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So now we want  to  look at  the problem of  approximating  a  function  using least  square

approximation or optimization. So now this is as I said in my last lecture this is different from

what we have looked till now. We have been looking at interpolation and interpolation you

wanted the approximate polynomial ultimately to pass through every point.

Now the difference is that I want a lower order polynomial,  which may not pass through

every point but which is the best fit in some sets okay. So let me first formulate the problem

and then we will move on to necessary and sufficient conditions for optimality and then we

will move back to solution. So before we need to do some extra work in between before we

actually solve the problem.
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So the problem at hand is now why least squares? Why not something else? And we have

been using least squares probably in your under graduate program in exploited methods or

fitting curves and fitting lines and so on. Why we use least squares? Why do not we use some

of absolute error and why do not we use 2-norms has some special.



“Professor - student conversation starts.” After teaching you about norms you are telling

me only 2 norms define  distance.  No. So 2-norm also defines  angle I  mean not  2-norm

defines angle the definition angle comes free with the 2-norm right so you buy 2-norm you

get angle free okay “Professor - student conversation ends.” That is the advantage, you do

not  get orthogonality, you do not get  all  those definitions  when you use 1-norm, infinite

norm.

One  could  formulate  a  problem instead  of  least  square  fitting,  fitting  a  function  in  the

absolute norm or fitting a function in the infinite norm one can very much do that, but 2-norm

has something special. Now we are going to see why it is special but before that we have to

do some work. So let me again restate the problem. My problem was that I have these points

here.

They need not be equal space, there are some points here where I have this function uz and I

know values of this  function at  different  points.  So this  is  a function defined over some

domain you can have it 0 to 1 does not matter or it can be from some A to B. I know values of

this  function at  different  locations.  So this  is  the dependent  variable  ui=u at  independent

variable zi where i goes from 1, 2, up to n okay, i goes from 1 to n.

Now the main difference is that I want to fit now a polynomial, which is not of nth order or n-

1th order. I want to fit a polynomial, which is of a lower order okay. So typical problem is

that I want to fit a polynomial say Pmz. I want to fit  a polynomial  Pmz, which is alpha

0+alpha 1z+alpha 2z up to alpha mz to power m okay. I want to fit a polynomial of this form

okay.

Now I cannot say earlier in interpolation, we said that the polynomial value or the polynomial

should pass through every point I cannot say that now okay.
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What I am going to say now is that this error I am going to define error, which is ui that is ui-

Pm zi okay which is nothing but uzi-Pm zi okay. This error has to be small in some sense, but

this error is not just at 1 point, you have error defined at i goes from 1, 2 up to n okay. Now

you have vector of errors not 1 error right. You have n points, this n could be large number of

points, n could be 100, n could be 1000 okay.

I have large number of data points, so I know the function value at large number of points but

I  want  to  fit  a  polynomial  of  order  2  or  order  3  okay. Classic  example  from chemical

engineering,  I  would  give  here  is  Cp  as  a  function  of  temperature  we  fit  Cp  as  some

A+BT+CT square okay or sometimes we fit A+BT+CT square+DT cube.

There is no unique way of choosing depending upon what range of CP values and what range

of temperature you are considering okay. What the choice of polynomial would differ okay.
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You may have 100 values of Cp okay so I may have you know Cp1 at temperature 1, Cp2 at

temperature 2 and so on so Cpn at temperature n. So these are different measurements points,

I know Cp at large number of temperatures okay. So if I actually try to fit into this, I will have

problem okay. The problem is that none of this you know there are more number of equations

than the unknowns okay.

So now we have to do something about this okay. “Professor - student conversation starts.”

Here i goes from 1 to n not 1 to m.  The number of coefficients here are m+1 but i goes from

1 to n okay. “Professor - student conversation ends.” So now the trouble is that this when you

write this equation, it is not exact okay that is actually one more term missing here. So let us

concentrate right now on the quadratic equation, cubic equation will worry about later. Look

at this quadratic equation.

What  I  have  to  say  that  Cp=this+an  error.  This  is  not  exact  representation.  This  is  an

approximation. This e is the approximation error okay. Why am I allowed to fit a polynomial?

Because  (())  (08:55)  theorem  applies.  Continuous  function  can  be  approximated  by  a

polynomial function that is why I am fitting a polynomial okay, but this is not exact so there

is an error here.
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So actually if I take this data points and I start writing Cp1=A+BT1+CT1 square+e1 right. So

there is some, this is not exact. This will give you most of the variation but this is not exactly

equal to this there is some error here. So Cp2=A+BT2+CT2 square+e2, Cp3=A+BT3+CT3

square+e3 and so on. I can write these equations up to Cpn=A+BTn+CTn square+en. So

these are my equations now. Can I solve these equations? Is there a problem here? How many

variables and how many equations?

How many equations I have right now? I have n equations. How many variables I have? So N

equations=number of equation=n=number of data points. How many variables? n+3 right so

variables=n+3. What are the n variables? e1, e2 okay and plus A, B and C so there are 3

unknowns A, B, C plus there are unknowns these are the errors, which are unknown okay. All

these errors are unknown.

Now the trouble is how do I solve this? There are infinite solutions to this problem why? If I

choose A, B, C in one particular way okay if I choose A, B, C in one particular way if I fix A,

B, C by some means okay. Then I will get 1 value for e1, e2, e3 because once I specify A, B,

C I will have n equations in unknowns I can solve them okay. The trouble is how do I fix A,

B and C? Differentiate why?

Sigma of all the errors not a great idea, is it a norm? Sigma of errors is it a norm? So it might

happen that all the errors might sum up to 0 so that means is that the solution? Why only

square? Why not absolute? So I could formulate my problem. Now I need to generate 3 more



equations. To complete the problem, I have n+3 variables, I have n equations. To make the

problem exact, I need to generate 3 more equations.

What are these equations? Okay so now let us look at how do I formulate the problem? I can

formulate this problem in multiple ways. I can formulate this problem, I can formulate an

index.
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So I can say an index phi which is e1 square+e2 square+ let me call this 2 index en square

okay, which I can write this as E transpose E okay where this E is a vector of e1 e2 en okay.

So I can propose that find A, B, C such that you minimize this, I minimize this phi 2 with

respect to A, B, C. Some of the square of errors is as small as possible okay. So I try to get a

polynomial such that sum of the square of errors.

See this is individual error in each equation. I am just squaring it and summing it up okay. I

want to find out that value which gives me minimum sum of the square of errors okay. So this

is one way of formulating the problem. I still do not know whether doing this is going to give

me 3 additional equations. I have to generate them so there is another way of formulating the

problem.

This is not the only way. I could say that you know I formulate this phi 1, I will say that you

know mod e1+mod e2 somebody might say that why this sum of the square of errors? Why

not sum of the absolute errors? Nobody stops you from doing that. So this will be nothing but



1-norm of E. What is this? 2-norm of E square right. If E is the vector, it is 2-norm of E

square, this is 1-norm of E vector okay.

So I want to minimize instead of minimizing this phi 2, I could post the problem as minimize

phi  1  right  and somebody else  might  say well  I  do not  believe  in  this,  I  would  like  to

minimize phi infinity, which is max/i, minimize the maximum error, minimize the maximum

deviation okay. So instead of minimizing phi 2, I could choose to minimize phi 1, I could

choose to minimize phi infinity.

This is infinite norm of error vector. This is nothing but anyone of them is fine okay. The

question is how do I solve this problem? Now first of all, you should notice that this is an

optimization problem, you want to minimize sum of the square of errors with respect to these

parameters okay. This is something different and what you have done in your undergraduate

optimization or minimization.

In undergraduate course, you normally study most of you may be some of you have done

advanced things but most of you study maximizing or minimizing a function of 1 variable.

Here you have a  function  of  3  variables  okay. So we need to  generalize  what  you have

studied in undergraduate. How do I come up with minimization of a function, which is multi-

dimensional okay which is multi-dimensional?

So what is this function? I will generalize this. I generalize this problem here okay. Now let

us push this to the background and will come back to this Cp versus temperature business

little later. Let us look at an abstract problem now. My abstract problem is I want to minimize

an objective function. Why just look at 3 variables? I will look at general n variables okay. I

have a scalar function.

What is this function phi 1, phi 2, phi infinity? What are these functions? These are scalar

functions. Norm is a scalar function right. You always get but I need not always define an

objective, which is coming through norm. There could be other ways in some other problem.

So in general I am worried about minimizing a function.
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Let us say phi x from Rm to R. Phi x is the function from Rm to R from n dimension to 1

dimensions. So this is my objective function, some objective of a vector x so x is the vector

which is n dimensional. In this case, x is nothing but an error vector. I am now generalizing; I

am abstracting the problem. I no longer want to just work with modeling errors. I want to just

go and generalize this and say in general actually this is a special case of a problem in which

I have a scalar function mapping from n dimension to 1 dimension.

I want to minimize and I want to find out minimize or maximize, minimize with respect to

x1, x2, okay let us take here Rm to R. I want to minimize this objective function phi x with

respect to x1, x2, xm okay. There is 1 problem, now do not confuse this x with this en okay. If

I said that earlier there was a small error. What is x here? When I am generalizing from here

to here what is x? Is the unknown parameters. What is x? A, B, C okay.

So in this case m would be 3 in this particular case m would be 3. I want to minimize this

function phi  of x okay with respect  to x1,  x2,  x3,  xm. In this  case in  this  particular  Cp

problem, x would be nothing but A, B and C. I want to minimize some function phi x okay be

it  1-norm, infinite  norm, 2-norm whatever. I  want to minimize some function for x with

respect to x where in this particular case x happens to be A, B, C okay.
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How to solve this problem? I need some background definitions here. So well why I am just

talking about minimization problem? Because if you have a maximization problem, if you

want to maximize phi of x, it  is same as minimizing –phi of x. So I can just talk about

minimization  problem.  So it  includes  maximization.  We do not  have to worry separately

about maximization problem okay.

Now first concept that we need to know is the global minimum. A global minimum is a point

say x=x star, x=x star is called as a global minimum if phi x star is<phi x, you call this phi x

star  to be a global  minimum actually  equality  is  not  there.  So you call  it  to be a global

minimum okay.

If you take any other value so what is the global minimum for A, B, C? There is some special

value of A, B, C for which this particular objective function will assume the minimum value.

There is no other value of A, B, C for which you will get a smaller sum of the square of errors

okay. If that exist, if that you can reach then that is called as a global minimum okay. Now

when you do optimization, you may not be able to reach a global minimum.

It  may happen that  you start  doing a search and then  you go to  a  local  minimum okay.

Imagine that you know you are standing on a mountain and then there are multiple valleys

okay. You might reach a valley, which is not you know which is not the global minimum okay

which is just a local minimum and then so we also have to worry about local minimum. So in

local minimum, we do not talk about for every x in Rn okay.



We talk about some neighborhood of a particular point okay. So in some neighborhood so

some epsilon neighborhood. We have defined neighborhood earlier; we can think of a ball

okay some ball around x bar okay. If you can show that phi x bar is<any other x in that

neighborhood, then x bar will be called as a local minimum. Here x star will be called global

minimum.

Because anywhere you go in the space, you cannot get a value of x for which phi will be

smaller okay. The smallest value of phi is obtained at a global minimum and a local minimum

is like local minima okay so you know 1 dimension it is easier to draw.
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So in a simple 1-dimensional case, this would be you know if you have a function phi of x

versus x so this is my global minimum but this is a local minimum okay. So this point for this

function is a global minimum whereas this is a local minimum and this is global minimum.

So in some neighborhood, this is the minimum. Take any point in this neighborhood okay you

cannot get value of phi<this.

But that is not a case if you look at much larger domain okay. So there might be some other

value where you get much lower. The conditions that we are going to derive now okay are

pertaining to the local minimum. We cannot actually derive general conditions for global

minimum and in general optimization problem what we find is typically a local minimum.

If it happens to be global minimum in some cases great, I mean no you have achieved what

you wanted to do but in many situations you do optimization by numerical search and then



the solution depends upon your initial guess. If you are far away from the global minimum

okay you may not reach, there. So when you do trial error approach you know arrive at the

solution you might be starting with a guess here and the solution might hit this minimum.

And you know your numerical method will declare that you have reached a minimum and if

you happen to give an initial guess somewhere here, may be you will reach this point okay.

Numerical methods you cannot predict you might even go here and get into this, so hard to

predict what will happen but likely that if you are here you might reach this global minimum.

The conditions that we are going to derive are for local minimum.

What are the necessary conditions for a point to be a local minimum? What is the sufficient

condition for a point to be a local minimum? That is what I am going to derive now okay.

Now to qualify a point to be a local or a global minimum, I need some more definitions. See

what was the key thing when you talked about minimum of a single variable function? First

was that a derivative at this point of phi with respect to x become 0.

There is no change locally okay. So the derivative is tangent, which is parallel to x axis okay.

That is the key thing about so the derivative is 0 that was the first thing. How do I extend this

to the multi-dimensional case? Now I have a variable, now I have objective function, which

is function of m unknowns, not just 1 unknown. So I should derive an equivalent condition.

Second thing is so well done I have to make an assumption that this phi is differentiable okay.

One norm and infinite norm, there is a trouble, they are not differentiable functions. Two-

norm is a differentiable function, X transpose X sum of the squares differentiable function

okay. Second thing  is  what  qualified  this  point  to  be a  minimum and this  point  to  be  a

maximum? Second derivative. So second derivative when it was positive it was minimum.

Second derivative when it was negative it was a maximum.

Now in this particular case, if phi x is a differentiable or if it is twice differentiable function

then the force derivative of this with respect to x is going to be a vector and the second

derivative of this with respect to x is going to be a matrix. So I need some more additional

structure, which will help me qualify a point to be maximum or minimum okay. Now this is

where you need to define matrices, which are certain special properties.



So what  is  this  special  property? Definiteness.  I  now need to  define matrices,  which are

positive definite or negative definite okay. So now before I proceed and define a positive

definite matrix and a negative definite matrix and an indefinite matrix. If you understand this

geometric connections of positive definiteness, indefiniteness and then you know it will make

much more sense later when you use these concepts okay.

Otherwise many times you know in a course on linear algebra, they are introduced not by

connecting it to geometry, they are just introduced by saying a positive definite matrix is 1

which  has  all  Eigen values  positive  but  why? Why do I  need this  animal  which  has  all

positive Eigen values? Okay it is not clear to us. This is where it will become clear. Why do I

need such funny matrix?

Well it is not really funny. It happens to be very nice matrix. It helps us in many, many ways

and it is going to help us throughout the course in many ways okay.
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So we have this  first  definition  is  positive  definite  matrix.  So when is  a matrix  positive

definite? Right now I am just digressing from the main theme, I am just going into little bit of

linear algebra may appear disconnected. So if I have a matrix A, this A is a m cross m matrix,

we are talking about real valued matrices right now. So if x transpose Ax is>0 for any x!=0

okay.

And x belongs to m dimensional space. This should be m cross m because we are talking

about phi x where x is m dimensional so m cross m, very, very important most important



word here is for any x for any x even if you find 1 x for which this is=0 and or<0, the matrix

is not positive definite. So this is the fundamental definition of positive definiteness okay.

Give me any vector in a space okay.

X transpose Ax is>0 when x is!=0 when will this be=0? Only when x=0 okay. Remember

that. Well there is one more matrix that you probably have studied in your undergraduate is

positive  semi-definite  matrix.  When do you call  positive  semi-definite  matrix?  So if  this

condition becomes x transpose Ax is >=0 for any x so there are some vectors x for which this

will be = 0 this will happen when A matrix is singular, think about it.

When A matrix is singular, its columns are linearly dependent, null space is not 0 and you

will get some well this basic definition translates to Eigen values being positive, will look at

it a little later, but in this case if you just change from this strict inequality to you know this

>= 0 it becomes positive semi-definite, A will be positive semi-definite okay. What about

negative definite matrix? So this is positive semi-definite okay.
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So negative definite is x transpose Ax is strictly<0 for any x that belongs to Rm okay and x is

!=0 so non-zero vector and any non-zero vector you give me, x transpose Ax will be<0 and it

is called as a negative definite matrix okay and a fourth one is of course negative semi-

definite so this is x transpose Ax<=0 for any x belonging to Rm. So this is negative semi-

definiteness.



This is negative semi-definite okay so this is just the background work that I need to proceed

further okay. Well the necessary condition for optimality is something that I would like to

quickly derive in the class. Though every step I am not going to write because it is there in

the notes. I will just give you outline of the proof, how it is done. So the necessary condition

is given by this theorem.
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So  necessary  condition  for  optimality  well  first  of  all  we  assume  that  phi  x  is  twice

differentiable that is what we assume first okay. Then only we can proceed. So if you want to

know where this appears in the notes. I do not know how many of you are carrying notes, it is

on page 80. It is in the appendix section 8.2. Now to do arguments about you know local

optimality I am going to use Taylor series approximation okay.

Taylor series approximation is the bulwark. You know is the one of main tools that we use to

prove many, many things. So for a point the statement of the theorem, former statement is

given here. I am just stating the main result. So that is if x=x bar is to qualify as a minimum

or maximum or optimum. We do not know what it is. To be precise it a stationary point okay

it could be a minimum or a maximum or it could be neither of them.

It depends upon some more conditions. So the gradient of phi with respect to x that is dou

phi/dou x1 dou phi/dou x2. This should be =, if phi is the twice differentiable function okay

what we can prove is that a necessary condition for optimality is that the first derivative of

phi with respect to each of the variables not xn we are working with xm just remind me. We

are working in m dimensional space okay with respect to xm should be=0.
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In the specific problem for Cp okay, it will be what is the specific condition for Cp value

problem? So it will be dou phi/dou A, in a specific problem for Cp it will be dou phi/dou A

dou phi/dou B and dou phi/dou C. This should be=0 0 0 okay. So this particular equation

actually is the necessary condition for optimality. Well I started by saying for the Cp problem

we need 3 extra equations.

These are the 3 extra equations, dou phi/dou A=0, dou phi/dou B=0, dou phi/dou C=0. In

general, if there are m such parameters with respect to which we want to optimize then we

have m equations here right. We have m equations coming from the first order derivative to

be exactly=0 at the optimum point okay.

Now the proof of this, so the proof of this actually goes by I think contradiction what we do is

we assume that you are allowed to vary a particular variable only in 1 direction keeping all

the other values constant so I just  want to perturb say along x1 or x2 okay and then we

assume that you know that this condition does not hold okay. We assume that this condition

does not hold but the point is a minimum okay.

And what you see is that if you make an assumption that a derivative is not 0 and the point is

a minimum will lead to a contradiction okay. These 2 cannot be true okay. So the way it is

done is you know you write the full proof you should read here in the notes.
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But the way this is done is that I can write phi x bar+delta x so I take a small perturbation let

us say x bar is the minimum let us say x bar is the local minimum okay. I can write this as f x

bar using Taylor series expansion okay +i going from 1 to m dou phi/dou xi delta xi+the

residual term at x bar delta x. This is the second order residual term okay. Now if I say that

the perturbation is only along 1 direction.

Let us say we will put this as small delta x here delta xi so let us assume that only delta xi is

not equal to 0 but delta x1=delta x2=delta xi-1=delta xi+1=delta xm all are 0 but only one of

them are not 0. Let us make that assumption okay. All other delta x’s are 0. I am choosing

perturb only from x bar I am choosing to perturb only xi ith variable. You have done this kind

of thing have you?

If you have programed numerical Jacobian, you are keeping all the variables constant just

perturbing one value right. We did this in the programing okay the same thing. I am just

perturbing one variable at a time okay. So the question is phi x bar+delta x-phi x bar okay so

this is dominated by dou phi/dou xi. So this difference is dominated by this partial derivative

times.

If you take delta xi to be very, very small the second order term here will be insignificant.

This  difference  is  dominated  by  okay. Now tell  me  what  should  happen if  x  bar  is  the

minimum and if I move away from it? What should happen to objective function? It should

increase. So what should happen if this? This should be always>0, any moment I make okay.

Now let us take the situation that this gradient is not 0 okay.



Let us take the situation this gradient is negative okay. I can choose a delta x which is small

negative  value  such  that  this  will  become  multiplication  will  become  positive.  If

multiplication becomes positive, it contradicts the fact that x bar is the minimum. See if I can

make this  multiplication  positive,  it  will  contradict  the fact  that  this  is  the minimum.  So

because if you move away what should happen?

This should always remain see whichever way I go from the minimum just imagine if you are

in a valley okay whichever way you go from the minimum point, you know your height

increases, it will never decrease okay. Now if the local gradient let say this is positive, this

phi is positive then I can choose a delta x which is positive xi and make this positive, which

means that this–this is positive which means x bar is not a minimum.

No, you have to argue like that. Suppose this is negative then I can choose delta xi to be

negative so multiplication will become positive,  which means this difference will  become

positive, which means x bar cannot be minimum you know so you have to argue in a way that

well one minute I think the argument I have to repeat. So this if I move away from x bar, the

value should increase okay.

Now if this is negative, I can choose delta xi positive okay. If I choose delta xi positive, if this

is  negative,  if  this  positive  multiplication  is  negative,  which  means  I  can  move  in  one

particular way and reduce this further which means x bar is not the minimum. I made a wrong

argument earlier. Now argue other way if this is positive, I can choose delta xi negative. If I

choose delta xi negative, this will become negative okay.

So I can further reduce by moving away so then x bar is not a minimum so you can show this

that for each variable you can argue like this. So only way this point can be a minimum is if

this derivative is 0 okay because if derivative is non-zero you would be able to move a little

bit and go further down, which cannot happen if it is a minimum okay. So only way this point

can be minimum is this derivative is 0 okay.

So  this  is  the  necessary  condition,  you  look  at  the  proof  here.  To derive  the  sufficient

condition, what we do is will look at the second derivative.
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The second derivative here is del square phi so del square phi would be the so called Hessian

matrix. The Hessian matrix is given by so Hessian in this case will be a m cross m matrix, I

keep writing n, it is m we are working in m dimensional space so this is m here okay, yeah so

this is m here so we have to look at the Hessian. Why we have to look at the Hessian okay?

Let us go back to this equation here.

We said that only way x bar is the minimum is all derivatives are 0. If all derivatives are 0,

this term vanishes right. When I use Taylor series expansion, all derivatives are 0 at x bar so

the first derivative term will vanish okay. Then, we have to look at the second derivative part

okay so then I will write this here as okay.
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So at the optimum the first derivative is 0, so this is governed by phi x bar+delta x transpose

1/2*del  square x phi delta  x.  What  will  govern the local  behavior  of the function in the

neighborhood  of  the  optimum point?  See  the  first  derivative  is  0  so  look  at  the  second

derivative. Second derivative is delta x transpose phi x. This Hessian matrix, which is the

Hessian*okay.

What should happen if you move away from x bar? It should increase okay. When will it

increase? If this particular matrix is computed at x=x bar, so we are computing this at x=x bar

okay. The first derivative at x=x bar is 0. I look at the second derivative to get an idea about

what is the local behavior.

So if second derivative this if this Hessian is positive definite or positive semi-definite okay, I

can move away from the point but the objective function value will not decrease okay. It will

only increase, such a point will be a minimum point. So if del square x of phi computed at x

bar if this is positive definite or positive semi-definite then x=x bar is a minimum okay. What

is this matrix is indefinite?

What  is  the  meaning  of  indefiniteness?  For  some x,  this  is  positive,  for  some  x  this  is

negative  okay. So in  some directions,  the function will  decrease.  In some directions,  the

function  will  increase.  You know saddle  point,  the  derivative  is  0  but  in  some direction

function decreases, in some direction function increases okay. If this matrix is indefinite okay

then I cannot say anything about this point, this is not a maximum nor minimum okay.

So if  this  happens to  be positive  definite,  it  is  a minimum so this  matrix  happens to  be

negative definite it is a maximum okay. If this Hessian matrix is negative semi-definite or

negative definite, then it is a maximum otherwise if it is positive definite or positive semi-

definite  it  is a minimum and if a Hessian matrix is neither positive definite nor negative

definite, it is an indefinite matrix okay.

So sometimes this multiplication is positive, sometimes this is negative then you know the

point is neither a minimum nor a maximum it is a saddle point okay. Now this particular these

2 are sufficient conditions for to qualify a point to be optimum. So first thing is that gradient

should be=0, second thing is Hessian should be either positive definite or a minimum or it

should be negative definite for a maximum.



And then we can qualify a point to be an optimum point. So this is generalization of the result

that you know from one dimension. This now in the next lecture will apply to the specific

problem of polynomial approximations okay.


