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Welcome  to  the  world  of  numerical  analysis,  I  am  Professor.  Sachin  Patwardhan  from

Department of Chemical Engineering at IIT Bombay and these are series of lectures delivered

on advanced numerical  analysis  in  NPTEL phase 2.  S0,  this  is  my first  lecture,  this  is  an

overview of the course and next 1 hour also, I am going to present a bird's eye view of what we

are going to study in this course. 

(Refer Slide Time: 01:31)

World of numerical analysis is pretty involved and complex and probably some of you have

already have some introduction to this. This is meant to be a course, which is Advanced Course,

we will  introduce  you many of the things  in a  different  light  and I  hope,  it  will  help you

throughout your academic career. So, let us begin our journey with the motivation. In chemical

plants it can; now, you have large number of interconnected units like heat exchangers, reactors,

distillation columns.

And these days, the chemical plants are very tightly integrated to achieve high energy efficiency

or high material efficiency, which makes it very complex to handle, to operate, to design and it

is not possible to do it without doing mathematical modelling. So, design and operation of such



complex plant is always a challenging problem and mathematical modelling and simulation has

become a very, very handy tool.

A very cost effective method of analysing behaviour of such plants, so in a real design problem

or  a  real  operation  problem,  we  have  to  judiciously  blend  mathematical  analysis  with

experiments. It is not possible to rely only on experiments; it will be not correct to rely only on

mathematical modelling. What we are going to do is to plan experiments very carefully using

mathematical models.

So, mathematical modelling has become a backbone of modern chemical engineering, design

and operation. Now, these models have to be solved either offline or online and when you have

to  solve  this  models  under  a  variety  of  conditions,  variety  of  problems,  you  need  to  use

numerical  tools.  Most  often,  you  cannot  solve  these  problems  analytically,  so  numerical

problems  is  at  a;  or  numerical  solutions  is  at  the  heart  of  mathematical  modelling  and

simulation, which is in effect used for designing and operating chemical plants.

Now, what are the typical problems that we encounter? Let us look at some of the problems that

a chemical engineer would typically have to face, when he goes to a chemical plant. Well, one

problem is of course, a design problem, you may have to design a new section of a plant or if

you are part of a consulting firm, which design chemical plants, you have to design a new plant

under; you know you are given some desired product composition you are given some raw

material availability.
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And then, you have to find out unit sizes, you have to find out flow rates, you have to find out

operating conditions, so coming up with a base design from which a mechanical engineer or

other engineering departments can take over is what is the job of Chemical Engineer coming up

with  the  basic  flow  sheet  design.  So,  this  normally  involves  models  for  different  linear

operations.

You have to connect all these models into a giant mathematical model into a big model, which

could be 100’s and 1000’s of equations, they need to be solved under a variety of conditions, so

this is one of the problems that you normally encounter. The other problem could be that you

are already employed in a plant and then you know, you have to do process retrofitting.

So, retrofitting involves improvement in the existing operating conditions, so you have a plant,

which  is  operating  and  then  some  modifications  are  necessary  because  maybe  the  input

conditions have changed, maybe you know, the feed quality has changed or you need to ramp

up, you need to operate the same plant at different conditions than what it was designed for

because of the market conditions.

So, retrofitting is another problem for an existing plant and a problem that always comes when

your operating plant is control or online optimization. So, dynamic behaviour and operability

analysis is integral part of operating any complex chemical plant, you have to; first of all you

have to monitor and control the plant, you have to make sure that it is operating safely, you may

have to carry out hazard analysis, conduct what-if studies.

You may want to do online optimization, run the plant in an optimal way and all these exercises

cannot be done without mathematical modelling and subsequently, solving these mathematical

models using numerical analysis. So, numerical analysis is at the heart of all these exercises that

we have to undertake as a chemical engineer. Now, what are mathematical models?
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Mathematical models could be in different forms, we have models that give insight into long

term behaviour, so these are typically energy and material balances and we look at the steady

state conditions and the design problems or in retrofitting problems, you might want to only

restrict yourself to steady state models that means, we ignore the transient behaviour or short

term behaviour.

Whereas, when you are studying operation of a plant, when you are trying to control the plant,

you cannot ignore the dynamics, so in that situation, the short term behaviour or the transients

become very, very important and then, we have to; we have to solve the mathematical models in

time and possibly, time and space, okay. So, what kind of mathematical models that we are

going to study, what we need in this particular course?

Mostly these models are going to be coming from first principles or they are from; or they are

often called as mechanistic models or phenomenological models, so these models come from

you know, mass balances, component balances, this is something that you have been doing for;

as you know in your courses and various courses at Chemical engineering. So, this could be

you  know, models  are  composed  out  of  you  know, rate  equations,  mass,  heat  momentum

transfer.

There  are  constitutive  equations,  then  chemical  reaction  rate  equations,  there  could  be

equilibrium principles used while doing a modelling between different phases, also you may

have to use equations of state, if for systems involve gases or multiple phases, so the models

that you actually use for doing this design operation dynamic simulation are quite complex.



They are constructed out of these fundamental concepts of energy mass material balances, rate

equations and equilibrium models.

(Refer Slide Time: 09:05)

Well,  from a mathematical  viewpoint,  how do I  classify  these models?  Well,  we can  have

variety of classifications but one classification that is relevant to this  course, which will of

course,  show  up  in  a  different  way  in  terms  of  classes  of  model  equations  that  we  are

investigate;  is  distributed  parameter  models  and  lump  parameter  models,  so  by  this

classification, you know we are looking at 2 classes.

One  that  deals  with  variation  in  time  and  space,  so  distributed  parameter  models  capture

relationship between different variables not just in space but also in time. When I say space, it

could be in multiple dimensions not just single dimension, so for example, Plug flow reactor or

a packed bed column or even a shell and tube heat exchanger can be modelled as a distributed

parameter system.

So, this will depend upon situation, in some cases, you might use very, very simple lumped

parameter model for a shell and tube heat exchanger but there are situations where you may

want to use more complex distributed parameter model. So, one class of models that we are

going to encounter in this course are distributed parameter models. The other class of models,

which we very often study in chemical engineering, a lumped parameter models.

For example, stirred tank reactors or many stage unit operations, mixers, so these are models

with ignoring you know, special variation and if necessary, we only consider variation in time



alone. So, see we are looking at transient behaviour only time comes into picture, if you are

looking at steady state behaviour, you may get only algebraic equations in this case. So, there

are 2 broad classes of models that are encountered in chemical engineering.

And  we  are  going  to  study  these  models;  we  are  going  to  study  how  to  solve  different

subclasses  belonging  to  these  2  broad  classes  of  models.  Well,  if  we  examine  from  a

mathematical viewpoint, what are the equation forms that we encounter, when we are going to

do this course. Well, when you do a course in mathematics or let us say courses in mathematics

in your first or second year of engineering, we start looking at only abstract equation forms.

(Refer Slide Time: 11:51)

And it is important that you relate those at abstract equations forms to what you see in the

mathematical models. So, what a kind of equation forms that you commonly encountered in

chemical engineering models; well, one is linear algebraic equations, where we study linear

algebraic equations maybe even before we enter an engineering program, what; you study as

you enter an engineering program.

And chemical engineering is solving nonlinear algebraic equations, so very often we have to

deal  with a  single  variable  or  multi  variable  nonlinear  algebraic  equations,  thermodynamic

relationships for example, many times nonlinear equations. The other class of problem that you

encounter in modelling chemical engineering unit operations is ordinary differential equations.

Typically, an initial value is given and then we are supposed to find a solution of first, second,

third  or  higher  order  ordinary  differential  equation.  The  other  class  of  problems  that  are



encountered  particularly  in  distributed  parameter  systems  or  differential  equations  with

boundary value problems; you also may have equations, which are differential and algebraic

equations.

So, differential algebraic systems DAE’s, so this is differential algebraic systems are mixtures

of algebraic and differential  equations,  while ordinary differential  equations boundary value

problems are one in which boundary conditions are specified partially at one boundary and

remaining at other boundary and we are expected to solve these kind of differential equations.

So, these kind of problems typically arise, we are solving say, plug flow reactor models or

distributed parameter systems.

And  other  models  that  we  often  encounter  while  modelling  chemical  engineering  unit

operations or partial differential equations, so these models they may not come in isolation. In

real problem, when you are actually trying to solve a problem associated with a section of a

chemical  plant,  you  may  get  mixture  of  all  of  them  not  just  one  of  them  in  isolation.

Nevertheless, when we study these equation forms, we often study them in isolation.

(Refer Slide Time: 14:45)

And then we understand how to attack more complex problems, where combination of these

might be encountered. Now, how do you go about doing this, how do you go about studying

these equation forms? Well, if you look at many of the approaches presented in textbooks are

written  for  engineers,  a  conventional  approach is  study numerical  recipes  for  each type  of

equations.



That means, you start by saying; Well I am going to first look at linear algebraic equations and

the tools for solving linear algebraic equations then, we move on to say nonlinear algebraic

equations  having  studied  linear  and  nonlinear  algebraic  equations,  we  look  at  ordinary

differential equations, then initial value problems typically, you begin with. Then, you might

want to move on to study ordinary differential equations with boundary values.

And then, typically a course would end with set of partial differential equations, so methods for

partial differential equations, methods for ordinary differential equations and so on. So, if we

look at it from this viewpoint, one can get a view that there are separate methods for solving

linear equations and for partial differential equations or boundary value problems but this is not

exactly; so when you start looking at these methods from a different viewpoint.

So, in the conventional approach, how do you; where do you encounter all these applications?

So, after we have studied each one of these equation types that is numerical methods for solving

each one of these equation types, then in exercises or in the in the sample examples, you will

encounter  real  engineering  problems or  it  could  be,  you might  come across  some abstract

problems in terms of some x, y, z variables, which do not make physical sense.

So, these problems are then used to form of the concept that you have studied for each equation

type. In this course on advanced numerical analysis, we are going to be different, we are going

to look at it in a completely different manner. So, what I am going to do is; I am interested in

understanding what are the fundamental steps involved in formulation of a numerical scheme

and  then how do you come up with  a  recipe  or  a  solution  approach  to  solve  a  particular

problem.

So, if you take a critical view point of all the methods then, you come across certain threads

which are common and from that you can actually built a different way of studying numerical

analysis. So, what I am going to do here is you know, look at 2 different steps separately. If you

look at all the numerical methods that are used for solving, you know different type of problems

that are encountered.
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And you know, make analysis, what kind of; what is the first step and what is the second step,

so what do you realize is that invariably a first step is you know, model transformation, so many

times you have models that cannot be directly or many times your mathematical problems that

cannot be directly solved using existing methods, when I mean to say that could not be directly

solved, I mean to say that they cannot be analytically solved.

If  they  cannot  be  analytically  solved,  you  have  to  construct  approximation;  approximate

solutions but to construct approximate solutions, you have to first convert a given problem into

a  computable  form;  a  computable  form is  one  to  which  known computation  tools  can  be

applied.  Now, this  problem  transformation  is  carried  out  using  tools  or  using  approaches

developed in approximation theory, a well-developed branch of Applied Mathematics.

Approximation  theory  is  used  to  transform a  problem into  computable  form and then you

actually use different tools to attack the transform problem and construct numerical solution, so

these  tools  are;  you know linear  algebraic  equation  solver  or  nonlinear  algebraic  equation

solver, it could be ordinary differential equation, initial value problem solver or it could be a

numerical optimization scheme.
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So, when you actually construct, receive or when you construct a numerical scheme to solve a

problem, you first transform it into a form that can be dealt with; that can be tackled with one of

the standard tools and then you use one or more of these tools in combination to come up with a

solution of their transform problem. So, this is; if I just put this into pictorial form, then you

have an original problem.

This  original  problem might  be  a  partial  differential  equation,  then  you  take  this  original

problem use principles developed in the approximation theory and transform it to what I have

called here in a standard form; a standard form is what I mean by my standard form here is a

computable form okay. So, this original form might be a partial differential equation when I

transform it, it might turn out to be set of linear algebraic equations or set of nonlinear algebraic

equations.

So, the original problem that you want to solve and the transform problem do not have same

equation  type,  you  have  a  partial  differential  equation  here,  you  have  a  set  of  nonlinear

algebraic equations here, so to solve this nonlinear algebraic equations, you may have to use;

you may have to use special tools that are developed for solving nonlinear algebraic equations,

these tools for solving nonlinear algebraic equations in turn might use linear algebraic equation

solver.

So, you know it is not that I am going to use just one tool, so I am going to use multiple of these

tools to attack this transform problem and then come up with a solution, which is a numerical



solution of my original problem. So, what we are going to study in this course is 2 steps, well

how do I take the original problem and transform it into a solvable form or a computable form.

Now, this process actually in the conventional approach get mixed up with various; you know

receipts that are developed for a specific equation types, we are going to separate it and view it

as a separate step. So, this means unlike the conventional approach, I am not going to look at

partial differential equations at the end of my course or boundary value problems at the end of

my course. 
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I will begin right in; you know attacking these problems right in the beginning and we will just

transform them into forms that can be solved using one or more of these standard tools, so that

is  the  approach that  we want  to  take.  So,  what  are  the  overall  learning objectives  for  this

numerical analysis course? Okay, well I am assuming here that you have had some exposure to

this numerical method prior to doing this course.

Well, if you have not had does not matter, this course will give you; you know from scratch, a

different viewpoint of numerical analysis but if you had some prior experience with numeric

analysis well it will enrich your understanding. So, the first thing that I want to do here is to

clearly bring out the role of approximation theory in the process of developing a numerical

receipt for solving an engineering problem.

This word is you know I am deliberately using this word numerical receipt, it is like you know

at the end of the course, you should realize that forming a numerical scheme is like cooking up



some dish and you know; if you know the basic ingredients, you can actually combine and then

come up with  a  particular  dish,  so  you often  have  to  be a  good cook to  come up with  a

numerical  receipt  to  solve the problem and to be a good cook you have to  understand the

foundations.

So, the first step is; you know problem transformation, which is based on the approximation

theory. The next step is of course solving it but in solving it, there are 2 aspects; one is of course

the algebraic aspect of the problem, how do you actually write the algorithms and so on but

often there are very, very interesting geometric ideas associated with these numerical schemes.

And if you get understanding of these geometric ideas; if you understand you know, if you can

visualize some of these, if you can use your; you know power of visualization then actually that

can help you to construct solutions much better. So, unlike a traditional course, I would like to

stress  a  lot  on  explaining  many  geometric  ideas  that  are  associated  with  development  of

numerical schemes.

So, this will actually help in developing a deeper understanding of numerical recipes and finally

an aspect that we do not try to stress in a first course is analysis of convergence or convergence

analysis of numerical methods or error analysis, there are also other analytical aspects that are

associated with the numerical computations and I would like to stress these numerical; these

aspects along with the numerical aspects; convergence aspects or along with numerical aspects.

Though we may not get too much deep into these but we will nevertheless study this to some

extent,  so that  you have a taste of what goes in;  you know understanding the convergence

behaviour of these schemes. So, all these 3 aspects are very, very important when it comes to;

coming up or one when it comes to concocting a new numerical scheme. So, if you take a

critical look at many many numerical schemes that are available in the most of the textbooks.
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You will see that you know there are some fundamental 2 or 3 ideas that are used in developing

the compatible  forms okay. One of  them;  one dominant  idea that  is  you find in  numerical

methods is using Taylor series expansion. So, approximations carried or carried using Taylor

series  expansion is  one  dominant  way of  doing approximation.  The other  method or  other

approach that is used is polynomial interpolation.

And  the  third  you  know;  pillar  of  approximation  or  problem  simplification,  problem

discretization  is  least  squares  approximations,  so the  problem transformation  is  carried  out

mainly using these 3 fundamental tools or fundamental ideas; one is Taylors series expansion,

other is polynomial interpolation and least square approximation and we are going to study

them pretty much in detail, so as to understand their role in problem transformations.

Then, after that we are going to get in depth understanding of 4 different numerical tools. Well,

once you transform the problems, there are a variety of ways of attacking the problem to get a

numerical solution. So, if you look at what are the tools available today, well we can come up

with 5 different classifications, I have just mentioned 4 of them here; one is linear algebraic

equations,  other is nonlinear algebraic equation,  ordinary differential  equations,  initial  value

problem and numerical optimizations?

So, I need these 4 toolkits with me to come up with a numerical scheme and then the fifth one,

which  is  not  mentioned  here  or  which  is  not  going to  be part  of  this  course is  stochastic

methods that goes much beyond scope of this particular course and would probably need a

separate course to see how stochastic methods can be used to solve the transform problem. We



are going to concentrate mainly on linear algebraic equations, nonlinear algebraic equations and

ordinary differential equations, initial value problems or ODE IVP as they are known.
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Along our way, we will also pick up fundamentals of numerical optimization, I do not intend to

have a separate module on numerical optimization but we will; on our way, we will pick up

tools for numerical optimization. So, this course consists of 6 learning modules, the first one

actually here I am talking of the course ideally what it should consist of. Well, I will then, at the

end of this slide, I will tell you what I am going to lecture on.

But this course, initially should begin with relating abstract equation forms to process models

okay. So, if I am delivering this course to finally year undergraduate students, I would spend

first 2 or 3 lectures talking about different mathematical models that they have already studied

and  what  abstract  equation  forms  that  arise  from these  mathematical  models.  The  second

module  is  going to be completely  different  from what  you do in  a  conventional  numerical

methods or numerical analysis course.

A few lectures; these few lectures are going to be devoted to fundamentals of vector spaces.

Now  vector  spaces,  we  start  studying  vector  spaces  probably  even  before  we  enter  our

engineering programs, so by the time we come into engineering programs, we are familiar with

3 dimensional vector spaces and mostly we continue using 3 dimensional vector spaces, maybe

you study you know, different coordinate systems which probably you do not study when you

are in your school.



But more or less, the idea of vector space remains confined to 3 dimensional vector spaces but

in mathematics, in the field of functional analysis the idea of vector spaces has been very, very

profoundly developed into; you know a rich concept where a large subset of objects can be

looked  upon  as  vector  spaces  and  we  are  going  to  get  some  peek;  some  you  know

understanding of these generalized vector spaces which are not just 3 dimensional vector spaces

but 4, 5 or n dimensional or even infinite dimensional vector spaces.

In  fact,  these  vector  spaces,  a  fundamental  role  in  formulation  of;  or  in  understanding  of

numerical  schemes  and this  is  what  I  mean,  when I  am saying that  I  want  to  stress  upon

geometric ideas. The geometric idea is that you understand in 3 dimensions can be extended to

spaces of higher dimension and that is what we are going to have a peak at  in the second

module. The third module is going to be problem discretization using approximation theory.

So, significant numbers of lectures are going to be devoted to problem transformations. So, here

you know I will start with the models which could be a nonlinear set of algebraic equations,

which could be a partial differential equation, which could be an ordinary differential equation,

boundary  value problem;  I  am going to  transform it  into  a  computable  form. So,  unlike  a

conventional course, where these PD’s or boundary value problems are discussed at the end will

encounter them right in the beginning of this course.

And we will transform to the computable forms, once we have this standard compatible forms

which could be set of linear algebraic equations,  which could be set of nonlinear algebraic

equations or ordinary differential equations initial value problems, then we need to know how

to solve them. So, module 4 is going to look at variety of numerical tools for solving linear

algebraic equations, then we move on to tools for solving nonlinear algebraic equations.

And finally we end with tools for solving ordinary differential equations initial value problems.

So, ideally this course should consist of these 6 modules well, but when I am going to deliver

these set of lectures, I am assuming that you are already well familiar different model forms

that you encounter in chemical engineering. So, the modules 1 though I have mentioned here, I

am not going to really start with module 1.

My lectures will start in module 2 that is fundamentals of vector spaces. In the next few slides, I

will very briefly touch upon what should go into model 1 but the second lecture onwards, will



start looking at vector spaces; generalized vector spaces and what role they play in numeric

analysis okay. So, moving on; well,  how long will this journey be; it is going to be a long

journey, we would deal about 48 lectures, 1 hour lectures to understand this variety of aspects

of numeric analysis.
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So, let me get into a little more details of module 1, so the module 1 will consist of abstract

equation forms in process modelling, so what all objective would be you know, mathematical

models in chemical engineering together with variety of designer operating conditions, they

give  rise  to  different  types  of  abstract  equations  or  equation  forms  like  ODEs like  partial

differential equations.

And so, we must in the beginning associate abstract forms with a real problem because as we go

along, we just start looking at abstract forms, we lose track of the engineering problems except

when we look at  some you know, examples  or  when we look at  or  when we solve  some

exercises  apart  from  that  we  lose  connection  with  the  engineering  problems.  So,  in  the

beginning, it is good to have connection with these models.
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And then we need to know which type of equation forms will be treated through in this course.

So, if you just want to have commonly encountered examples, so linear algebraic equations,

where do we get linear algebraic equations in chemical engineering systems? So, many many

times, we have to solve steady state material balance for a lump parameter model, for a section

of a plant and this will give rise to a set of linear algebraic equations Ax = B.

Nonlinear algebraic equations of course, you must have studied in your courses, in the third

year, when you study, you know mass transfer heat transfer courses or linear operation courses

mainly, where we encounter models which come through energy and material balance for one

unit or a section of a plant which consists of multiple units and these give rise to nonlinear

algebraic equations.
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Very often we have to solve problems using optimization tools for example, estimating some

rate parameters, say reaction kinetics parameters or estimation of mass transfer or heat transfer

correlations. So, these problems have to be solved using tools that are used for optimization;

numerical optimization, so these are optimization based formulations and ordinary differential

equations, initial value problems arise when you start looking at control at dynamic simulation

of a chemical plant.

Or  when you want  to  do  HAZOP analysis  using  dynamics;  dynamic  simulators,  so,  these

problems  in  abstract  terms  are  nothing  but  solving  coupled  ordinary  differential  equations

subject to given initial conditions or given input scenarios, then you may end up with not just

differential  equations,  you may end up with algebraic  differential  equations.  Well,  common

example is distillation columns, where you have a phase equilibrium giving rise to algebraic

equations, which could be highly nonlinear.

You have differential  equations  coming from dynamics  on the trace,  temperature dynamics,

composition  dynamics,  material  balance  on the trace.  If  you want  to  simulate  the dynamic

behaviour not just do the design, then you get differential algebraic equations coupled equations

and these equations are notoriously difficult to solve than the differential equations alone or

algebraic equations alone.

So, these are the situations where you know these differential algebraic equations arise, when

you have phenomena which are operating at different time scales, so some phenomena are fast,

some phenomena are slow and in such situations,  the slow phenomena you retain them as

differential  equations,  the  fast  phenomena  you  can  neglect  the  derivatives  and  you  know

approximate those equations associated with those equations as algebraic equations and that

gives rise to differential algebraic equations.

If you want to do detail analysis of; let us say some reactor; plug flow reactor or a packed bed

column, then you do not have option but to use partial differential equations, whereas when you

are doing a very gross analysis, you know taking it just as a unit in a plant and doing energy

material balance, you can probably neglect those variations but if you want to study one unit

operation in detail, you often have to use you know, distributed parameter models that is partial

differential equations.



So, these partial differential equations arise when you are looking at packed bed columns, plug

flow  reactors  and  so  on.  So,  in  the  beginning,  it  is  good  to  make  these  associations  to

understand where these abstract equation forms arise but as I said my lectures are going to start

from module 2 because these are meant for somewhat advanced users, in the final year of a

chemical  engineering  undergraduate program or  maybe first  year  of  a  graduate  program of

chemical engineering.
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Well, here we begin with fundamentals of vector spaces, so what are the learning objective? So,

first thing is I would like to understand 2 fundamental operations; vector addition and vector

and scalar multiplication and see how these operations hold in any vector space. What I mean

by any vector space? I am going to define sets, which are called as vector spaces where these 2

operations hold and these sets are going to be other than the familiar  3 dimensional  vector

spaces.

For example, I would introduce set of continuous functions over some domain say 0 to 1 or I

might introduce, I meant start talking about a set of continuous functions over 0 to infinity,

these kind of functions; these kind of sets arise when we are solving differential  equations,

partial  differential  equations  and if  you have  understanding;  basic  understanding  or  of  the

geometric  understanding  of  these  underlying  spaces,  then  it  is  much easier  to  develop  the

solutions for these kind of equations.

So, we are going to look at these abstract notions of vector space and generalize vector spaces

like function spaces. So, a vector in this vector space is a function for example, you know set of



all continuous functions over 0 to 2pi okay and say sin x is a vector in this set or cos x or cos 2x

is a vector in this set of continuous functions. Well, another vector could be just a line, A + BT

defined over 0 to 2pi and so on, or some polynomial defined over 0 to 2pi.

So, these sets are generalized sets not just 3 dimensional vector spaces that you are familiar

with and what you will study in this particular module as how these sets to qualify to be called

as vector spaces and how the geometric ideas that hold in 3 dimensions can be extended to

these higher dimensional spaces. So, we will go on to generalize the concepts such as subspace,

such as linear dependence, such as span of vectors, what is the basis in a vector space and so on.

And we will examine examples of different sets that qualify to be vector spaces or that qualified

to be subspace of a vector space and so on. So, this is;  this  is  beginning of the geometric

generalization;  this  grand geometric  generalization was carried out probably 60,  70, 80,100

years back in the domain of mathematics and if you have some idea about the generalizations,

then it becomes very, very easy to understand underlying foundations of numeric analysis.

So, that is why first few lectures are going to be devoted to understanding these generalized

sets. Well, when we work in a 3 dimensional vector space, what are the things that you actually

need? Well, we need; when you work with vectors, we need to know about length of the vector

okay. So, when you move on to generalize vector spaces, we define something called norm of a

vector, which could be viewed as a generalization of concept of length of a vector.

(Refer Slide Time: 45:19)



So,  we  are  going  to  distil  out  essential  properties  that  define  length  in  3  dimensions  and

generalize them to this concept of norms. Is there a unique way of defining a norm? What we

will find out is that a norm can be defined in multiple ways okay. The way we define the so

called length in 3 dimensions is one way of defining norm, it is a special case. Now, it is good

to do visualizations in 3 dimensions or 2 dimensions, one can do visualizations.

And maybe if you understand visualizations in 2 and 3 dimensions, then you might be at least

able to do some imagination and or extend your imagination to see what is happening in a

higher dimensional space or a function space, so that is what we are going to look at in this part.

Well, when you are dealing with numerical analysis, a thing that you have to you invariably

encountered is convergence of a numerical scheme.

So, we have to understand whether a particular; we start with a guess solution and we construct

a new solution from an initial solution, so whether this sequence of vectors that you get in the

process  of  generating  approximate  solutions,  is  it  converging to  some point,  is  it  going to

somewhere; is it going somewhere in the same space, we need to examine this thoroughly when

it comes to understanding numerical behaviour of solutions.

So, in abstract terms, we are going to look at sequences of vectors okay and we also have to talk

about conversions in fact, when you talk of conversions of vectors, we have to talk of nearness

of 2 vectors and if you want to talk of nearness of 2 vectors, you have to find out distance

between the 2 vectors and this is where the concept of norm becomes very, very vital. So, the

ideas that we use in 3 dimensions need to be generalized to higher dimensions.

Well, we will look at very briefly at the concept of a normed space that means a space on which

a norm is defined so and we will also have; you know we will also understand very briefly what

are called as Banach spaces or the complete normed spaces. Well, these spaces you may not

encounter later the concept of Banach space may not be required throughout the course but it is

good to have understanding of this idea, when we start looking at;when you start generalizing

the concept of a vector space.

The  most  important  concept  that  we  use  in  3  dimensions;  when  we  do  geometry  in  3

dimensions is orthogonally, okay, we like to work with orthogonal sets, we like to work with

you know coordinate  definitions,  which are orthogonal  to  each other;  x,  y, z  or you know



coordinates  that  we  normally  take  or  you  know  is  a  orthogonal  coordinate  system,  so

orthogonality that is so useful in 3 dimensions is also useful when it goes to other spaces like

function spaces, okay.

So, we need to generalize the concept of orthogonality to higher dimensional spaces to other

spaces and this is done through what is called as inner products, so we are going to define a

special class of spaces vector spaces called as inner product spaces okay that is a vector space, a

set of objects on which an inner product is defined. Well, when it comes to a 3 dimensional

space, all of you would be familiar with a dot product okay.

So,  when I  am generalizing  the;  when I  am generalizing  the  idea  of  vector  space  from 3

dimensions to some other; you know some other sets, which are more general sets, I also would

like to have ideas, which are similar to a dot product okay. So, this inner product is going to

give me something similar to a dot product in fact, what we will see is that dot product is one

way of defining an inner product.
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So, inner product is a generalization is a grand generalization, which will help us to generalize

the concepts of orthogonality; orthogonal vectors in general spaces, function spaces and so on.

So, we are going to look at inner product spaces; inner product spaces are generalization of 3

dimensional vector spaces with dot product defined in them. So, we are very, very familiar with

dot product, we use dot product to define angle between 2 vectors in 3 dimensions.



And when we move on to more general spaces, set of functions, set of the polynomials, we need

this concept we need something like dot product, which is going to be this inner product in

these spaces. So, we are going to look at variety of inner product spaces, so there are different

ways of defining inner product that not only one way. In 3 dimensional space, you only know

one way of defining an inner product.

But there are other ways of defining inner products and we will look at those different methods

of defining inner products. Well, one of the fundamental equation that we use in 3 dimensions is

that cos theta angle between any 2 vectors is dot product of two unit vectors in two directions.

So, if I have a vector A and B, I find out we need vectors along A, I find a unit vector along B

and then I take a dot product, which gives me cos theta between A and B.

A generalization of this particular concept in inner product spaces is nothing but the so called

Cauchy  Schwarz  inequality;  the  name  Cauchy  Schwarz  inequality  might  sound  very

intimidating but this is a very fundamental result in inner product spaces and it will help us to

define angle between 2 vectors. So, here a vector as I said is going to be a function and then we

need to talk about orthogonal functions okay. 

So,  so  see  you might  have  come across  some statements  in  your  undergraduate  education

saying that sin theta, sin 2 theta, sin 3 theta, these are orthogonal to each other, why they are

orthogonal? Okay, so if you understand the concept of inner products and inner product spaces,

this will no longer be a mystery okay. So, generalization of concept of angle between any 2

vectors is achieved through inner product.

And then the Cauchy Schwarz inequality  is a fundamental  inequality, which is  nothing but

generalization of the fact that cos theta is dot product of 2 vectors through unit vectors in 3

dimensions okay. So, we are going to study this Cauchy Schwarz inequality then we will look at

variety of orthogonal  or orthonormal sets that are very often used in numeric  analysis.  For

example, Legendre polynomial or Lagrange polynomial, now these names we encountered in

maths courses.

And often we do not know why they are they are called orthogonal sets or why they are called

as orthogonal polynomials. If you start from fundamentals of vector spaces, you will get in

depth understanding as why these sets are called as orthogonal sets. Well, it is not always that



you have a set of vectors, which are orthogonal okay but if you have a non-orthogonal set of

vectors, then one can systematically construct a set of vectors that is orthogonal. 

For example, in 3 dimensions, you may have come across this method called Gram Schmidt

orthogonalization okay, which is you start with 3 vectors, which are not orthogonal and starting

from these vectors, one can systematically construct 3 new vectors which are orthogonal to

each other, okay.
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So, constructing an orthogonal set from non-orthogonal set, this process is called Gram Schmidt

orthogonalization and this we are going to study in a general inner product space, it is very

useful to get again insight into how different orthogonal sets are developed and then we will

look at  examples  of generating  orthogonal  sets  starting from non-orthogonal  sets.  So,  from

inner product spaces, we then move on to the third module.

Now, this is going to be a very, very important module in this course, I would say heart of this

course. How do you discretize the problem using approximation theory? So, as I told you in the

beginning, it is often not possible to solve a given problem in its original form. Most of the

times,  the problem that you have is not a linear, which means it could consist of nonlinear

algebraic equations, nonlinear differential equations, nonlinear partial differential equations.

Well, when where you have linear differential equations, linear partial differential equations you

can many times  construct  solutions  analytically, at  least  for some idealized  situations.  This

becomes very, very difficult even if there are slight nonlinearities and it may not be possible to



have analytical solutions, this means you have to construct numerical solutions. To construct

numerical solutions, we have to first transform into standard forms.

See, this is because we do not have tools to solve all kinds of problems; we can only tackle

certain types of equation forms. So, first step is to convert a different problem into a problem,

which can be tackled using standard tools okay and then we attack the problem to construct the

solution okay. So, by hook or crook by some means, by using multiple ideas together from

approximation theory, we actually transform the problem to a computable form.

Is there a unique way of doing this? Obviously not, a given problem can be transformed into a

computable form by variety of means and if you have to choose between different means of

transformations,  you have to have in depth understanding of how these transformations are

done.  Why  do  you  choose  one  over  the  other,  whether  I  should  use  a  Taylor  series

approximation or whether I should use interpolation?

Unless you know the foundations, it is difficult to make these choices, so it is good to have a

basis of foundation of you know; approximation theory. This step of model transformation is

often referred to as problem discretization and in this module; in this set of lectures, we are

going to look at popular approaches that are available in the literature for approximations or

approximate a given problem to computable forms.

So, first thing that I want to do here before I begin this transformation is to show that actually

different problems that you encounter in numeric analysis, they are only seemingly different.

Once you start viewing these problems from the viewpoint of vector spaces; generalized vector

spaces  they  do  not  really  appear  different  problems,  one  can  come  up  with  a  grand

generalization that there is a one single problem, well in a particular vector space this problem

will be called as set of algebraic equations.
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In the particular vector space; in another kind of vector space a similar problem will be called

as solving differential equations initial value problems, in some other vector space this problem

will be called as; a problem which is partial differential equation okay. So, if you understand

this grand generalization very briefly, then it helps us to develop discretization in a better way

into the computable forms.

So, basic problem you can show is that is nothing but operator operating on a vector giving

another vector and there are 3 problems associated with this fundamental equation is either

given the operator and a vector find the solution, so given operator, say T operating on a vector

X find Y, the second problem that you encounter is given operator at T and Y find X that means,

I know the solution, I know the effect, I want to find out the cause, so operator at T when it

operates on X gives me Y.

I know Y, I know T, I want to find out X these are called as inverse problems. The first problem

where you look at or you are given operator and you are given X, you find out Y is called as

direct problems. Our course is mostly going to be dealing with inverse problems that is given an

operator operating on a vector and you are given Y the effect then you want to find out because

that is X, then you know we will look at specific tools that are used in problem approximation.

What it turns out is that the backbone of approximation is approximating a given function using

set  of  polynomials  okay. It  is  the  fundamental  theorem in  approximation  theory  called  as

Weierstrass  approximation  theorem  and  this  lays  the  foundation  of  all  the  problem

discretization methods that  are used in numerical  analysis  okay. So, this  particular  theorem



states that any continuous function over a finite domain can be approximated with arbitrary

degree of accuracy using a set of polynomials okay.

So,  it  does  not  tell  you which polynomial  to  use,  it  just  tells  you the  existence  of  such a

polynomial approximation, well it is up to us to construct the polynomial approximations but

the study of Weierstrass theorem very briefly, we will  give you the foundation of how this

whole business is done of approximating or how transforming a problem; original problem into

a computable form.
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So, we will just very briefly look at the Weierstrass approximation theorem and then we will

one by one start looking at commonly used polynomial approximations okay. So, which is the

most  commonly  used  polynomial  approximation?  As  I  said,  the  most  commonly  used

polynomial approximation is Taylor series approximation, so this is used in variety of numerical

tools for example, for solving or developing this method called method of finite difference.

Method  of  finite  difference  is  used  for  discretization  of  ordinary  differential  equations,

boundary value problems ODE BVP, they get transformed into set of algebraic equations, this

method  is  also  used  for  transforming  partial  differential  equations  into  set  of  algebraic

equations  okay. So, we will  also study this  method in a different context  for example,  you

probably are familiar with Newton's method or sometimes called as Newton Raphson method

for solving nonlinear algebraic equations.



And again this  method originates  from Taylor series approximation that is approximating a

nonlinear differential equation or nonlinear set of equations locally using Taylor series and then

converting into a set of a sequence of linear algebraic equation problems. So, we will look at

Taylor  series  approximation  as  a  fundamental  tool  and  how  it  is  applied  to  do  problem

transformations.
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A variety of problem transformations transforming a partial differential equation, transforming

boundary value problem, transforming set of nonlinear algebraic equations, then we continue

our journey into other type of approximation. The second most important or not second most

important equally important approximation is polynomial interpolations. So, in the beginning

we will have a brief understanding of Lagrange interpolation.

Well, it is a large vast area and then we cannot do justice to every aspect of interpolation; I am

just going to give you a brief introduction to some important concepts. So, we will begin with

Lagrange  interpolation,  we  will  move  on  to  piecewise  polynomial  approximations  or

interpolations or not approximations, piecewise polynomial interpolation and then we will also

look at not just polynomial interpolation, we will also look at function interpolations, okay.

So, linearly independent functions are used to construct interpolating functions and then we will

look at problem discretization using this approach. So, I am going to again look at a boundary

value problem, ordinary differential equation boundary value problem and discretize it using

interpolation  polynomials  or  I  am going  to  discretize  a  boundary  value  partial  differential

equation using interpolation polynomial.



(Refer Slide Time: 01:05:33)

So, this is my next task that is study how interpolation plays a role in problem discretization in

particular, we are going to look at  this  method of orthogonal  collocations,  which is a very

powerful method used in solving variety of chemical engineering problems and then have a

brief probably look at orthogonal collocations on finite elements. So, the third important tool or

third important approach that is used for problem discretization is least squares.

So,  we are going to  study various  ways of  approximating  problems using method of  least

squares. First, we will develop analytical solution of linear least square problem okay look at its

geometric interpolations, this will give us insight that is very, very valuable that can be you

know extended when we understand approximations in higher dimensional spaces and then we

will actually extend this idea to general spaces or general Hilbert spaces.

So,  the  fundamental  to  this  least  square  approximation  is  the  idea  of  projections.  Now,

projections  we normally study in engineering,  engineering drawing or we study projections

even starting at a school where you were to project find a nearest point in a plane from a given

point  outside  the  plane,  so  projections  are  very,  very  important  and  how  do  these  idea

projections is used in the problem approximation is what we want to study next.
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So, we will also have a brief peek at function approximation based models and the formulation

of the parameter estimation problem and in this before we move on to the main; the remaining

part that is understanding the tools, we will also look at least square problems for linear in

parameters  models,  least  square  formulations  for  nonlinear  in  parameters  models,  so  in

particular we are going to look at a method called Gauss newton method.

So, this Gauss Newton method is a combination of least squares and Taylor series, so we look at

this Taylor series approximation and least square approximation, so we are going to look at this

method and then finally move to problem transformations, which we have been already looking

at that is how do you transform a boundary value problem or how do you discretize a partial

differential equation using method of least squares.

So, these methods are known as method of minimum residual methods, so a popular method in

this  class  is  Gelarkin  method  and  we  will  have;  we  will  study  this  method;  actually  the

discretization of ordinary differential equations boundary value problems or partial differential

equations using least square approach leads to the so called finite element methods, we will not

go in depth into this but we will have a very brief introduction to what element; finite element

method using and how it is related to least square approximation.

So,  with  this,  we  will  come  to  an  end  to  of  our  module,  which  talks  about  problem

transformations, so this will almost we come to half of the course, now what remains to be done

is attack the problems which are transformed. Before that, we will very briefly look at what are



the errors that come up in problem transformations and what are the approximation errors and

what it is bearing on the solutions; numerical solutions.
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So, after having done this; after having transformed the problem now we begin our journey into

tools okay. The first tool that we are going to look at is solving linear algebraic equations and

here well, you might wonder, we have been solving linear algebraic equations since school days

what is so new about it, what am I going to learn about it, maybe you are already familiar with

Gaussian elimination.

And then in Gaussian elimination you may have studied even some advanced things like when

you know, how to do pivoting and so on but there is much more to linear equation solving than

just  Gaussian  elimination.  There  are  many  other  methods;  there  are  iterative  methods  for

solving linear algebraic equations and we are going to have look at them, even optimization

methods  based  methods  or  numerical  optimization  based methods  are  used  to  solve  linear

algebraic equations and we will be studying those equations.

But apart from studying these numerical schemes, I am going to discuss one very important

thing here that is matrix conditioning; matrix conditioning talks about how well posed or how

ill posed a given problem is; a given set of linear equations are and then that gives your insight

into behaviour of the numerical solution, it may happen that you have ill posed problem and

then the solution that you compute numerically is not quite reliable.
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You should be able to differentiate between ill posed problem and not reliable solution and well

posed problem but  mistake  that  you have made in  computing  the  solution  okay, so this  is

possible using the concept of condition number or matrix conditioning and we are going to have

a look at these; the concept of conditional numbers as a part of this module, so we will begin

with the study of conditions for existence of solutions for linear algebraic equations.

We move on to the geometric interpretation of the solutions very, very important, so I look at

the problem through 2 pictures; a row picture and a column picture. We will look at the solution

from a 2 different viewpoints; geometric viewpoints, we will interpret the what is the meaning

of a singular matrix geometrically and here essentially in the beginning we will just have a

some understanding of 4 fundamental subspaces associated with the matrix; row space, column

space, null space and left null space.

So, up to now, we were not talking about any numerical scheme where our solution scheme, we

were talking about problem transformation and just now I started about solving linear algebraic

equations but even in the beginning, I am talking about geometric ideas and now we will move

into numerical schemes okay, the first time in this course will be encountering actual numerical

schemes.
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So,  first  of  course,  I  am  going  to  look  at  Gaussian  elimination  very  briefly  and  LU

decomposition and will spend some time on the number of computations that are required in

carrying out a Gaussian elimination process and see whether you know, there are methods that

can even improve that can even reduce the number of computations.
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So, the main focus in this part is going to be introduction to the iterative methods but before

that we will look at some special methods for solving linear algebraic equations and these are

going  to  be  called  methods  for  sparse  linear  systems.  So,  many  problems  have  very  nice

structure, sparse systems are one in which lot of elements are zeros and there are only few

nonzero elements in a big matrix.



In solving problems, which are large scale let us say you are doing simulation of a section of a

plant, you may have thousands of equations and when you actually start solving them, let us say

by  Newton’s  method  you  linearize  them,  when  you  linearize  them,  you  get  linear  set  of

equations which are say 1000 + 1000 or 10, 000 + 10, 000 but this matrix, which is 10, 000 +

10,  000 may not  be fully  populated,  it  will  have many many 0s and it  is  possible  to  take

advantage of this structure and then come up with special schemes.

So, these are called as schemes for sparse linear systems and we are going to look at just few of

them, it is an iceberg and we can only touch the tip of the iceberg, so I am going to look at

block diagonal matrices, I am going to present the Thomas algorithm for tridiagonal matrices

and block tridiagonal matrices, we will look at triangular matrices and block triangular matrices

but as I said, this is only a brief introduction and we are going to move on to the iterative

schemes.
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The main thing here is to familiarize you with the notion of sparse matrices and then maybe

when you encounter them, you will remember to use them in your application. The study of

iterative solutions of or study of;  solving linear  algebraic  equations  using iterative  solution

scheme is the next component that we will look at. So, there are variability of iterative schemes,

you start with the guess solution and then you iteratively refine the solution and finally you

approach the true solution, this is the iterative approach.

And this we are going to study different methods; very popular methods in this category are

Jacobi  method  or  Gauss-Siedel  method  or  the  relaxation  method,  so  we  will  study  these



methods their algorithms but more importantly, we will study the convergence analysis of these

iterative schemes. I am going to spend quite a bit of time in understanding the convergence of

these schemes. 

The question is; if I start with a particular guess what is the guarantee that the solution iterative

scheme will converge to the solution of solving linear algebraic equations? So, that will be you

know; that will be analysed systematically using concept of Eigen values and we will see the

rules of Eigen values in speed of conversions or the conversions itself and then we will look at

some special form of matrices that enhance convergence.
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We then move on to optimization based schemes for solving linear algebraic equations okay, so

here  I  am going  to  use  a  numerical  optimization  tools  such  as  gradient  search  method  or

conjugate gradient method to solve set of linear algebraic equations that is solving Ax = B is

going to be done using optimization, it turns out that in many situations, this can be a very fast

tools particularly, when you are solving large set of equations.

And in the end of this module, I am going to understand; I am going to present the concept of

matrix  conditioning or condition number of a matrix  and its  relationship with behaviour of

numerical solutions of linear algebraic equations. So, we will end with a deeper understanding

into how good or how bad a numerical solution is and we associate that with the conditioning of

the matrix.
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We then move on to the next tool the next tool that I am going to study is going to be solving

nonlinear  algebraic  equation.  So,  in  this  toolbox,  well  nonlinear  equations  are  more  often

encountered than the real equations, most of the real engineering problems or real engineering

models consist of nonlinear coupled equations you do not have them in single variables, you

have  multiple  variables,  which  are  coupled  which  give  rise  to  couple  nonlinear  algebraic

equations.

If you are modelling section of a plant and understanding the steady state behaviour of energy

and material balance, it might be thousands of coupled nonlinear algebraic equations that need

to  be  solved simultaneously  that  is  very, very  important.  In  this  method,  in  this  particular

module we will look at variety of iterative methods that are used for solving nonlinear algebraic

equations okay.
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In the end, we will also have a brief introduction to the convergence analysis of these methods

based on a famous principle in function analysis called as contraction mapping principle. so

again this is just a brief introduction to let you; to tell you that what goes in in understanding

the convergence analysis  of  this  scheme.  So,  we will  begin with the method of  successive

substitutions, this is one of the very preliminary methods, which is used.
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These are derivative free methods, so there are a variety of derivative free methods like Jacobi

iterations or Gaussian iterations or relaxation iterations, we will study these methods and then

from this, we will move on to derivative based iterative methods. The well-known derivative

based internet methods are Newton's method, so we will first look at Univariate Newton type

methods, where you find out the local derivatives either exactly or approximately.



Then, we will formulate a multivariate secant method which is an approximate derivative based

method or popularly known as Wegstein iterations, then we will move on to the well-known

Newton's  method  and  look  at  its  variations  like  damped  Newton  method,  you  can  try  to

improve the convergence behaviour or we will develop numerically more friendly versions of

Newton's method, which are you know called as Quasi-Newton methods or with rank 1 updates

of the Jacobian matrix.

The problem with newton method is  that  you have to  compute derivative matrix;  Jacobian

matrix; if there are any questions and n variables every iteration, you have to compute an n

cross n matrix and this can be numerically quite complex, if you have thousands of equations.

This  Quasi-Newton  method  allow  you  to  do  approximate  update  of  the  Jacobian,  so  they

construct a new Jacobian using the old Jacobian and this way they save computations, so we are

going to have a brief introduction to this Quasi-Newton methods.
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Then, we move on to solving nonlinear algebraic equations using optimization; optimization;

numerical  optimization  is  a  powerful  tool  which  is  used  for  solving  nonlinear  problems,

nonlinear algebraic equations. One of the popular method in this class is conjugate gradient

method, so we will have a brief look at conjugate gradient method, this is a gradient based

method, there is a hessian or second order derivative based method which are called in this

category, they are called as Newton's method.

We also have Quasi-Newton method which are again simplifications of Newton's method or

Hessian based methods, so we will have a brief peek or brief introduction to Quasi-Newton



methods and finally we will look at a method called Leverberg-Marquardt method, which is

combination  of  the  gradient  method and Newton's  method,  so you use  gradient  when it  is

helpful to use gradient, you use Hessian when you it is helpful to use Hessian. So, it is a merger

of the 2 methods.

And we will just understand this, towards the end we will just briefly understand the concept of

condition number of set of nonlinear equations, you cannot have one condition number you can

define a local concept of condition number here, which is conceptually similar; qualitatively

similar  to  what  we  have  done  for  linear  algebraic  equations.  So,  before  we  wind  up  this

particular module, we look at 2 important aspects.
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One was existence of solution of nonlinear algebraic equations and its relation to convergence

of iterative methods okay, in the; when we started studying linear algebraic equations, we began

with the conditions  for existence  of solutions  we never  talked about  this,  when we started

solving nonlinear algebraic equations. Here, I want to give a brief introduction to the conditions

of existence of solutions.

And what is its relation to convergence of iterative methods, we look at contraction mapping

principle or contraction mapping theorem, we will apply to understand convergence of method

of successive substitutions, we will also see how contraction mapping principle can be used to

analyse Newton's method or Newton-Raphson method and with this, we have come to or we

will come to an end of module 5, which is on solving nonlinear algebraic equations, so we



move on to the last tool that will be discussed in this course that is solving ordinary differential

equations initial value problems.
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So, this is another fundamental  tool,  which can be used to attack or to solve the transform

problem, so what are the learning objectives? Here, as it is evident from problem transformation

module  that  many  situations  when  you  transform a  problem,  you  get  ordinary  differential

equations initial value problems, so this is one of the fundamental model type or equation type,

which needs to be dealt with.
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And we have to arrive at or we have to develop special methods to solve this class of problems.

So, in the beginning, we will very briefly introduce the conditions for existence and uniqueness

of solutions of ordinary differential equation initial value problem, this is a very, very brief



introduction and then we immediately move to study of analytical solutions of linear ordinary

differential equations in multiple variables.

Well, you might wonder, why am I doing this analytical solution in a course, which is meant to

be  for  constructing  numerical  solutions.  Well,  this  analytical  solution  part  gives  in  depth

understanding how local solutions behave also, this is going to help us when we understand or

when we analyse convergence behaviour of numerical schemes for solving ODE IVP, so as a

background to develop numerical  schemes,  I  am going to solve analytically  linear  ordinary

differential equations given initial conditions.

So, I will start with a scalar equation, move on to vector equations and then what is critical here

is that I want to relate; so what are these kind of equations? I am going to look at dx/dt = Ax,

where A is a matrix and then I want to understand relationship between the Eigen values of

matrix A and analytical solution of this differential equation dx/dt = Ax, then actually you can

get the Eigen values of this matrix, I can qualitatively tell how the solution is going to behave

asymptotically as time goes to infinity.

So, just looking at the Eigen values we can analyse the behaviour of the solutions and this

elegant part we are going to study briefly and then, what is the relationship of linear equations

and local linearization through Taylor series approximation is what we are going to look at here

at end of this sub module. We now move to the proper numerical methods for solving ODE IVP.
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So, before that we need to understand some basic concepts like marching in time, how do you

develop a solution, you want to solve a problem, you want to integrate differential equations

from some time; 0 to time infinity, you actually do it in small steps, this is marching in time, so

we will talk about this. If you look at the methods; for solving numerical methods for solving

ODE initial value problems, there are 2 classes.

One is explicit methods, other are implicit methods, so we will just have understanding of what

is an implicit method, what is an explicit method and then we move on to study and important

class of methods, which is based on Taylor series approximation, popularly these methods are

known as Runge-Kutta methods, they actually arise from Taylor series approximation and this

is where I relate it to the approximation theory part that we have done earlier.
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So, we will actually derive here Runge-Kutta methods starting from basics, initially for a scalar

case and then move on to the multivariate case. We then move on to the next important method,

which is based on polynomial interpolation. So, again you will see that the ideas of; ideas of

approximation theory are playing a role, when you are actually solving ordinary differential

equation initial value problem.

So, those ideas are so fundamental, they just are everywhere in numerical analysis, so we are

going to study methods called as multi  step methods okay or popularly known as predictor

corrector methods okay. We will develop; we will derive these algorithms starting from scratch,

starting from interpolation polynomials and first for the scalar case and see how they can be

generalized to multivariate case.
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And then move on to solving initial value problems, ordinary differential equation initial value

problems  using  orthogonal  collocations.  Well,  after  that  we  actually  have  a  brief  look  at

convergence  analysis  of  numerical  schemes  for  solving  initial  value  problems,  ODE initial

value problems and what is its relationship with selection of integration step size, when you are

integrating  nonlinear  differential  equations,  one  of  the  key  things  is  how  do  you  select

integration step size, okay.

To  greater  understanding  into  this,  we  have  to  have  some  understanding  of  you  know

convergence analysis, so we will analyse of course, linear ordinary differential equation initial

value  problems use  and we will  apply  approximate  solutions  to  these  linear  problems,  we

already know their exact solutions and then we can compare exact solution with approximate

solution and get insights that is the reason I introduced analytical solution of linear ODE IVP in

the beginning.

Then,  we will  see how this  can be extended to nonlinear  ODE IVPs; we will  look at  few

concepts  which  are  important  in  solving  these  equations  like  stiff  ordinary  differential

equations. So, stiffness of ODES is what we look at and then finally we look at what are called

as variable step size implementation of these ODE IVP schemes with accuracy monitoring, so

these are all  involved concepts of course, most of the tools that we use today, most of the

programs are available will have these built in tools you should know when to use, which one

to use, why to use particular choice.
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If you have a stiff differential equation, you should use a particular tool, if you have you know

variables,  which  are;  which  have  too  much  difference  in  their  timescales,  you  should  use

variable steps as implementation and so on. So, these things become very, very important when

it comes to; in the end I am going to talk about solving differential algebraic equations, we have

studied  differential  equations,  we  have  studied  algebraic  equations,  nonlinear  algebraic

equations just a brief look at  how do you solve differential  algebraic equations,  if they are

encountered together.

Then, we will look at a special  method for solving ordinary differential equations boundary

value problems called method of or a shooting method. So, actually you use an initial value

problem solver to solve the boundary value problem okay, so how this is done to look at this

method and then again, we look at conversion analysis of solvers for ODE IVP. So, this brings

us to an end of this 6 modules; introduction to these 6 modules.

So, if I want to sum up what is; what is you know overall learning objective in this course in

this; well, first is you should know how to transform a mathematical problem at hand into a

computable form using of course, principles of approximations here that is the almost half the

course  is  devoted  to  that,  then  understand basic  properties  of  different  tools  particularly  3

different  tools  solving linear  algebraic  equations,  solving nonlinear  algebraic  equations  and

solving ordinary differential  equations subject to or given initial  values or initial  conditions

ODI IVPs.
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Understand different methods of different numerical schemes for solving these standard class of

problems and understand their limitations, so that if you understand their limitations, if you

understand their  strengths,  if  you understand how they are developed you have been much

better position to employ them, use them to concoct a recipe. Finally, what I wanted to learn or

to understand is that a numerical scheme is actually like a recipe and we are going to be a cook

who will actually be able to cook a recipe; cook a recipe for a given problem.

So,  you  have  these  fundamental  tools  you  have  some  fundamental  tools  coming  from

approximation  theory,  use  a  combination  of  them,  first  combination  of  tools  from  the

approximation theory to transform the problem, then you solve the transform problem using

standard tool kits that you have okay. So, this journey is going to be fairly long, it is about 48

lectures and we begin our journey from the next lecture. Thank you.


