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So in our last lecture,  we were looking at interpolation polynomial.  We also looked at cubic

spline interpolation. So, I talked about piecewise polynomial interpolation towards the end, but

let me explain the few things before I move on about piecewise polynomial interpolation.
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We have this function U, Z and we know values of this function at different points and then we

wanted to fit a polynomial that passes through each of these points, okay. So, one possibility was

to develop a very high order polynomial which passes through each of these points. So, that

would be a continuous function passing through each of these points. There are other options. As

I said finding out coefficients of a very high order polynomial higher than 3 or 4 becomes ill-

conditioned problem, it is difficult to find the coefficients,

So, we resort to what is called as piecewise polynomial approximation and one particular type of

approximation  I  talked  yesterday.  So,  if  I  want  to  develop  a  piecewise  polynomial

approximation, what is the simplest piecewise polynomial approximation, well not cubic. The



simplest one will be linear line, you know. The simplest one would be just a line. I could develop

a line that connects these 2 points, then another line that connects these 2 point.

What is the problem with this? This is fine, in some cases this works, this is useful. I am not

saying this  is  not  useful,  but  this  piecewise linear  approximation  is  not differentiable  at  the

boundary points. It is not differentiable. So, it is continuous but it is not differentiable, okay. That

is we want to have higher order approximation. We could then think approximating this using

second order that is quadratic equation. 

So, each one of them instead of a line can be a quadratic equation, okay. So, this might be and so

on, okay. Now, if you fitting in general, you could fit (()) (03:36) order polynomial, say quadratic

cubic 4th order. We normally stop at cubic and among the piecewise polynomial approximations,

the approximation for which we match derivatives up to K-1. Suppose you are fitting a K third

order polynomial between each segment and you match the derivatives up to K-1 order, then that

is called the spline approximation, okay.

So, cubic spline, when I say cubic spline that is because they are matching first order and second

order  derivatives.  Polynomial  order  is  3,  first  and second order  derivatives  are  matched  for

smoothness purpose, so that is why it is cubic spline. Normally, we use cubic spline because

beyond  that  it  is  not  worth  fitting  high  order  polynomial  beyond  cubic.  Cubic  many  times

suffices for most of the applications.

So,  you  can  very  well  develop  piecewise  linear  approximation,  piecewise  quadratic

approximation,  piecewise  cubic  approximation,  okay.  So,  depending  upon  what  level  of

smoothness you need in your application. In some cases, differentiability is not so important. You

can have piecewise linear, okay. In some cases, differentiability is important.  So, you should

have high order polynomial and match derivatives and so on, so this is a small point.

The next point that I want to make here is that when I am developing this approximation is it

necessary that I only do a polynomial  approximation.  It is not necessary that I  will  only do

polynomial approximation. I can do functional approximation, okay. So, in general, we are not



going to use when we will do boundary value problem discretization or when I develop this

orthogonal collocation method, I am not going to use function approximation.

This is just a side note that I am using the word approximation. Function interpolation, we will

be  approximation  in  different  context.  Just  like  I  can  do polynomial  interpolation,  I  can  do

function interpolation. 
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So, in general, I have this you know, I will just slightly change the notation. You have this U, Z

here and till now we were looking at polynomial approximation which means we said that Pz is

alpha 0+alpha 1, okay and then was the initial Lagrange interpolation and then we know these

values of UZi=Ui, we know these values at i=1, 2, up to n+1. We know values of ui and then we

wrote n+1 equations and n+1 (()) (06:58) and then we had simple way of finding out alpha 0,

alpha 1 by matrix inversion, this we have discussed earlier.

It is not necessary that I approximate only using polynomials, no approximate. Approximation

will come when you approximate boundary value problem. Right now, interpolation is something

you try to construct a function that passes through every point, okay. So, this is a polynomial

function that  passes every point  here,  okay. Now, I  could also develop say another  function

which is interpolating function and I would call this as some beta 1 f1z+beta 2 f2z. Let us keep

the notation similar.



So, let us call this beta 0 f0, beta 1, f1,…up to beta n. In general, I need not represent polynomial

using simple polynomial functions. I could have more complex functions appearing here. So, this

is called function interpolation. Each one of them is a function of z, okay. For example, I could

use some of the standard polynomial say Legendre polynomial here okay or I could use shifted

Legendre polynomial, depending upon the context, you could use different kinds of polynomial.

I  could use here sin and cos,  okay. So, it  is  not  necessary that  interpolation should be only

through polynomial.  Interpolation can be through functions.  This will  be called interpolating

function, okay. 
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How do you estimate  beta  0  to  beta  n.  The same thing,  you know you write  this  equation

U1=beta0 f1 Z1+beta1 and then U2=beta 0 F0, Z2+beta1 F1Z2 and likewise you can write this

for all the points and I have U n+1=beta 0 F0Zn+1+beta1 F1+.

So, I have n+1 equations in n+1 unknowns. What are the unknowns here? beta0, beta1 up to beta

n, these are the unknowns. These functions here F0, F1 interpolating functions, I have chosen

them. I know these functions. Like sin, cos or whatever you chose. I have chosen these functions.

So, I can substitute values of z and find out the value of that particular function. So, here this

would be know, this  would be know because I  have chosen the function,  I  can evaluate  the



function at a particular point. 

Then, write this into the standard form because this will give rise to U=A matrix*theta where

theta is nothing but beta 0 to beta n. This vector theta is beta0 to beta n. What will A matrix

have? all these f0z1, f1z1 all values of these. This A matrix is known and then you can find out.

You can find the interpolation function or this is called function interpolation. So, this is a special

case of function interpolation, okay.

You have chosen a special function which is simple polynomial but that is not the only way to

construct  interpolating  function,  okay. You can  do in  general  a  function  interpolation.  Well,

interpolation  is  if  you look at  textbooks  on  applied  mathematics,  you will  find  much more

material interpolation. Right now, my interest is in discretizing a problem. So, I am going to

restrict myself to whatever I need for problem discretization.

So, my aim is now to convert a boundary value problem or a partial differential equation into a

set of either algebraic equations which have to be solved simultaneously or in some cases it

could be differential equation that need to be solved simultaneously. We have seen several cases,

right. What is going to be different here is how we approximate the derivatives. What was the

key in the earlier case? Where we have used Taylor series method?

The key was approximation of first order and second order derivatives, okay. So, interpolating

function or interpolating polynomial is going to be used for approximation of local derivatives,

okay. So, the word approximation comes when you start discretizing not when you construct the

interpolating  polynomial.  So,  the trick  is  going to  be the same.  What  did we do? when we

developed finite difference method?

We started with Taylor series, we looked at a point, right and we said local derivative of this

particular  function can be approximated using Taylor  series expansion and then we had this

forward different, backward difference formula for approximating the local derivative at ith grid

point. We divided the entire domain into number of grid points and then at a particular grid point,

ith  grid point,  we had a  way of  constructing  local  approximation  of  the  first  derivative  and



second derivative, okay. Same thing is going to be done here.

I am going to use this interpolating polynomial to construct approximation of local derivatives at

the grid points,  okay. Now, just look carefully at the development because this is something

which is new for most of you and somewhat different from finite difference. Finite difference in

some sense is covered when you undergraduate in many cases. Many of you would have visited

finite  difference  but  orthogonal  collocation  probably  is  not  part  of  typical  undergraduate

program.
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Now, let us start looking at how we develop this orthogonal collocation. So, I have this domain,

so this is Z=0 and then this is my Z=1 and I have this similar notation. So, this is my Z1, this is

my Z2, this is my Z3, this is Zi, I okay. These are my grid points in a domain 0 to 1 where this

domain appears in the context of let us say a boundary value problem. So, let us rewrite our

boundary value problem again. So, the general boundary value problem.

So, in the domain 0 to 1, I want this differential equation to hold actually at every point but when

we do discretization, we will end up forcing this equation only at certain grid points, the same

way that we have done for finite difference; and then, I have these boundary conditions f1. So, I

have 2 boundary conditions and I have this second order differential equation. I need to develop

approximations for d2U/dZ square dU/dZ and then at a particular point, let us say ith point, I



want to develop local approximation for the derivatives, okay.

Now, the way I am going to proceed is let us denote the value of the solution at these points as

U1, U2. So, basically the same idea where we had said that Ui=U of Zi where U is the dependent

variable  here.  The solution  of  the  problem,  it  could  be temperature  distribution,  it  could  be

concentration distribution whatever is the problem at hand. So, this is my solution. Now, the

trouble is  when you are solving the partial  differential  equation and when you are trying to

develop an interpolation polynomial, you do not know these values, U1, U2, U3 up to Un+1.

You do not know these values, okay. So, the trick is use interpolation polynomial together with

this  differential  equation to find U1, U2, U3, up to  Un+1, okay. So, when I  begin with the

development, okay. I am going to develop everything in terms of U1 to Un, okay as unknowns.

Now, let us see how we do this.

(Refer Slide Time: 19:30)

So, now what I am going to is my approximate solution for this problem, okay, I am going to

represent as an interpolation polynomial. So, let me call this as UZ=alpha 0+ alpha 1 Z, okay.

This is my proposed solution, approximate solution for this particular problem, okay. Now, if you

want  to  develop  interpolation  polynomial,  what  will  you  do.  You  will  write  this  equation

U1=alpha 0+alpha 1 Z1…up to alpha n Zn, right.



Then U2=alpha n Zn. So, you would write all these equations, okay. U1, U2 up to Un, these are

the values of this approximate solution at the grid points, okay. Right now, I have not talked

about how to decide this grid points. In this context often called knots or collocation points. They

are not really called as grid points, just a matter of terminology. They are same as grid points;

they are often called as collocation points. So, these points here will be called as collocation

points, okay. So, now I can write this.

(Refer Slide Time: 21:54)

Then, I can put this into the standard matrix form, okay. So, these equations n+1 equations*n +1

unknowns, I have transformed into a standard matrix  equation.  Now, there is a trouble here,

okay. In normal interpolation when it is not connected with a differential equation, you are given

some values of the function at the grid points. So, in normal polynomial interpolation, you know

these values.

Now, I do not know these values right now, okay. It does not matter. I have going to play some

tricks. First of all, in this equation I do not know 2 things, I do not know alpha 0, alpha 1 to alpha

n. I do not know U1 to Un+1. So, both I do not know. So, I cannot really solve this problem and

find the solution, that is not possible. The solution is tied up with the differential equation, okay.

So, we have to go to differential equation to get these values.

But what I am going to do here is let us call this matrix as A matrix, this vector as theta vector



and this vector here as capital U, A theta=U. So, my equation is A theta=U, okay. So, I am going

to transform this equation and write theta=A inverse*U, capital U is this vector Un to Un+1,

okay. So, what I have do is that this set of unknowns can be represented in terms of this set of

unknowns, okay. Let us leave here and then let us continue with the next part. 
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Now,  let  us  come  to  ith  collocation  point,  okay.  So,  at  ith  collocation  point  what  is  the

approximate  solution.  Before  I  go  to  the  ith  collocation  point,  what  is  the  general  solution

UZ=alpha 0+alpha 1 Z up to alpha n Zn, right. This is the approximate solution. What is the first

derivative? What is dU/dZ. DU/dZ is 0+alpha 1+2 alpha 2 z up to n alpha n Z n-1. Have you all

with me on this? okay.

I am going to write this in slightly different way. I am going to say that this is 0, 1, 2… I am

going to write this as an inner product of 2 vectors. One vector is 0, 1, 2Z, 3Z square, 4Z cube

and so on, okay. So, this has been written as inner product of 2 vectors. Dot product of 2 vectors,

okay. So far so good.
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So, here now this first derivative is actually. So, this dU/dZ=0, 1, 2Z, …. nZ raise to n-1*theta.

Do you agree with me? This is my theta vector. So, this into theta vector, okay which is same as

0, 1, 2Z*A inverse U. I am just replacing theta. Unknown theta is not, so convenient for me to

work with. I am going to work with unknowns U1 to Un+1, okay. So, this is a known matrix. A

is the known matrix. I have chosen the collocation points, so I can compute A matrix, okay.

I can compute A inverse, so this is the known matrix to me, okay. Now, this multiplication of this

vector into this matrix, I am going to denote it. See, this is a vector, this is a row vector, this is a

n+1 cross n+1 matrix, and this is a vector which is 1 cross n+1, okay. So, multiplication of these

2, this row vector into this matrix, what will it give you another row vector. I am going to call

that row vector as Si. Si is the ith row vector or the row vector associated with the ith collocation

point, okay.

There is one more step in between. So, this is the general expression for the derivative. Now, I

want to find derivative at the ith collocation point. So, how will you find out. So, here we will

have to put Zi, okay. So, dU Zi/dZ will be 0, 1, 2 Zi, … nZi is to n-1*A inverse U. When I want

to compute the derivative at the ith collocation point? I am just going to substitute for Z=Zi I will

get this expression.
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Now, this quantity I am going to denote as Si=0, 1, 2Zi *A inverse, okay. This is my row vector.

What you get here is a row vector. So, this will be 1 cross n+1 row vector, okay. Then, what I get

a very simple expression dU Zi/dZ=Si*U. Is everyone with me on this, right. So, the derivative

approximation at  ith collocation point is this vector times U. What is U, U1 to Un+1, okay.

Likewise, I can develop my second order derivative. Can you do that?

So what is my d2U/dZ square. So, this would be 0 0, second derivative will give you only 2,

okay. Then, what will we get 6Z n*n-1 Z raise to n-2, am I correct. If I write it in terms of into

theta but what is theta A inverse U, so A inverse U, right. I am just skipping in between steps.

They are very simple. Same derivation as previous derivation for the first order derivative. So, I

am just directly writing the final form here, okay. 

You will get this vector and you will get this A inverse*U, okay. When I want to compute the

derivative at ith collocation point, so I would just substitute d2U.


