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Okay, given the element from the range space and the operator T, I want to find out x. This is

called as inverse problem, okay and these are the problems which we normally have to solve.

So, the core of this particular course is dealing with these kind of problems and a next class

which is identification problems. So here, what falls under this? So, solving Ax = b, given A

and b, classical problem, which right hand side given operator, you want to find out x, right.
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This is probably the problem which we will solve most often in this course. So, we are given

some differential equation, so the other classical problem is ODE initial value problem. We

are given a differential equation, so this is the operator, okay. We are given ft, ft is equivalent

to b or ft is equivalent to the vector in the range space. I want to find out solution xt which

satisfies the condition that initial value = alpha and initial rate = beta.

I have given 2 initial conditions, I have given the operator, I have given the vector in the

range space, I want to find out solution xt, okay inverse problem. Operator is known, the

range space vector is known, okay. initial conditions are known, I am going to find out xt,

inverse problem. So, likewise ODE boundary value problem is an inverse problem or solving

a partial differential equation that we encounter in engineering mostly inverse problems.



We are given the vector in the range space, we are given the operator, we have to find out x

that satisfies the differential equation boundary conditions and solution gives you the vector

in the range space, okay. So, these 2 problems are conceptually similar Ax = b or this operator

operating on xt giving you this vector ft, okay and then the solution should satisfy these 2.

So,  these  kinds  of  problems are  inverse  problems.  The third  class  of  problems that  you

encounter in the engineering mathematics is identification problems. So, you are given x and

y and you are asked to find out operator T, okay. The classic problem here is model parameter

estimation.  Suppose,  I  want  for  some  particular  material,  you  want  to  find  out  cp  as  a

function of temperature.
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So, you have this a + bT + cT square. I do not know a, b, c, I have been given values of cp, I

have been given values of temperature, okay, so I have been given x, I have been given y, y

here is  cp,  okay, x here is temperature,  what I want to find out is  the correlation,  is  the

operator, I want to find out the operator. Finding operator in this case it is to finding out a, b

and c, okay.

So  given  data,  parameter  estimation  problem.  What  are  the  other  parameter  estimation

problem?  You  have  seen  in  chemical  engineering,  reaction  rate  expressions.  You  have

measured  the  rate  of  change  of  concentration  of  particular  spaces  and  then  you  have  a

proposed expression, okay. You do not know the parameters, okay. You have rate values, you

have concentration values, you want to fit.



Find  out  the  parameters  of  the  rate  expression  or  you  know you are  trying  to  fit  some

thermodynamic correlation, PVT correlation, you have data for PV and temperature and you

have a proposed model, we do not know the parameters you can fit, estimate the parameters

from data. So, you are trying to find out the operator, okay knowing I mean if you look at y as

a effect and x is a cause, so operator T operates on x gives y, y is the effect.

So,  you  know cause  and  effect,  you  want  to  find  out  the  operator.  Another  example  is

estimation of transfer functions in process control, okay. You give an input perturbation, you

measured the output, you tried to fit the transfer function into the data, okay all these are

examples of identification problems, okay. So, bulk of our work in this courses going to be

inverse problems and then, we will also look at identification problems to a large extent.

Direct problems are not going to be focused, I am not saying the direct problems are not

important, but relatively easy to deal with these 2 problems are more difficult and we should

get the better understanding of these problems. Now, the main problem in most of the cases,

not in every case, in most of the cases is that once you have formulated a problem, it may not

be possible to construct analytical solutions to the problem, okay.

Particularly if  a  operator  is  nonlinear, okay. So, I  can say in  general  when operator  T is

nonlinear  you  cannot  construct  analytical  solutions.  Well,  there  are  of  course  many

exceptions, but the cases where you cannot solve are far more than the cases where you can

solve, so in general you can say that when the operator T is nonlinear, so lot of numerical

analysis is all about transforming a problem which is not analytically computable to a form

which is numerically computable, okay.
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So, actually my original problem is y = T of x, okay and where you know y belongs to space

Y and x belongs to space X, okay. I am not able to solve this original problem, so what I do is

I approximate T using approximation theory and then I get let us call it T cap, okay. I get a T

cap, which actually works on x tilde and gives me y tilde, okay. here, y tilde belongs to Yn

and x tilde belongs to Xn.

So these are finite dimensional spaces typically and then we end up solving this problem, not

this  problem. We hope that the solution that you get suppose I solve an inverse problem

which is I wanted to solve the original inverse problem, I end up solving an approximate

inverse problem, okay and I hope that the solution x tilde is close to x, okay.

So this is generally the situation now, how do you get from here to here, next about 10 to 12

lectures are going to be how do I go from here to here. So this looks abstract right now, but

keep this in mind in background that this is what we are going to do, okay. So we might start

with the partial differential equation and end up with nonlinear algebraic equations, okay. See

this might be a partial differential equation what do you end up here might be linear algebraic

equations or nonlinear algebraic equations, okay.

So, what you start with and what you end up with can be completely different, okay. So, it is

not  that  because I  start  with the differential  equation,  I  will  end up with the differential

equation, okay. Now, when you go from here to here, there is no unique way of constructing

T  cap,  there  are  multiple  ways  of  constructing  T  cap,  okay.  Same  problem  can  be



approximated, discretized in multiple possible ways that is what we are going to see here,

okay.

And each one of  them has  advantage  and disadvantage.  So there  is  nothing like  though

method to discretize, okay and as you go along doing numerical problems, you will develop

your own preferences as to, so I am going to talk about not just one method. I am going to

talk about multiple methods. So, you might wonder why I am talking about multiple methods

because there is no one way to solve the problems.

Sometimes  some methods  are  simple,  but  if  they  do not  work,  you need to  go to  more

complex  methods  and  so  on,  okay. So  when  you  attack  a  problem,  you  should  have  a

repository of tools or repository of you know approaches to deal with a problem and then you

can go on you know simple method first, if does not work go to a more complex method, if it

does not work, go to a more complex method.

What you mean by does not work, the proof of the pudding is x tilde close to x does not make

sense. Now, you in the real situation, you never know what is x, true x, but since you are an

engineer, okay if you look at the solution, you can make out whether this makes physical

sense  or  not,  okay. Whether  the  solution  makes  sense  as  a  engineer,  as  a  scientist,  as  a

physicist, you can make a judgment and then decide whether your method is giving resemble

results or not, okay.

So, there is a lot of subjective element here which requires development of expertise, okay.

So, even though we are dealing with applied math which everything cannot be automated and

that is why we are in business, okay. There is still  scope for improvement you know for

interpretations for doing it differently, getting better solutions and so on, so now let us begin,

okay. So, what is the basic trick that is?
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So, if you ask me to distill out one basic idea which is used to do these transformations from

T to T hat,  okay. Cutting  across all  the methods for boundary value problems or  partial

differential equations for all kinds of things, what is one trick that is used. Well, if you ask me

to summit up, I will say that approximate a function by polynomial that is the trick that is the

underlying trick.

You know if I cut across many of the methods and what I am going to show in next few

lectures are that how this one trick is used to you know deal with variety of problems, okay.

Starting from nonlinear algebraic equations to partial differential equations to boundary value

problem, so all  kinds of terms, we just  use one trick in multiple  ways.  So, basic idea is

approximate.

Now the question is, well, is it just an observation or is the basis why should I approximate a

function by a polynomial function, why not cosine functions? You know why not exponential

functions? Why polynomials? What is so get about them? Well of course, they are convenient

when you do calculations, but not just that, there is something deeper into why polynomials

are used for approximating functions and then developing different methods for solving the

problems.

So, fundamental concept here is the concept of a dense set, see approximations is something

that we very, very often use in mathematics, for example pi, you know when you start using

pi, you start using that 22/7, right. But pi is not = 22/7, it is an okay approximation of pi for



doing you know rough calculations, not exact calculations. When you start using for example

E, we never use the true value E, right.

We use an approximation, a finite truncated approximation of E and do calculations, right.

So, what allows you to do that? What allows you to do that is that you can approximate a real

number using a rational number, okay, this property of rational number, there is something

special about rational numbers. You can approximate any real number as close as you want

by a rational number, okay.

And  this  particular  property  is  expected  by  us  when  we  do  computations  and  the  best

example I said is pi being replaced by 22/7 or whatever. There are different, different rational

approximations of pi,  you remember something else, some 141 by or there is some other

approximations also, which are not so popular in the school books. But what we use in school

book is 22/7, right.

We are always, so why we can do this or I told you that when you are doing computing, all

the number are finite procedure, right. No number in the computer, so there will be missing

numbers if there is a finite procedure, okay. Not all numbers can be represented, particularly

it is not possible to represent you know all real numbers, pi may not be truly representable,

you can represent using some truncations.

Because when you do finite precision, okay if I write some expansion for pi, I can write that

integer divided by some 10 to the power something and that will be a rational number, right.

So, it is not the correct value for pi, it is a rational approximation for pi, okay. So, I am able to

do this because of this denseness property, so what is a dense set? So, let us go over the

definition.
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A set D is said to be dense in a normed space, so first of all you have to worked in a normed

space, meaning norm, okay without that we cannot work both with these numbers or vectors.

So for any element, if I give you any element x, in x I should be able to find and if I give you

an epsilon, I should be able to find an element d belonging to dense set D, which is close to x,

how close, there is an epsilon.

So, you know it is like saying if my x is pi and if I specify epsilon, you should be able to

come up with a rational number which is close to pi such that the difference is < (()) (18:47).

You know she might my epsilon is 10 to the power -3, okay I will come up with 1d, which is

one rational approximation of pi, pi - d is < 10 to power -3 and he comes up when says no,

no, no, I do not accept 10 to the power -3.

I want 10 to the power -9, is it possible. It is possible to find given pi, it is possible to find

rational approximation such that pi - that number is < 10 to the power -9 and somebody does

not accept 10 to the power -9 and you know he says 10 to the power -17, fine. I can find a

rational number which is pi - that rational number will be < 10  to the power -17. So, any

epsilon that is very important, okay.

So, what does it mean that on real line, these rational numbers are everywhere you know. I

can use them as approximation of something else which I am not able to represent, which is

very nice, okay. So, I can use rational numbers as an approximation of a real number and that

is why I can work in a computer, okay. So, when I am working in n dimensional space, okay.



In Rn, even though I may not be able to represent you know all elements of the vector Rn

because  a  real  number  may  not  be  exactly  representable,  I  can  replace  by  its  rational

approximation, okay. See suppose I have a vector, which is like this. Suppose I have vector

which is e, - pi, pi square, root 7. In a computer, can I really work with e, - pi, I cannot, right.

I actually replace this by some approximations.

So some rational  approximation  of e,  some rational  approximation  of  this,  some rational

approximation of this and so on and why we can do this because set of no, no understand the

philosophy, why we can do this, is because set of rational numbers is a dense, okay. Rational

numbers are everywhere, you can just if you want to represent a real number, pick a very

close rational number, you know you will be having a good approximation, okay.

Now, I want a similar result to this in set of continuous functions, okay. What I am going to

work  with,  now  we  have  seen  that  you  know  when  you  deal  with  partial  differential

equations,  when  you  deal  with  boundary  value  problems,  when  you  deal  with  ordinary

differential equations, we will be dealing with set of continuous functions, okay. So, this is

nice here that you know I can use rational approximations.

You know some q1, q2, q3, q4, so this is a rational approximation of this and in my computer,

I can do calculations with this, in the same way I want analogy in set of continuous functions.

This is a similar idea, conceptually a similar idea is that set of polynomials is dense in set of

continuous functions. In the same sense, the set of rational number is dense in set of real

numbers, okay.

Polynomials  you  know you  can  approximate  anything  by  a  polynomial,  any  continuous

function  by  a  polynomial,  so  these  are  the  Lindemann  theorem  given  by  a  German

mathematician Weierstrass.  I think somewhere in 1850s or 1860s and this  is a celebrated

theorem by called as, so this is a well known result, well this particular result is what is called

as an existence result, okay.
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I  will  tell  you what  I  mean by existence  result.  It  does  not  tell  you how do construct  a

polynomial  approximation.  It  assures  that  given  a  continuous  function,  there  exist  a

polynomial  which is  arbitrarily  close to the continuous function.  Now, what is  arbitrarily

closeness? You need norm, okay. what is arbitrarily closeness? You need concept of norm. So,

now what do we consider here.

We consider the set of continuous functions over an interval a, b together with infinite norm,

okay. So this is the space, this is the norm defined on it, this is the norm linear space, okay.

Now, Weierstrass theorem tells us that well I will move on to here to complete this theorem

statement, so if I give you any epsilon > 0, any degree of accuracy, epsilon will specify how

accurate you want the approximation, okay.

(Refer Slide Time: 24:41)



And if I pick up any continuous function ft from c a, b, set of continuous functions over a, b,

then there exists a polynomial very, very important result, okay. So what does it say, given

any epsilon, you give me the accuracy that you want. How close an approximation you want,

okay?  You  can  specify  that  epsilon  a  give  me  any  function  ft  which  is  the  continuous

function, okay.

Then, there exists a polynomial approximation, I am going to call this as Pnt and we will be

let us say order of the polynomial, okay. Such that ft - Pnt is < epsilon, okay. This is clear. So,

what  is  this  norm? This  norm is  absolute  norm.  We are  finding  out  difference  between

maximum of the absolute value,  see if  I give you a function,  let  us say sine t,  okay this

theorem tells me there is nth order polynomial such that sine t - the polynomial absolute of

this, okay.

Maximum is the interval will not exceed epsilon. Use specify epsilon, I will construct a Pn,

okay. You give me an epsilon; how do you construct a Pn? Is not what is told by this theorem.

It just says that there exists, okay. how do you construct that approximation? Well that is a

different story. It only assures that there exists a polynomial which is arbitrarily closed.

How do we find out that particular polynomial is not given by this theorem, but it tells you

that there exists a polynomial, so which means when I am approximating a transformation, I

could  use  this  basic  idea  could  transform a  differential  equation  or  transform you know

boundary value problem or partial differential equation into some simplified form. We will do

it much more in detail.

But I will just give you a very, very simple example, okay. So, do you see parallels between

here and here. We are talking about finding out a rational number which is arbitrarily close to

a real number and using that rational number for calculations, this is not the real number,

okay. Same thing, same idea we are going to do here, okay. The true solution would be a

continuous function, okay.

I am going to approximate that continuous function by a polynomial function, why that will

help  me to  solve  the  problem and you know by transforming  the  operator  by  solve  the

problem in a different way which is easier than the original problem. Well, one simple, this



kind of things will hit on later. Let us look at a very, very simple demonstration. See, if I have

dx/dt = some f of x, okay.
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And I have given you initial condition corresponds to say x not, okay. Now what is xt, let us

say x star t is the true solution, okay. Is this a continuous function? it has to be a continuous

function.  It  has  to  be  in  fact  differentiable  function,  not  just  continuous.  It  has  to  be  a

differentiable  function,  so  it  is  a  continuous  function.  Any  continuous  function  can  be

approximated by a polynomial function.

I propose a polynomial solution which is say Pnt or I will call it xt which is a not + a1t + a2t

square. Let me propose a polynomial solution. Now, this is a polynomial approximation. This

is not a true solution, but I can substitute it here, I can substitute here and I can say that well I

won the approximation solution such that, so what is dx/dt, a1 + 2a2t, right and then, I can

substitute this here.

So for any t, I want this equation to hold that is a1 + 2a2t = f of a not + a1t + a2t square, right.

I  am doing something which is  very lieu,  we do it  much more sophisticated  mind there

afterwards. I just want to carry some point here. Look, this is a differentiated equation, I

started with. I approximated using a polynomial form with unknown coefficients. I do not

know a not, a1, a2.

True solution is x star. With what boldness I can do this? I know at a continuous function can

be approximated by a polynomial function, okay. I substituted this, what happen, what look



like originally a differential equation, now looks like an algebraic equation with unknowns

a1, a2, a not. The problem is transform from a differential equation to an algebraic equation,

okay.

So, this idea of using a polynomial approximation of a continuous function will be used to

transform problems, which are originally, so original operator t was a differential operator, t

prime or t cap what you are getting here, looks like an algebraic, so I was talking about you

know starting with an original problem, transforming the problem and solving the transform

problem.

So, we might actually computationally this is easier to track than this. We might solve this as

compare  to  this.  What  we get  by this  approach is  the approximate  solution,  not  the true

solution remember that, okay. This is the approximate solution, but if we can accept 22/7 in

place of pi, we can accept this approximate solution and as long as it is close and you know,

your physics is you know preserved in some sense qualitatively, you do not bother too much

about the difference between the 2, okay.

So this  is  how it  is  going to help us  in transforming the problems.  So what  is  used,  so

Weierstrass approximation theorem as such we never revisit again, but it is the foundation

everywhere,  you know Weierstrass  theorem comes at  in  a  hidden form, it  is  everywhere

because we approximate continuous solutions using polynomials, so somebody asked what is

the basis, why polynomials?

Because polynomials are dense, why should I be so much worried about a dense set? You

know dense set is something which can pick an element, dense set and it can be as close as

possible to the original, you know element in the original set, okay. So, dense set is a special

set, so just like set of rational numbers is a special set in the real numbers, polynomials, set of

polynomials is a special dense set instead of continuous functions, okay.

So this is a foundation, this is (()) (33:39) result, but it does not tell you how to construct a

polynomial  approximation.  Now, we  are  going  to  use  3  different  tricks  for  constructing

polynomial approximations. So, there are 3 different ways by which we are going to construct

a polynomial approximation. First is the Taylor series approximation, you are familiar with

Taylor series expansions, we will just revisit them briefly in the next lecture.
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Then, we move on to polynomial interpolation polynomials and the third is the least square

approximation.  So,  if  you  understand  these  3  basic  concepts,  most  of  the  problem

transformations will be clear to you. How the problem is transformed to a computable form,

okay. Then, comes how to solve the transform problem, okay, so that is the next part, so till

mid sem will be actually working on now this.

Will systematically look at different problems particularly boundary value problems, partial

differential  equations,  nonlinear algebraic  equations and all  kinds of things were we used

these 3 ideas and then transform the problem to a computable form. So, next the 12 lectures

are about problem formulation, okay.

You have formulated the problem from physics and you got some problem, which is coming

from your courses and transport, reaction engineering, whatever, heat transformer, strength of

materials whatever your specialization, so those original problem is coming from there, okay.

I  want  to  computer  a  numerical  solution  for  these problems,  so I  use all  these  tricks  to

transform the problem to a computer bill form and then I solve that computer bill form, okay.

Construct a solution which is approximate numerical solution to the problem, okay. So in the

next class, we will start with Taylor series approximations, okay. I will very quickly review

Taylor series approximation, what is the basis behind Taylor series approximation, you are

aware of only one variable Taylor series, we will move on to multivariable Taylor series,

okay. Polynomial functions in n variables, okay.



And then we will look at for example one of the application of the Taylor series would be

Newton-Raphson  method,  okay. Then,  we  will  move  on  to  show that  this  Taylor  series

approximation actually gives rise to the finite difference method of solving, boundary value

problems, finite different method of solving, partial differential equations, okay and so on or

the polynomial interpolations.

So we will develop in the class, method of orthogonal collocations and see how an orthogonal

collocation  arises  from  polynomial  interpolations  and  so  on.  So,  all  these  3  different

approaches give rise to different ways of problem discretization and that will be the center

theme for next few lectures.


