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Finite Difference Method (Contd.) and Polynomial Difference Equation

So we have been looking at finite difference method that is used for discretizing boundary

value problems as well as partial differential equations. And in particular in my last lecture I

was looking at a partial differential equation Laplace's equation and then we approximated

the partial derivatives in spatial direction and then what results is the set of linear algebraic

equations.

So we start with a partial differential equation and then process of discretization resulted in

set of linear algebraic equations.

(Refer Slide Time: 01:06)

The problem was so we had this partial differential equation so x and y are normalized spatial

coordinates and then we have this partial differential equation that holds on the interior points

and then I said this was example of a furnace and then we use finite difference method to

discretize this. What you get here is a set of linear algebraic equations. What I want to show

again with the same example is that it depends upon the method you chose to discretize.

It is not that this particular problem and infinite difference method will always yield set of

linear algebraic equations I am going to do one more method called method of lines which



will yield ordinary differential equation boundary value problem. So depending upon how

you  choose  to  discretize  you  will  get  different  types  of  approximations  from  the  same

problem that is very important.

And using the same method, same approach that is finite difference of course when we use

some other method which we will be discussing for example starting from towards the end of

this lecture and next lecture. We will talk about orthogonal collocation so that is another way

of  discretizing  that  of  course  will  yield  different  way  of  formulating  the  approximate

problem.

So here we had these boundary conditions at x=0 we have condition that T 0y =T* then x=1

we have this condition T 1y=T*. So it is like saying that 3 walls are insulated then there is

convective heat transfer from one end at y=0 we have T temperature at x0=T * so 3 walls are

insulated.
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And the fourth one we have convective at y=1 we have this 4 boundary conditions. So we

have these 4 boundary conditions and when we use finite difference method what we got was

set of linear algebraic equations. What we had done was we discretize the domain. So this is

1, 2, 3 and so on. So we discretize the domain we constructed, we demarcated grid points

along y axis and along x axis.

And then we impose the partial differential equation at the grid points or in the terms of finite

difference method. We force the residual to 0 at the grid points and this forcing residual to 0



at the grid points gave rise to large number of algebraic equations and same thing is to about

boundary conditions we used finite difference at the boundary and then we get additional

equations at the boundary.

So total number of equations that we have finally is how many equations you have how many

variables. You have nx+1 cross ny+1 equation and you have same number of variables. Now

instead of writing those equations again I want to just point out something if you actually try

to rearrange this what you get is set of linear algebraic equations and if you rearrange them

into a matrix form the standard you know Ax=b form then you get a very special kind of

matrix 
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I do not want to write the matrix. I just want to show how it looks graphically. It is a special

diagonal matrix it is a sparse matrix what you get here and so this matrix will have non 0

elements along first 3 diagonals there will be lot of 0s there will be non 0 diagonal again there

will be 0 here, 0 diagonals and 0 diagonals. So you get a sparse matrix here if you rearrange

all the equation. So this is T 1 1 or I think you have to eliminate the boundaries.

So you get T 2 to to T nx ny. If you eliminate the boundary conditions and then collect all the

unknowns together and write this as 1 equation you will get a vector b here which is coming

out of F of xy at different points f of xy at different points. So here this in this case this is the

source term and as I explain to you that the sources if you are modeling this particular room

then the sources would be each one of you is a heat source like a 40-watt bulb.



And the distribution of these bulbs can be given by f xy you know at which points these bulbs

are  located  and  then  that  would  lead  to  a  particular  solution,  a  particular  temperature

distribution. So the solution here actually the true solution is a surface with one temperature

value attached to each point each xy in this. We are not able to solve this equation at every

point.

We are able to solve it only at finite number of points. You will get a good solution if you

create more numbers of grid points. The solution will improve with more and more number

of grid points, but their computations increase with more and more number of grid points and

this matrix which you see here which you will get will be a banded matrix and this will be a

sparse matrix.

This is a side note that we will be looking at sparse matrices little later, but I just want to

point out that I just want to provide a motivation for looking at sparse matrices, why do we

have to look at special methods for matrices which are filled with large number of 0s because

you can save computation time when you have large matrices. Suppose this nx and ny this

happens to be these are the number of variables.

And this matrix will be nx cross nx these are the number of variables. So this matrix will be

nx cross ny cross nx cross ny. This will be a huge matrix just remember. Total number of

variables are these. So this if you eliminate boundary conditions you will get something like

nx cross ny variables in this vector and this matrix is nx cross ny cross nx cross ny. So if you

take 100, 100 grid points just imagine what is the size of this matrix.

Inverting this kind of matrix is possible, but you are wasting lot of computer time because

there are lot of 0s and those will probably give 0 when you invert. You do not have to waste

your energy in finding a 0s on the right hand side. If you device some intelligent algorithm

you can save computation time. Now this is the only way of discretizing. We discretize both

in x and y.

We discretize both in x and y. First of all, why do I get this banded structure.
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Because when I discretize each equation will have only 5 variables associated with it. So I

will have this variable, this variable, this variable, this variable, this variable. So this is I this

point  is  i,  j  this  point  will  be  i+1,  j  this  will  be  i-1,  j  and so  on.  So 1,  2,  3,  4  points

neighboring  points  are  appearing  in  each  equations  and  such  you  have  large  number  of

coupled equations you have to solve them together simultaneously to arrive at a solution. The

solution surface is being approximated by solving the equation at discrete number of points. 

Since it  is an approximation what you get is the approximate solution cannot be the true

solution. For this particular problem in many cases you will be able to solve the problem

analytically that is a different story, but if there is a non-linearity then you are in trouble for

example I can make this problem non-linear just by saying that this thermal diffusivity alpha

is a function of the function of temperature.

Right now I assume constant temperature probably if you are doing a modeling in this room

the temperature variation is not too much it is a good assumption that alpha is constant, but if

there is too much variation of temperature in a region where you are modeling then it is worth

modeling alpha as a function of temperature and then immediately the equations which are

linear algebraic equation will become non linear algebraic equations.

Okay leave that aside. Let us not talk about non-linearity. Let us look at this problem again

through another method called method of lines.  So what I  am going to do now this  is a

method which belongs to the same finite difference class or it could reappear when you do

orthogonal collocations instead of discretizing in both dimensions x and y. I could choose to



discretize only in 1 dimensions say x.

And I  want  to  retain  the  differential  operator  in  Y direction.  I  will  discretize  only  in  x

direction.  I  want  to  retain  differential  operator  in  y  direction.  This  is  another  way  of

discretizing. So this will give me method of lines.
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So what I am going to do here is instead of drawing grid points in both x and y direction I am

not going to mark. I am going to draw parallel lines I am going to mark grid points along y

and I am going to draw parallel lines here. Well  the lines in my drawing are not looking

parallel, but I intend to draw parallel lines. So I am going to draw parallel lines here. I want to

discretize only in 1 direction and not in the other direction.

So I have made a mistake here. Well I want to draw lines parallel to x axis. So I want to draw

lines parallel to x axis. Well it is not really important whether you discretize you keep you

discretize in x direction or whether you will discretize in y direction it is not that important.

In this particular problem because of a symmetric boundary conditions it is good to discretize

along x direction.
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So what I am going to do now. I am going to mark this variable now this is my notation. My

notation is Ti y is a variation of temperature along y direction in along the ith line parallel to

y axis. I have drawn lines parallel to y axis and Tiy is the variation of temperature along ith

line parallel to the Y axis. I am just fixing x1 so this is my x=xi this is the ith point and Tiy is

nothing. The way I want to discretize this equation now is now look at this equation the way I

have discretize this I have discretized only in x spatial coordinate x.

I have chosen not to discretize in y. Now I have converted the partial differential operator

along y to total differential because now x has been taken care because of discretization. So

this becomes an ordinary differential equation. Now we have to use boundary conditions and

because of boundary conditions you will get is this 1 ordinary differential equation how many

you get at all the interval gird points.

So 2, 3, up to nx and this will be the last point is nx+1. So till nx till last parallel line we get

this  differential  equation.  S I  goes  from 2,  3  up  to  nx. So you get  ordinary  differential

equations  not 1 ordinary differential  equation you get coupled set  of ordinary differential

equations right. ith value or Ty Tiy is related to Ti+ 1y and Ti- 1y right. So the temperature on

ith line is a function of temperature on this line and this line.

So  what  you  get  here  is  a  set  of  coupled  ordinary  differential  equations  not  1  ordinary

differential equation. Okay you get large number of coupled ordinary differential equations

Suppose  we  discretize  with  100  grid  points  internal  grid  points  100  coupled  ordinary

differential equations need to be solved simultaneously okay because neighboring variables



appear in each one of them.

And now we can use the boundary condition to complete the problem. So we have this 2

boundary conditions T1 Y is= to T* and T nx +1 Y is= to T*. You can use these 2 conditions

to eliminate some variables or you may have to solve it as a differential algebraic system

okay. So you have these conditions in addition + you will have to have 2 conditions which

will now become boundary conditions for his ordinary set of ordinary differential equations. 

So those will arise because of this and this. So if I just write them in. Well we do not have

space here okay I will write it here. This is the one of the boundary conditions.
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And the second one will come because of discretization of this and that would be K Ti1. So

discretization of this boundary condition will give you this set of equations. Now what do you

get  here is  a  set  of coupled second order  ordinary differential  equations  which are these

subject to boundary conditions at y=0 at y=1. So same problem finite difference method, but

instead of choosing to discretize in both the direction if I discretize only in 1 direction I get

OD boundary value problem.

Same original PD I get OD boundary value problem. So it depends upon how you choose to

discretize. This problem could yield set of linear algebraic equations if you choose to describe

in one particular way this problem will yield set of ordinary differential equation, boundary

value problem. If you chose to discretize in another way. So it depends upon how you chose

to discretize the problem.



Now I am going to write one more variation of the same problem, but we have been looking

at the steady state equation what if I decide to look at in addition time variation. This is the

steady state Laplace equation what about time variation if I include dou t well then there is a

problem in using method of lines because if we discretize only in 1 dimension you will get

another partial differential equation so which you again have to discretize.

So it depends upon the problem at hands.
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So suppose I have here a modified version of this problem. So the modified version I would

just create here itself. If I add here and my right hand is instead of f of xy I will make it time

dependent and all these conditions at boundaries will hold for all time. And then I will also

have initial condition so I will have to give an initial distribution of temperature in the room.

So what I want to know is how the temperature surface is changing as a function of time. 

When  I  am  including  time  derivative  here  I  am  looking  at  the  spatial  distribution  of

temperature  in  this  room or  in  the furnace or  whatever  the condition  is.  And then I  am

interested in time evolution of this temperature not just the steady state. So this problem will

also have additional initial conditions coming up. So the boundary conditions have to hold for

all t. So this has to hold for all time t including this boundary condition.
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And then you will have at t=0 you will have temperature at xy0= some functions say H xy. So

this is the initial condition. So this is the initial distribution of temperature in the room and

then I want to solve this problem what should I do here can you suggest something? What if I

decide to discretize in 2 spatial dimensions? I discretize in x and y. I leave temperature as it is

what will I get? I will get ordinary differential equation initial value problem.

Large number of ordinary differential equation which are coupled. So here if I now take I am

not going to completely write the solution you can work it out I am just going to hint at the

solutions. So I am going to call now Tij xi or I am going to call Tij t=temperature at xi yj and

t. Like in the previous case I have created a grid here and  ij-th point the time variation I am

going to write like this.
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And  then  well  I  will  discretize  this  problem  as  dTi,  j  t/dt+  alpha  times.  Now  I  will

approximate as Ti+1, j-2 T ij+ Ti-1,j/delta x square+. So if I discretize in 2 dimensions I get

large  number  of  ordinary differential  equations  in  time,  but  in  this  case  I  will  not  get  a

boundary value problem just  think about it.  In this case I  will  get a ordinary differential

equations initial value problem.

So write now we are not talking about how to solve this problem. We are just talking about

transformation. We want to take a problem transform it into a solvable or computable form.

How to actually  compute that solution will  come to that later. I want to separate these 2

things. I just want to give you a viewpoint that well if I take a partial differential equation or

ordinary differential equation I know from (()) (25:39) theorem that any continuous function

can be approximated using polynomials.

So  I  used  Taylor  series  approximation  construct  local  approximation  of  the  differential

operator  and force the so called residuals  to 0 that give rise to an approximate problem.

Approximate problem would look completely different from the original problem. A PD is

giving rise to set of algebraic equations, linear algebraic equations. PD giving rise to set of

ordinary differential equations boundary value problem or a PD giving rise to set of ordinary

differential equation initial value problem.

So we bring all these into some standard forms and then we apply the standard tools to solve

this problem that is what you should realize. There is no unique way of coming up with a

discretization. You could have your preferences solve the problem at hand. So in this place

you can complete the initial conditions you can remove the so this called a DAE differential

algebraic system with initial value problem, initial condition specified or if you eliminate.

It  could  be  just  ordinary  differential  equation  initial  value  problem.  So  till  now we  are

looking at Taylor series approximation and as I said this is only one of methods that are used

for discretization other 2 methods are interpolations, polynomial interpolation and then least

square approximations. So we will stop here with Taylor series approximation we will now

move on to Polynomial interpolations.

And then see how interpolations can be used to discretize the same set of problems. What I

have deliberately done is in the lecture notes is that I have taken same set of problems and



then discretize them using different approaches so that you will get a better insight into what

has  really  happened  at  the  discretization  stage.  Now  let  us  move  on  to  interpolation.

Interpolation  is  something  which  probably  you  are  introduce  in  your  undergraduate

curriculum.

Can anyone tell me what is interpolation what is an interpolating polynomial. When do you

interpolation or interpolating function you are given a set of points and values. So you are

given some set of so you actually want to develop an approximation for a function continuous

function. Let us take a continuous function say U or.
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To be very precise let  me see to begin with polynomial  equation.  Well  you can also do

function interpolation in general functional interpolation, but we are interested right now in

polynomial interpolation because we use the polynomial interpolation ideas to come up with

approximations or discretization of some operator. So now polynomial interpolation is we are

given some values of say dependent variable Uz and independent variable z.

So we know some values of U just before I move on to this let me clarify one point in finite

difference method I kept on using equispaced grid points. It is not necessary that you should

have  you  should  have  equispaced  grid  points  that  was  only  for  the  convenience  of

development understanding actually you can use non-equispaced grid points. For example,

now when to use non-equispaced grid points and then how to space them will depend upon

your understanding of the physical problem.



So for example if you have a PFR if you have plug flow reactor and let say most of the action

is in the initial part of the PFR and later you know the concentration becomes steady or it

does not change too much it becomes flat. It is worth putting more grid in the initial part

which are closer to each other and then putting sparse grid points later because there is not

much thing happening at the end of the reactor.

So this depends upon your understanding of the problem. In some cases, you may want to

place close grid points in the 2 ends sparse grid points in the middle it depends upon the

problem. So there is sacrosanct about equispaced grid points. Equispaced grid points only

make development on the board simple, but in general and as a beginner you might start with

equispaced grid points, but then if you know about some problem.

Where there is more variation of a particular variation in particular region you can put closer

grid points and then can have a sparse grid point that depends upon your understating of the

system. So let us move on to this polynomial interpolation.
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Now what I want to do here is I have this function uz as a function of independent variable z

and I know the function values at these discrete points in the domain. So this is my point

number 1, this is point number 2. This is in general ith point and this is my n+1 points from z

1 to zn. I know value of a function what I want to do is I want to construct a polynomial

which passes through each one of them.

I know this is a continuous function of independent variable z. My theorem I can approximate



it as a polynomial function. I want to construct a polynomial function that passes through all

the  points  this  is  different  from  least  square  approximation  which  you  do  in  your

experimental work where you fit align. So the line may not pass through every point that is

least square approximation. We will look at least square approximation little later.

But right now we are concerned about constructing a polynomial that goes through every

point. So my problem is to construct a polynomial Pz I am going to construct a polynomial

approximation Pz. Now this is alpha 0, alpha 1 if I have n+1 points I can fit a polynomial of

order n that exactly passes through all these points. I need a polynomial of order n because

the polynomial must pass through every point so this is a constraint.

So what does this constrain means. So I have these points z1, z2, zn+1 I have these points

what I want is that value of this polynomial at each of these points should be exactly equal to

ui that is an interpolating polynomial. So I have this state of constraint.
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So alpha 0+ alpha 1 z1 up to alpha n z1 raise to n=u1. Alpha0+alpha 1 z2 and so on. So I get

n+1 equations I get this n+1 equation in n+1 unknowns what are the unknowns here alpha 0,

alpha 1, alpha 2 up to alpha n. There are n+1 unknown and there are n+1 equations how do

you solve this.
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This can be simply transformed into 1 z1, z1 square z1 raise to n 1 z2 z2 square z 2 raise to n.

So this is simply solving Ax=b. Well unfortunately life is so simple because it turns out that if

you  want  to  develop  a  higher  order  interpolation  polynomial  nth  order  interpolation

polynomial in general about 3 or 4 this matrix here it looks very simple right Ax=b. This is

known to you these values are known to you function values are known to you right now. 

What you do not know is alpha 0 to alpha n and you know this matrix right you know the

point at which so you know z1, you know z2 so you can create this matrix. We will see in the

course of looking at ill-conditioned matrices. We will see that this is one of the highly ill-

conditioned matrix.

Difficult to invert you can get so high order interpolation polynomials if you just go by this

brute-force approach can lead to problems. Well one way to get out of the situation is to use

orthogonal polynomials these polynomials are not orthogonal so that is why you get into

trouble. If you use orthogonal polynomial you can come out of this problem and then this

matrix is very nicely behaved and so on.

But right now let us not worry about that part right now let us assume that this matrix is

invertible. So how do I get alpha 0 to alpha n so if this is my A matrix and let say this is my

capital U vector and if I call this simply as theta parameter vector then at least on paper I can

write theta= A inverse U. Where A matrix is known to me U vector I know the function

values at these points.



Theta  I  can  get  what  I  get  is  the  interpolating  polynomial.  Well  I  am going to  use  the

interpolating  polynomial  to  discretize  boundary  value  problems,  to  discretize  partial

differential equations what I will be getting there or what the method that is used to do that is

called as method of orthogonal collocation why this word orthogonal comes into picture. We

will look at those details.

But the basis is this that if you know a value at certain number of points then theta can be

expressed as A inverse U and this polynomial which you get here if you are able to calculate

all these alpha 0 to alpha n correctly this polynomial will pass exactly through all these points

that is very important. This polynomial will pass through each one of these points. It is a nth

order polynomial that passes through each one of these points.

Now the trouble I told you is that constructing a very high order polynomial through large

number of points is can you give you to some ill-conditioning and when you are discretizing.

See we saw in finite difference method what was the message take home message that if you

have more number of gird points better the solution. So when you are discretizing this is true

for even for interpolation approach to discretize.

So we would need large number of grid points, but that would mean you would have to fit a

large order polynomial and then you can get into ill-conditioning problem. Now when I am

going to do the development of orthogonal collocation method I am not going to bother too

much  about  this  ill  conditioning.  I  am just  going  to  develop  a  method  and  convey  the

approach, but what you really need is spline interpolation.

Do you know what is spline interpolation cubic spline interpolation? Well I have discussed it

in the detail  in the lecture note.  So I will  just give you a brief idea what is cubic spline

interpolation. The exact equations you can see here in section 4.2, but let me explain the idea.

The basic idea is this that instead of fitting one giant polynomial of high order which passes

through all the equation. We could choose to construct piecewise polynomial approximation.
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So I could construct  1  approximations  between these 2 points.  I  could construct  another

approximation between these 2 points third approximation between these 2 points. What I

have to make sure is that these neighboring approximations are continuous. Typically, what is

done is that we fit a cubic polynomial between 2 neighboring points and make sure that there

are smoothly joint.

So how do you make sure how they are smoothly joint? Well we make sure that the first

derivative and the second derivatives match for the neighboring polynomials. So this is called

as piecewise polynomial approximation and this is many times required because so what is

the idea here is that you still have the same number of points. You still have Ui that is Uzi for

ZI or I going from 1, 2 up to n+1 so you still have this grid points.

Now what I am going to do here in piecewise polynomial approximation well let me little

careful about terminology piecewise polynomial interpolation approximation will be using in

some other context. So piecewise polynomial interpolation so what I do here is that I fit a

polynomial  between 2 neighboring points and then I make sure that  there is  a continuity

between 2 neighboring polynomial.
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So I  will  have  a  polynomial  P1z  which  is  alpha  0  1+ alpha  1,  1.  Now there  are  many

polynomials so I have to have a notation which has 2 coefficients the coefficients will have

alpha 0, 1. So this is the first polynomial 0th coefficient. Then z-z1+ alpha 21 z-z1 square+

alpha 3 1 z-z1 cube and this holds between z1 z z2 P2z is alpha 0 2+ alpha 1, 2 z-z2+ alpha 2,

2. Z-z2 square +alpha 3, 2 z-z2 cube.

So this polynomial holds between z2 z and z3. And likewise between each segment I fit a

polynomial in this approach this is called piecewise polynomial approximation. Now how do

I make sure there is continuity. I have to put some conditions here so one condition is of

course you know there is values one condition come from this values. The other conditions

come from the derivatives or the smoothness of the derivatives.
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So other conditions arise so this is the terminal point so these are all initial points of each

polynomial then we have these conditions which are continuity conditions P1z i+1= P i+1 z

i+1. So essentially we are saying that the initial value of this polynomial is same as the final

value of the previous polynomial then you have condition dpiz i+1/dz= dp i+1. And the third

condition is.

So to ensure smoothness we make sure that the value of these 2 neighboring polynomials at

the  common point  is  same.  The first  derivative  of  the  2  neighboring  polynomials  at  the

common point is same and the second derivative of the 2 neighboring polynomial  at  the

common point is identical. So these are the additional constraint which we impose if you

actually put all these constraints then you need 2 boundary constraints.

So there are different ways of specifying the boundary constraints one of them is called as

you just look at the notes here. So free boundary conditions are we need 2 more conditions at

2 more boundary point at this point and this point. So those are free boundary conditions

would be d2p if you include these 2 boundary conditions that at the 2 boundaries the second

derivative is 0.

If you include these 2 boundary conditions, then you get number of equations= number of

unknowns. What are the unknown here alpha values? How many alpha values? 4*n. You can

do some algebraic manipulation and finally reduce this problem to Ax=b where A is a sparse

matrix.  The manipulations are given here you can just have a look at it,  but interpolation

when it is not possible to do high order interpolation this cubic polynomial interpolation will

be used.

And that will lead to orthogonal collocation on finite elements. So we will get a method finite

element method. If you do polynomial interpolation on a smaller domain. So the different

ways of doing interpolation and it is a very, very rich area. I am just touching a tip of the

Iceberg by talking about these 2 basic ideas which I need to develop my further approach. So

the  next  lecture,  I  will  start  using  interpolation  idea  not  the  piecewise  polynomial

interpolation simple interpolation.

Nth order polynomial passing through all n+1 points. This simple idea I am going to use to

develop method of orthogonal collocation. So by the method of orthogonal collocation we



will discretize again boundary value problems and partial differential equations. So you will

again revisit the same problems, but through a different approach. So orthogonal collocation

is a very popular method in fact it is a method which requires less number of grid points to

get the same accuracy as that of the finite difference method.

Finite difference method would require large number of grid point. This method gives better

solutions  with  less  number  of  grid  points.  So  this  is  computationally  less  expensive  as

compared  to  finite  difference  method  that  is  why  we  want  to  go  for  polynomial

interpolations.


