions. If you try to move away from that point, you just think of being in a valley any

which way if it is the lowest point in the valley any which way you try to move you will only



increase height. You will not go further below okay if you are at a minimum. Then that is the

simple logic okay.

How  do  you  mathematically  express  this?  Using  positive  definite  matrices  okay.

Mathematical quantification of simple fact that you know that when you are in a valley at a

lowest point in the valley, any direction you try to move okay height will increase, it cannot

further decrease. Same thing is being said here. Just remember that simple thing and core that

with this mathematical analysis.

Then you will understand it better. Now other way round, now if x bar is a maximum, you are

at a peak what should happen? Anyway which you move now height will decrease, anyway

which you move so what should happen is if I move make any movement delta x from x bar

this different should be negative okay. When will that happen for any delta x that is very

important for any delta x. That will happen if this is negative definite.

If this Hessian matrix is negative definite, I am sure that any which way I move okay this is

going to be negative so that means x bar is a local peak. Of course, this local condition should

also be satisfied at the global condition; however, this analysis does not tell us how to reach

the global conditions. It just tells us given a point if the derivative is 0 how do we qualify it?

Minimum or a maximum locally okay?

Now this condition can be checked for an objective function which is twice differentiable of

course. You cannot check if the objective function is not differentiable or twice differentiable

so that is very, very critical. So this is how what if your matrix is neither positive definite nor

negative definite. Then the point is neither the minimum nor a maximum.

You know in terms of a hill, it could be you know something like this, like a step where

gradient with respect is becoming 0 or saddle point and what you know in saddle point. So a

multi-dimensional extension of a saddle point.
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You know let us say you have a valley but a valley which is something like this. Well it is

difficult to draw, I am not good at. Let us say there is no one unique point. There is no one

unique point where you have you know you have multiple points where the gradient goes to 0

so you may have minimum respect to one variable not a minimum respect to other variable.

So you may have a saddle condition where there is not a unique point.

So a saddle point is qualified by looking at property of this local matrix. The nice thing is that

definiteness of this particular matrix will allow us to find out whether particular point is you

know maximum, minimum or a saddle point. Okay now let us come back to our problem of

fitting Cp versus temperature okay. I am going to generalize this set of equations and then

going to solve it.
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So now let me derive this problem which we had at hand. We had the Cp values, Cp1, Cp2,

Cpn. I had this n values correct. I had n values. I had collected the Cp values at different

temperatures say T1, T2, T3, Tn large number of right. I am just rewriting those equations in

a matrix form. Earlier, I had just put them one below each other as single equations. I am now

just rewriting them as one matrix equation.

That will help me solve the problem very easily. So now this is 1 T1 T1 square 1 T2 T2

square. Just have a look at those earlier equations. I am just revisiting them, writing them in a

different form, everyone with me on this. Same equations how many unknowns? n+3 and

number of equations right now we have are only 3 okay. So first thing that we need to do is to

define an objective function.

Well objective function should be twice differentiable right and then we should you know

minimize  that  and  see  whether  the  minimum  is  the  positive  definite  matrix  or  negative

definite matrix. Then we will be able to qualify whether we have reached a minimum or not

okay. So now I am going to call this as theta, I am going to call this vector as capital E, x is

the vector which is 3 dimensional in this case.

In general, theta will be a vector which is m dimensional. Suppose you have cubic equation

which you are fitting will be 4 okay and so on. So if you fit a higher order equation, you will

get higher order polynomial and I am going to call this matrix as matrix A let me see whether

I am consistent with the notation, slight change in the notation. I am going to call this as

theta.

I am calling it theta because theta is typically if you see literature on parameter estimation, a

parameter vector is called theta okay that is why I am calling it theta, nothing particular about

this. Also in the notes, I have developed everything with notation as theta so when you read

the notes it will be easier for you to follow okay. So this particular vector I am going to call

as capital U.

This particular vector I am going to call as capital U this is A, this is theta this is E. My large

number of linear equations, are these linear equations? Why but there is T1 square T2 square.

They are known, I have taken measurements of temperature T1, T2, T3, Tn are known. I can



compute this so these will be just columns of a matrix with some numbers. So this is the

linear matrix equation okay.

(Refer Slide Time: 15:35)

So my equation reduces to U=A theta+E, E is the vector of errors. Okay now I need to define

an objective function and then this objective function should be differentiable, I should take

its first derivative and set it equal to 0, take its derivative with respect to A, B, C, okay. Now I

am just moving from this specific problem to a general problem where theta in general could

be m dimensional okay.

This A will be n cross m matrix, see here m is 3 so this is n cross 3 matrix, it is a tall matrix

so this n could be 100 and you have only 3 parameters to be estimated okay. I am going to

definite a phi of theta which is E transpose E which is nothing but e1 square+e2 square+en

square. Sum of the square of errors what are these? What is e1 to en? Errors in modeling, we

are developing a correlation model of Cp versus temperature okay.

It is not exact fit; it is an approximate correlation. This e1 to en are errors okay. I want to

develop a model that minimizes sum of the square of errors, simple idea, which probably you

have heard or done in your undergraduate studies for single parameter probably. We fit a line,

we very, very usually fit a line. I do not know whether we do in undergraduate. We are taught

to find out the best or least square fit.

But we fit a line by many times in experiments, we fit a line by you know just observing what

is  the  trend visual.  We do not  try  to  do  all  this  business,  but  then  if  you ask  Excel  or



MATLAB they will do this for you and give you okay. So what is this? This is=U-A theta

transpose U-A theta right. What is E? U-A theta okay. Now how do I find the optimum? This

is a scalar function.

Is this a scalar function? Why? This is simply norm E2 square right sum of the square of

elements norm E2 square. Norm is the scalar function, it is a positive scalar function, it is

always be positive. Well an objective function need not always be positive but in this case it

turns out to be strictly positive the smallest value E transpose E can take 0.

That means all the errors are 0 okay whether that is possible for this particular problem or not

is a different story but a smallest value it can take 0 in this case okay.
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So what I want to find out is I want to find out dou phi/dou theta that should be equal to so

this should be dou phi/dou theta 1 to dou phi/dou theta m, this should be equal to 0 vector

okay. Now I need to know something about how do I differentiate? See this is a function of a

vector which maps into a scalar. How do I differentiate this? How do I differentiate with

respect to a vector?

We know how to differentiate with respect to a scalar value right. So how do I differentiate

with respect to vector? I am just going to state the rules; you can derive them. They are not so

difficult to derive. We need to be little bit patient and then do your algebra correctly. So in

terms  of  notation  I  am just  digressing  a  little  bit  because  I  want  to  differentiate  this  E

transpose E with respect to theta said that equal to 0 okay.



I will get m additional equations. See these are already n equations. I need m more equations,

m here happens to be 3. I need m more equations. Those equations will be obtained when I do

this but before that I should know how to differentiate a scalar function which is function of a

vector? So let us say I have this function f which is x transpose by, B is the matrix, x and y

are vectors.

I just want to differentiate f now, f is a scalar function you can see that, f is a scalar function

okay. How do I differentiate? So dou/dou x of dou f/dou x differentiating this scalar function

with respect to the first argument x okay. That is by dou f/dou y=B transpose x okay.
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And a straightforward corollary of this is that dou/dou x of x transpose Bx=2 Bx if B is

symmetric. If B is symmetric matrix, then it looks B symmetric matrix okay then it is well if

it is not a symmetric matrix then what will it be? B+B transpose. If it is not a symmetric

matrix,  it  will  be Bx+B transpose x okay. So we can use these rules to differentiate  this

function with respect to theta and come up with a solution.

So how do I do that? So can you differentiate? Can you tell me what is the solution? Just

differentiate just use these rules. Can you expand this?
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See this will be phi=U transpose U-U transpose A theta–theta transpose A transpose U+theta

transpose A transpose A theta. I have just expanded this. I have just expanded 4 terms. U is

the  vector,  A theta  is  the  vector  right  and  then  I  am just  expanding  this  simple  matrix

multiplication okay. Now what is U? U is the vector of known values, it is a constant vector.

So what is dou phi/dou theta?

This part will be 0. What about this guy? Apply the rules correctly, will be A transpose U. So

if I differentiate this dou phi/dou theta I will get -2 A transpose U+2 times A transpose A

theta. I do not know whether you all agree with me. Why I am writing 2 times here? This A

transpose A is a special matrix. What kind of matrix that is? Why 1 by 1? It will be m cross m

know. In this case, it will be a 3 cross 3 matrix.

Can I say that A transpose A is always a symmetric matrix? You take transpose of A transpose

A you will get back A transpose A okay. Positive definite matrix naturally appears here, you

do not have to make any effort okay. It just plops out from the equations. So this is a positive

definite matrix. In fact, this turn out to be positive definite matrix. This is a symmetric matrix.

Will go on to show that this is positive definite also.

So this particular matrix is symmetric matrix, so I can write 2 A transpose A okay that is

because A transpose A just check this, A transpose A transpose=A transpose A. So whatever is

this matrix just remembering that this particular matrix whatever is this matrix you know how

so tall it is, 1000 equations and 3 variables and it might be filled with all kinds of strange

numbers.



This matrix that is A transpose A will always be symmetric matrix. In fact, we will show that

if these columns are linearly independent then that particular matrix will be positive definite

matrix okay. It will be a positive definite matrix so now the task is done. If this is 0, if I said

this=0 what do I get? I said this=0 then what is the theta? How do you compute theta? What

is this matrix? What is size of this matrix? It is m by m okay so if m is 3, this will be 3 cross 3

okay.
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So setting gradient=0 gives us this equation A transpose A times theta=A transpose U okay.

So this is m cross m. What is dimension of this matrix? A transpose is so this is m cross n*n

cross 1 so this is m cross 1 so finally you are getting an equation which is 3 cross 3 matrix

and how many equations you wanted? nm equations or you wanted 3 equations.

In this particular case, we wanted 3 equations. We have those 3 equations now. This is m

equations  okay. How many  m unknowns? This  is  m cross  1,  m unknowns.  I  solve  this

problem now if columns of A are linearly independent just think about what I am saying and I

am going to prove it. If columns of A are linearly independent, then this matrix is invertible

not only that this matrix will always be positive definite okay.

Before we proceed further and I show that why it is positive definite. What is the second

derivative of this? A transpose A right.
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So the second derivative dou 2 phi/dou theta square=2 times A transpose A right. So now

depending upon whether this matrix is positive definite okay. If this turns out to be positive

definite matrix, then we are done then we have reached the minimum okay. In fact, this is the

linear equation you can show that this minimum is not just local. This is the global minimum

for linear set of equations, varies the global minimum okay.

Now my task is to show so that A transpose A is a positive definite. Symmetric matrix is very

straight forward, positive definite matrix okay.
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So let us assume that columns of A are linearly independent okay. What does it mean? When

will you get Ax=0? When you will get this? If columns are linearly independent which vector

x will give you 0 vector? Only 0 vector. If columns are linearly independent, this will be 0 is



same as saying x=0. If columns are linearly independent only where you can get x=0 is x=0

okay.

Now how do you check? What is the definition of positive definiteness? Positive definiteness

is that x transpose A transpose Ax should be>0 if x != 0 right okay. I am just going to write

this as Ax transpose x. Am I correct? I am just clubbing x and A x and A, Ax transpose x

okay. So what is Ax transpose x? Norm x2 square. When will this be 0?

So there are 2 situations, if A has columns which are linearly dependent there might be an x

which will give you 0 but we have said that columns of A are linearly independent so if you

have an x which is non-zero this vector is going to be non-zero and this is square of the norm,

square of the norm is always a positive number so whatever x value whatever x vector you

give me A transpose A is going to be a symmetric positive definite very nice matrix okay.

Matrix which we keep studying in linear algebra here it just plops out naturally as part of the

development. So A transpose A is a symmetric positive definite matrix. I am showing here

that for any x you know you will always get a positive number if x != 0. So this will be>0 if x

!=0 so this satisfies the definition of positive definiteness okay. There are algebraic conditions

like Eigen value should be positive when all that.

Let us not worry about it right now, we will visit that little later but here using the basic

definition of positive definiteness I am showing that is A transpose A is always positive okay

which means not only that have reached the stationary point I have reached the minimum. It

is a linear model, there is only one minimum. I have reached the minimum okay. If I have to

do all this using 1 norm of E or infinite norm of E is not possible.

Because 1 norm of e is not differentiable, I cannot use this nice theory okay. Infinite norm is

not differentiable I cannot use all this nice theory. So there are problems if I use some other

norms, 2 norms very, very nice, you know you can differentiate and get this result. Now I am

going to relate all this to projections. I will show that this is nothing but projecting a vector

onto a subspace, geometric interpretation what is happening here.

That is what I am going to do next. So why we are able to ready to projections because as I

said in an inner product space you know with Hilbert space with the inner product norm gets



free you get a free norm, 2-norm and you get angle, you can talk about orthogonality, you can

talk about projections, you can just you know generalize the ideas which you know from 3-

dimension school geometry okay.

So this was symmetric positive definite matrix. We have reached the global minimum. This is

the solution. Any such problem I can solve using. Do I have to stick to polynomials? I really

do not have to okay. I can talk about any function approximation so I am going to take a

scenario here I looked at Cp as a function of temperature that was one specific example okay.

I do not have to stick to only polynomials.

I could do any function which is linear in parameters. I could actually estimate the parameters

by this approach.
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Let us say I am approximating a function say U which is I have this function Uz and I know

its values at z1, z2, zn and its values are say u1, u2, un. This is my data set. I do not want to

fit a polynomial. Let say I want to fit sin and cos. You are perfectly allowed to do that okay.

So I want to fit a function say fz which is or let us call this function by some other notation so

I want to fit a function say U cap z okay which is theta 1.

Well this need not be function of only one variable right, it could be function of multiple

variables. In this case okay let us take first situation when you have function of only one

variable say z1+theta 2 f2 z2. So I am fitting this function approximation of course there will



be an error here. So U cap is my approximation, theta 1*f1z theta 2*f2z and so on okay.

Polynomial was one type of approximation.

I had chosen this to be 1, I had chosen this to be z, I had chosen the second to be z square, z

cube and so on. That is one particular type of approximation. I could have chosen first one to

be sin z, second to be cos z, third to be sin 2z, fourth to be cos2 z and so on. I could have

chosen some other functions. I could have chosen Legendre polynomials. I could have chosen

shifted Legendre polynomials.

So it is up to me what should I choose. I could have chosen all kinds of different functions

here. I can apply the same theory which is very nice because I know this functions I have

chosen these functions okay. I can evaluate them at a particular point okay. So let us take a

scenario where you want to approximate this. Let us take instead of being abstract let me put

it in a concrete form.

So theta 1 say f1 is my sin z theta 2 cos z+theta 3 sin 2z+theta 4 cos 2z+e. Let us say this is

my approximation function okay. What do I do? I do the same thing which I did earlier.
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I just write u1, u2 these are the values which I know at n different points. I can say first one is

sin z1 cos z1 sin 2z1 cos 2z1. Then second row is sin z2 and finally sin zn cos zn. So I write

this huge matrix. How many parameters? 4 parameters, so this is theta 1 theta 2 theta 3 theta

4+I have this e1 to en same equation okay. So this f here could be any complex function.

Mind you this particular model is linear in parameter okay.



We have formally defined what is the linear function some time back. So we should just

check. When you call a function to be linear function? F of alpha x+beta y will be alpha times

f of x+beta times f of y that will exactly hold here. So this is a linear in parameter function,

any linear in parameter model you can do this okay. So what do I get here? This is my U

vector okay.

This is my A matrix, this is my theta and this is my E. How do I get least square estimate of

theta? A transpose A.
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So least square estimate of theta is simply theta hat least square that is what we write, theta

hat why hat? It is an estimate of theta. There are different ways of getting theta. If we were to

define 1-norm instead of 2-norms we will get a different theta. So I am calling this as theta

which is obtained through least square of errors okay that is why theta had least squares is

nothing but A transpose A.

Now we have shown that this is a positive definite symmetric matrix.  A positive definite

matrix means no Eigen value 0, it must be invertible so I can write inverse A transpose U. In

fact,  this matrix is called as pseudoinverse of A. Why pseudo inverse? A is a non-square

matrix okay. A is n cross m I cannot invert it by the normal sense of n cross m square matrix.

Why it is pseudoinverse?



What happens if you post multiplied by A? When you call  something to be inverse? You

multiply the matrix and matrix inverse you should get identity matrix. Take this matrix post

multiplied not pre multiplied post multiplied by A. What will happen? Identity matrix. So that

is why this A transpose A inverse A transpose is called as pseudo inverse of A matrix and in

MATLAB there is a function called PINV pseudo inverse.

Inv can be used for square matrices, pinv can be used for non-square matrices. You just say

pinv doing this in MATLAB is in 2 minutes, formulate A matrix say pinv A times U, you get

the theta the square theta okay in fraction of a second you can do this. You should know the

theory  behind this.  That  is  very important  okay. So is  this  clear?  I  do not  have to  have

polynomials.

I can have any complex function okay. I will give you an example from chemical engineering

and sometimes to begin with you may not have a linear equation but you might be able to

come to a linear in parameter equation once you do a transformation say I will give you an

example.  I  want to  fit  data,  I  am carrying  out  some reaction  and I  want  to  estimate  the

kinetics of the reaction okay.

(Refer Slide Time: 43:30)

So I have this rA= or –rA=k CA to power n or let us put it k0 e/Rt right or maybe I should

write in the order should be k0 e to the power E/RT*CA to power n. This is my model okay.

Actually I should write this model with an error here. We do not write it because this may not

be  exact  model  we are  proposing this  model.  So  it  is  an  approximate  model  so  strictly

speaking should write an error here say epsilon because do not confuse with E here.



E here is exponential so this is my model and I want to get least square estimates. What are

the unknown parameters? K0, E, r is known and n. What is the data that you have? Ca and T

okay is the data that you have. I could do a log transformation of this model okay. I can say

log of –rA=log k0-E/RT+n log CA right okay. Now I can write this as log k0-E/R*1/T+n log

CA.

I have collected data for concentration and at different concentrations at different temperature

I have data for rate expression. I want to get a least square estimate okay. Is this a linear in

parameter model? What are the parameters? Log k0, E/R or E whatever, E if you want to take

r on this side you can do that since you know r. So E is unknown parameter and n okay. So

here in this matrix what you will get?
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In this matrix, what I will get is 1 1 here then -1/T1 -1/T2 -1/Tn this column, this column is

coming because of this variable 1/T okay. What will be the third column? Log CA1, log CA2

actually log I should write ln natural log, log k0 E/R and n and what should be here? It should

be log –r1 log –r2 you know all these reaction rates. Just remember – is the notation not so,

we are not taking log of a negative number.

So this is the equation that you get this is the U vector which you know because you know

the rates at different temperature and concentration okay. You will have estimates of the rates.

This matrix is known to you A matrix, temperatures are known to you, concentrations are



known to you so this is known matrix. This is my theta which I want to estimate okay. What

is the least square solution?

A transpose A inverse A transpose U just  remember this  formula very, very important  A

transpose A inverse A transpose this is called as pseudoinverse of A, A transpose A inverse A

transpose.  A transpose  A is  always  a  square  matrix  and  if  columns  of  A are  linearly

independent it is always invertible matrix and what you get here from the least square sense is

the minimum okay.

There cannot be any other value of theta which will give you smaller sum of the square of

errors. For a linear in parameter model, you cannot get a model which will give you smaller

value than this optimum value which you get okay. So this is my least square problem, this

least square problem is used in many, many ways.

In the assignment, I will give you other problems from chemical engineering where you do

least square fitting to estimate the parameters. Sometimes what happens is that sometimes a

model is not transformable to a linear, it cannot be linearized. I will call this as a linearization

step. In the linearization step, you can do some transformation and convert originally the

model is not a linear in parameter.

E and n and k0 they are multiplying and they do not appear you know in the fundamental

definition will not satisfy here that is f of alpha x+beta y is same as alpha f of x+beta f of x

that will not be satisfied for this function but that will be satisfied this transform function.

Now this is not possible always to get this. I will tell you one more model in the chemical

engineering where you can do this transformation okay.

And estimate the parameters  this is how it  is  done.  One more classic model in chemical

engineering is correct me if I am wrong.
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Nusselt number=alpha 1* Reynolds number raised to alpha 2 and Prandtl number raised to

alpha 3 right. This is not a linear in parameter model. What are the known quantities here? I

would have data for Nusselt number, Reynolds number for different flows I have collected

data for you know Prandtl number, Nusselt number and I want to fit and I want to estimate

alpha 1 alpha 2 alpha 3 okay. 

This is not a linear in parameter model but simple log transformation so if I take log of Nu it

will be log alpha 1+alpha 2 log Reynolds number+alpha 3 log Prandtl number. This transform

model is linear in parameter okay. I could use least square estimation technique to estimate

log alpha 1 alpha 2 alpha 3. If I get log alpha 1 I can get alpha 1 not an issue right. So this is

simple transformation.

What  is  mass  transfer  correlation?  Sherwood number  sh=some beta  1+Reynolds  number

raised to beta 2+ what Schmidt number. Well for me it is almost 20 years now, so you are

fresh so right. This is some point 6 3 and you may have viscosity correction mu/mu s raised

to  something  fourth  parameter.  So  you  may  have  4  parameters,  but  once  you  do  this

transformation it is a linear in parameter model.

You can use least square parameter estimation, this column will be different, this column will

be different same idea works. You get least square estimates of alpha 1, alpha 2 alpha 3 alpha

4 just by taking A transpose A inverse. So polynomial fitting is not the only thing. I am just

now polynomial fitting we started with because we wanted to do something with discretizing

boundary value problem or partial differential equation.



But least square estimation goes much, much beyond. All these were discovered by Gauss.

The famous mathematician well in the realm of mathematics or in the history of mathematics

Gauss is called as prince of mathematics and the work he did actually is now major fields

okay least square estimation, Gaussian densities, Gaussian quadrature and there are so many

things.

I mean I do not know what we would be doing if Gauss had not discovered. Gauss was as

child prodigy. He discovered many things at very, very early age and the things that he started

actually he started looking at least square estimation because he wanted to fit I think he was

looking at a problem of fitting an orbit into the data for obtain from motion of planets around

the sun that was the problem that was being discussed at that time.

So what is the best fit? It does not happen to be a circle, actually it is an ellipse and you have

to fit because if you look at a data, the data has some errors and then you have to do a best fit

to get the correct model. So what he started about 150 or 200 years back is now just spans I

mean all these tools are used in image reconstruction. They are used in soft sensing; they are

used in just name it.

Least square estimation forms the foundation okay or works by Gauss forms the foundation.

So we are here today because of this prince of mathematics Gauss.


