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Friends, we have been looking at predicting the conversion in a non ideal reactor, 

provided the RTD function at function is known. So, there are 2 types of models that we 

going to discuss, one is the segregation model, the other one is the maximum on 

mixedness model. And these 2 extremes which actually provide a bound for the 

conversion, depending upon; which is the, what is the order of the action and the kinetics 

of the reaction which is conducted in the reactor.  
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So, these 2 extremes are the early mixing regime, that is 1 extreme and the model that 

represents early mixing is the complete segregation model. While the late mixing which 

is; the other extreme that represents the maximum mixedness model. So, these 2 

extremes essentially represent the 2 levels of mixing, where the 2 levels of mixing of the 

macro fluid global, that we actually defined in the last lecture. So, let us look at the first 

one desegregation model of a reactor.  
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Now suppose let us consider the CSTR. So, let us consider a CSTR or tank reactor, it 

could actually be any reactor. And the let us assume, that the fluid elements of different 

ages; they do not mix that is the, that is the segregation model. And which we also which 

means that, day remain segregated all through. And the flow is essentially like a series of 

globules, where 1 globule enters the reactor at a certain time and that gain that spend 

some time. Another globule which enters at a different time, the age of that particular 

globule is going to be different and which means that, the globules are different ages 

they do not mix with each other.  

So, flow is essentially a series of globules. And we may assume, each globule as a batch 

reactor because, it does not mix. So, whatever reactant which is present globule, it 

continues to undergo reaction, as long as all the species which is present in that globule 

is gradually going to complete conversion. So, therefore, each globule is considered as, it 

may consider as a batch reactor. So, now how do we model this?  
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So, we can actually depict this; depict this particular aspect in a CSTR as basically a tank 

which contains several globules. And each of these globules, are now going to have 

different ages. So, that is going to have a different age, this is going to have a different 

age and this is going to have different age. And each of these globules can actually in 

principle be are different sizes as well.  

Properties that are of these globules will be that, will be of different sizes. And then more 

importantly, because they do not mix each of these globule as actually going to retain 

their identity and there is no exchange or exchange between globules. So, there is no 

exchange of molecules or matter between different globules and each of these globules 

will continue to have maintained its 1 identity. Now, 1 may also depict the same picture, 

a similar a model in a plug flow reactor.  
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Suppose we have a continuous flow plug flow reactor. So, suppose if we model a 

continuous flow system, of which is a continuous flow system of the a non ideal reactor 

as a plug flow reactor, suppose if we model this as a plug flow reactor. Then if you want 

to incorporate a segregated model for this non ideal reactor, this may be depicted as 

follows.  

Suppose, if there is a tube and if there is a fluid which is flowing at a certain volumetric 

flow rate v naught into this to tube and if the volume of the tube is v. Now, instead of the 

fluid leaving from the other end of the reactor directly, the fluid can actually be x taken 

out from the side of this tube, different locations along the side of the reactor. And they 

can all be joined together and together they actually leave the reactor.  

So, now, each of the streams, if because they are withdrawn a different locations, each of 

the globules will actually have different residence time. So, the location where the fluid 

is actually withdrawn from the reactor can actually be decided, based on the residence 

time distribution of the actual non ideal reactor. So, suppose if this is the residence time 

distribution. If that is the residence time distribution and that is the E curve which is the 

RTD function which is actually measured experimentally of a real reactor, then the based 

on this RTD function, such kind of a withdrawing of the a fluid from the reactor can 

actually be decide.  



So, there the fluid which is actually withdrawn from the reactor right at the entry 

location, which going to have the shortest residence time. And the 1 which is actually 

withdrawn at other end of the reactor is going to have the longest residence time. So, that 

is going to have a long residence time. So, therefore, what you have done is, we have 

removed batches of fluid from different locations inside the reactor. And the location 

from where it is withdrawn, is actually specified by the residence time distribution 

function E of t, which may be measured experimentally for an non ideal reactor. And we 

because, we have withdrawing from the side, there is no interchange of molecules 

between each of these globules, and they are actually present inside the reactor, where 

the reaction actually occurs. And each of these can actually be considered as actually a 

batch reactor.  

So, what its suggest is that, the mixing for this kind of a system as actually the fluid 

appears as a well mixed system, when it enters a reactor, but when it leaves, the globules 

are actually completely segregated. So, therefore, the reaction time in batch in each of 

the batch reactor, that is, each of the globules, which may be which is basically 

withdrawn from different locations along the side of the reactor.  
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That time, the reaction time of batch reactor, of each of the batch reactor is equal to the 

time spent in the reactor. So, this is the reaction time spent by each of the batch reactors. 

Remember that, every location from where the fluid is actually withdrawn from the side 



of the reactor, that globule can actually be considered as a batch reactor. And the time 

that the spent by the reaction time of each of these globules, that is, of these batch reactor 

is equal to the time that would actually spends in the reactor itself.  

So, therefore, the mean conversion; if x bar is the mean conversion, that is equal to the 

average conversion over all globules. So, what is of interest is essentially this mean 

conversion. So, we want to predict the conversion of the reactor and what the essentially 

required to need to predict is; this mean conversion from the reactor. So, how do we find 

this mean conversion? So, the mean conversion of globules with residence time of a 

certain time interval dt.  
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So, let us say that the mean conversion of globules, with residence time between t and t 

plus dt, in that small interval of time, if that globule has a residence time in this small 

time interval, then that is essentially given by the conversion achieved by a globule after 

spending t amount of time in the reactor. And that multiplied by the fraction of globules 

with residence time between t and t plus delta t.  

So, that is the obstruction of how to get a mean conversion of globules, with a certain 

residence time between t and t plus delta t, which is essentially the conversion achieved 

by the globule, after spending that time t amount of time inside the reactor multiplied by 

the fraction of the globules with that residence time between t and t plus delta t. So, now 



if we put some; if we put the corresponding expressions, expressions corresponding to 

each of these terms; in the mean conversion.  
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We will find that d X bar which is the mean conversion of the globules, whose residence 

time is between t and t plus delta t. So, that should be equal to the conversion achieve by 

a globule, after spending that time in the reactor multiplied by the fraction that has a age 

between a t and t plus delta t. So, therefore, from here we can write that d X bar by dt 

which is the mean conversion, that is equal to X t into E of t. And therefore, X is equal to 

integral 0 to infinity X of t E of t dt.  

So, remember that X of t which is actually percent inside the integrant; that is essentially 

the conversion in batch reactor because, we consider each of these globule as actually a 

batch reactor. So, that is the conversion as though it where batch reactor. And that 

multiplied by the corresponding residence time distribution, integrate over all residence 

times will give the mean conversion. So, let us consider a first order reaction.  
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Let us consider a first order reaction, where A goes to products with a rate with a specific 

reaction rate k. And for a batch reactor, the performance equation is d minus d N A by d 

r that is, equal to minus r into V, where V is the volume of the reactor and let us assume 

that it is a constant volume system. So, now, we can use the relationship between the 

number of moles with the corresponding conversion and we can rewrite this equation as 

N a naught into dx by dt, that is equal to minus r A into V which is equal to k a C A 

naught into 1 minus x into V.  

So, from here, we can easily decipher that, the conversion is equal to exponential of 

minus k into t. And remember that C A naught into V is essentially equal to that is equal 

to N A naught. So, therefore, the conversion as though, conversion in each of these 

globule is given by 1 minus exponential of minus t t. And so from here we can now find 

out what is the mean conversion. We know the mean conversion equal to integral 0 to 

infinity; that is overall residence time of the product of the conversion in the batch 

reactor multiplied by the corresponding residence time.  
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So, therefore, X bar is equal to 0 to infinity X of t E of t dt and so that is equal to integral 

to infinity 1 minus exponential minus k t E of t dt. Now, suppose if it where suppose if 

the reactor is actually a plug flow reactor. So, suppose if it is a plug flow reactor, then the 

residence time distribution E of t is simply given by the delta function of t minus tau 

where tau is the space time of the reactor, which is the ratio of the volume to the 

volumetric flow rate of the reactor.  

So, now, from for a plug flow reactor, it will simply be 1 minus integral 0 to infinity 

exponential of minus k t into delta function t minus tau dt. And that is nothing 1 minus 

exponential of minus k into tau. And k into tau is essentially the dimensionless quantity 

called the Damkohler number; this is the Damkohler number which is the ratio of the 

space time to the reaction time. So, we can write this as exponential of minus D a.  

So, that is the mean conversion that would be achieved, if it were to be a an ideal plug 

flow reactor. And what is interesting is that, the model that we actually obtained from the 

segregated model is actually same as that of the mole balance of the plug flow reactor. 

We know that, from the mole balance of the plug flow reactor, the performance is 

actually, performance equation suggest that the conversion is actually equal to 1 minus 

exponential of minus D a. And let us see how that is the case.  
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So, the mole balance of a plug flow reactor on species A is nothing, but d X by d tau, that 

is equal to k into 1 minus X. And therefore, X is equal to 1 minus exponential of minus k 

into tau which is equal to 1 minus exponential of minus D a. So, therefore, the 

conversion that is actually achieved by using a completely segregated model is actually 

exactly equal to the conversion that is achieve by an ideal plug flow reactor, if it were to 

be a led to be a first order reaction.  

In fact, we observe this in 1 of the lectures before; that we mentioned that, if it is a first 

order reaction, then it does not matter, only RTD function is sufficient to estimate the 

conversion and level of mixing actually does not play role. So, we will see in a short pile 

as to why that is the case. Now, before we look at that, let us consider if it were to be a 

CSTR.  
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So, the residence time distribution function for a CSTR is given by 1 by tau into 

exponential of minus t by tau. So, therefore, X bar the mean conversion, plugging this 

into the integral and integrating the expression, shows that X bar is equal to tau into k 

divided by 1 plus tau into k which is equal to the Damkohler number divide by 1 plus 

Damkohler number.  

So, now, if we write the mole balance for a CSTR, the performance equation for the 

CSTR is; the mole balance on A is F a naught which is the plug flow rate of this species 

at inlet that is multiplied by X is equal to minus r A multiplied by V that is equal to k 

into C A naught into 1 minus X into V. And minus r A, r A is the rate of generation, 

minus r A is the rate at which the species is actually being consumed. So, from here we 

can see that X is equal to tau into k by 1 plus tau k, where tau is the space time of the 

reactor 1 plus D a.  

So, clearly you can see, that the conversion is achieved through a segregation model is 

actually exactly same as the conversion, that is achieved from the performance equation 

of the ideal CSTR. So, this suggest that, the for a first order reaction, the information of 

RTD function there is actually sufficient. And the degree of mixing this not going to add 

any additional information and the RTD function itself can be used to predict the 

conversion mean conversion of the reactor.  
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Now, the question is why is that the case? So, reason is the complete mixing or 

segregation, actually makes no difference for first order reaction. This is because; the 

rate of change of conversion actually does not depend upon the concentration of the 

reacting molecule. So, the rate of change of conversion is independent of concentration 

of the reaction reacting molecule. So, this is the reason, why for a first order reaction, the 

RTD function alone is sufficient to predict the conversion that is achieved by the non 

ideal reactor.  

So, the rate of change of conversion is independent of the concentration of the reacting 

species. That explains why for a first order reaction, RTD function is sufficient to 

estimate the conversion of the reactor. So, now let us extend this to a laminar flow 

reactor.  
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L F R stands for the laminar flow reactor. And the residence time distribution is given by 

0 for t less than tau by 2 and tau square by 2t cube for t greater than or equal to tau by 2. 

So, that is the residence time distribution for a laminar flow reactor, which we have 

actually derived in the previous lecture. And in the normalized form E of theta is equal to 

0 1 by 2 theta cube and this is theta less than 0.5 and theta greater than or equal to 0.5.  

So, now, we can plug this distribution into the conversion equation, we can find that to 

be equal to minus 0 to infinity exponential of minus k into t into E of t dt. And that is 

equal to 1 minus integral 0 to infinity exponential of minus k tau theta into E of theta into 

d theta.  
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So, on performing the integration, by substituting the corresponding distribution, 1 can 

find that the mean conversion in a laminar flow reactor is essentially given by 1 minus 

0.5 into the space time multiplied by the specific reaction rate into exponential of minus 

0.5 k tau minus 0.5 k tau the whole square integral 0.5 to infinity exponential of minus 

tau k theta divided by theta into d theta. So, that is the expression and 1 if 1 solve this 

integral, 1 will be able to find out what is the conversion in a laminar flow reactor. So, let 

us now compare the mean conversion that is achieved, using these 3 different types of 

reactors.  
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So, if we plot as a function of the Damkohler number, which is the ratio of the space 

time to the reaction time X bar. So, CSTR would actually be like this and the plug flow 

reactor actually predict a much higher conversion, for a first order reaction, this is for a 

first order. And the laminar flow reactor would be somewhere in between. So, the plug 

flow and the CSTR, they sort of provide a bound for the predict conversion of the first 

order reaction, in a non ideal reactor. And such kind of graphs actually can be generated 

for such kind of plots can be generated for reactions of other orders and other types of 

kinetics.  

So, what it suggests is that, for a first order reaction, the extent of mixing not required. 

While for other reactions, other kinetics extent of mixing place an important role, extent 

of mixing actually plays an important role. And it is required in order to predict the 

conversion of the non idea reactor. So, now let us moved to the next model, which is the 

maximum mixedness model.  
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Let us look at the maximum mixedness model. So, the segregated fluid is 1, where the 

mixing between the fluid globules actually does not occur. So, there is no exchange of 

material between the globules which are present inside the reactor. So, the flow is 

essentially like a series of globules which are flowing through the reactor. On the other 

hand, on that is called the minimum segregation minimum mixedness model, where the 



where the globules do not actually interact with each other. And each of the globule 

behave like a batch reactor.  

On the other extreme is a maximum mixedness model, where the globules the matter 

which is present in different globule, they are allow to actually mix and interact with 

each other. And therefore, the molecules which are different ages, they all mix with each 

other and that is that kind of representation or that kind of a situation is called the 

maximum mixedness model. So, let us look at how to estimate the conversion for that 

kind of a situation.  

So, maximum mixedness is achieved, when there is complete mixing as fluid enters. So, 

as soon as they get into the reactor, all the globules can actually exchange matter with 

each of them. And so, therefore, there is complete mixing. So, there are maximum 

mixedness is the complete mixing of the fluid right at the entry point of the reactor. So, 

so how do we depict such kind of a situation is; we can consider a plug flow reactor with 

side feed. So, where the feed is actually fed through the sides of the plug flow reactor at 

different locations and that can be used to depict the situation of maximum mixedness in 

a non ideal reactor. So, suppose if we know the residence time distribution function.  
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So, if we know the E of t of a real reactor. Then, we can actually mimic reactor by using 

a plug flow reactor. And instead of providing a feed at the entry to the plug flow reactor 

whose volume is V, we can actually split the … we can actually feed them through the 



sides and the feed through the side can actually be according to the … we can split the 

feed and feed them to the side and this feed could be according to a certain distribution 

function, which is the residence time function of the real reactor.  

So, the residence time distribution function could be something like this, where the side 

entrance is actually according to this distribution function. So, which suggest that, the 

mixing actually occurs as early as possible and then they actually go into the reactors. 

So, mixing earliest possible which corresponds to the maximum mixedness situation in 

the reactor.  
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So, now, suppose we define lambda as the time name to move from a particular point to 

end of the reactor. So, that is the time taken by a fluid element, to move from a particular 

location inside the reactor at the end of the reactor. Remember that, we have now that 

present the non ideal reactor, using a plug flow with the sides stream in different 

locations in the side of the plug flow reactor.  

So, now this also reflects the life expectancy at that point, at this the amount of time that 

actually the fluid particles are going to spend inside the reactor, which is actually fed into 

the reactor at that point the side. So, now, we can now draw schematic of this reactor. So, 

suppose this is the plug flow reactor with a volume V. And then, we now make a feed, 

we feed the fluid; we feed the reactor with fluid along the sides and according to a 

certain residence time distribution function. Now if we assume that, this is lambda equal 



to 0 because, the time that is actually spent by the fluid that is bumped into the reactor, it 

near the exit of the actor is almost equal to 0.  

So, therefore, lambda equal to 0, the life expectancy of the fluid that enters the reactor in 

this location is going to be 0. So, lambda equal to 0 starts from here and then lambda 

equal to infinity which is the maximum time that is taken in the inside the reactor, is at 

the entry of the reactor. And if the volumetric flow rate of the fluid V and V equal to 0 is 

this location and V equal to V naught; that is the full volume of the reactor.  

Now, if we now identify a small element and if the volume of that element is delta V. 

And the flux with which the fluid actually enters that element, is given by v into C A that 

is the volumetric flow rate at that location and if this point is lambda in the life 

expectancy dimension. And this is lambda plus delta lambda. So, that is the difference in 

the life expectancy from this point at this point. So, this is the v into C A at lambda plus 

delta lambda. And whatever is leaving from here will be v C A at lambda.  

Now what is the amount of fluid that actually enters through the side, so that, amount of 

the volumetric a flow rate with which the fluid is actually going to enter is; let say is 

given by v at that location and we will be calculating that in a short while. So, what is the 

flow rate with which the fluid actually enters a small element delta v?  
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So, the flow rate in at delta v. So, that is equal to the volumetric flow rate v naught, that 

is the overall volumetric flow rate of the reactor. So, we are essentially trying to 

calculate; what is the volumetric flow rate with which the volumetric fluid is actually 

entering in this small element delta v. So, fluid rate at in delta v should be equal to v 

naught which is the volumetric flow rate with which the fluid is being pumped into 

multiplied by the fraction of fluid with between with life expectancy.  

So, let us call this life expectancy, life expectancy between lambda and lambda plus d 

lambda. So, that is equal to v naught multiplied by the corresponding E lambda d lambda 

where, E lambda is the essentially the RTD function which says; what is the residence 

time distribution of the fluid element inside the reactor. So, now once we know this, the 

we can now write a flow rate balance. We can now formulate flow rate and the fluid 

balance is; volumetric flow rate at lambda should be equal to the volumetric flow rate of 

the fluid at lambda plus d lambda plus whatever is actually added through the side. So, 

that will be equal to v naught into E lambda d lambda. So, this is the flow rate in though 

the side. So, this is the flow in through the side of the plug flow reactor.  

So, now, we know. So, now, we can actually take the limits of delta lambda going to 0. 

So, limit delta lambda going to 0, this essentially becomes d v lambda by d lambda, that 

is equal to minus v naught into v lambda. So, that is the differential equation, which 

captures what is the flow rate with flow rate at a certain life expectancy lambda. So, now 

v naught is the flow rate with which the fluid is actually flowing at the entrance of the 

reactor.  
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So, which means; at entrance, that is, when conversion is actually equal to 0. So, before 

at the v naught is the overall volumetric flow rate of the fluid that is actually flowing 

through the reactor. So, now, we can actually integrate this expression as v lambda equal 

to 0 at as lambda tends to infinity. So, the flow rate of the fluid that is actually at the 

entrance is v naught and the conversion at that location is equal to 0.  

So, therefore, the amount of fluid that is actually right at the no entry point of the reactor, 

remember that it is a feed that is coming at different locations in the side. So, at the 

volumetric flow rate of the fluid whose age is almost equal to infinity is equal to 0. And 

v lambda is equal to v lambda at some lambda equal to 0 lambdas, that is, at certain age 

let us assume that v lambda is the corresponding volumetric flow rate. So, using these 2 

as limits we can now integrate to find that, v lambda equal to v naught into integral 0 to 

integral lambda to infinity E lambda d lambda which is equal to v naught into 1 minus F 

of lambda. So, that is the volumetric flow rate with which the fluid is actually flowing at 

any location lambda.  

So, now, we objective is to find the overall conversion, need to find X. So, that is the 

objective. So, how do we find X? We need to write a we need to write a mole balance of 

the species, in order to find the a conversion of the species in the reactor. So, before we 

write a mole balance, we need to know certain aspects of the reactor, certain aspects 

before we write the mol e balance.  
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For example: what is the, what is the amount of species, what is the rate at which enters 

the small element delta v. So, this can actually be found, by using what is the volume of 

the fluid, whose life expectancy is actually between the between lambda and lambda plus 

d lambda. So, the volume of the fluid with life expectancy between lambda and lambda 

plus d lambda. So, if we know this volume, this volume multiplied by the concentration 

will tell us; what is the number of moles that is actually entering that particular element 

delta v.  

So, that is equal to. So, delta V will be equal to v naught into 1 minus F of lambda. So, 

that is the volumetric flow rate multiplied by the corresponding age delta lambda will tell 

us; what is the volume of the fluid with at certain life expectancy, that is equal to that is 

somewhere between lambda and lambda plus d lambda.  

So, now what is the rate of generation of species? That is actually given by the rate at 

which the species is being consumed multiplied by the corresponding volume delta V. 

So, that is equal to r A into v naught into 1 minus F lambda into delta lambda. So, we 

now have all information that we need into write the mole balance. So, let us now write 

the mole balance for this particular species.  
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So, mole balance on A between with life expectancy of lambda and lambda plus d 

lambda. So, let us write a mole balance for this. So, what is the rate at which things are 

coming inside at lambda plus d lambda? Remember that, the age of the fluid is actually 

decreasing from the exit of the increasing from the exit of the reactor, while the positive 

direction is actually increase of the volume from the entry of the reactor to the exit of the 

reactor. So, in at lambda plus d lambda plus the introduction through the side, what is 

rate at which things are actually introduced into the reactor through the sides minus what 

leaves the reactor, what leaves that element at lambda plus whatever is generated by 

reaction.  

So, that that should be equal to 0. So, that is the mole balance on A for age between 

lambda and lambda plus d lambda. So, we know all this quantity. So, v naught into 1 

minus F lambda. So, that is the volumetric flow rate at lambda, lambda plus d plus 

lambda into C A evaluated at lambda plus d lambda will tell us; what s the rate at which 

the species is actually getting into that element plus the whatever is introduced to the 

sides that is given by v naught into E lambda d lambda multiply by C A naught, where C 

A naught is the concentration of the species in the feed stream minus v naught into 1 

minus F lambda into C A evaluated at lambda plus r A into v naught which the 

volumetric flow rate of the feed into 1 minus f lambda multiply by d lambda equal to 0. 

So, that is the mole balance on A between the age lambda and lambda plus d lambda.  
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So, now we can actually divide this expression by v naught into delta lambda. We can 

divide this expression by v naught d lambda and take limit as d lambda goes to 0. So, 

that will be C A naught into E lambda plus d by d lambda into 1 minus F of lambda into 

C A lambda plus r A into 1 minus F of lambda equal to 0. So, that is the expression for 

that is the mole balance. So, now, we can open up this differential here and we can 

rewrite this expression as C A naught into E lambda E of lambda plus d C A lambda by d 

lambda into 1 minus F lambda minus C A lambda into d F lambda by d lambda plus r A 

into 1 minus F lambda equal to 0.  

Now, if we stair at this expression this d F by lambda is nothing, but the RTD function E 

lambda, where F is the F curve or the cumulative distribution function. So, using this 

property we can actually write the mole balance.  
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So, the final mole balance essentially is d C A of lambda by d lambda that is equal to 

minus r A plus C A minus C A naught into E lambda by 1 minus F lambda. So, that is 

the mole balance for the species for a maximum mixedness model. So, in terms of 

conversion, we can actually like this expression as minus C A naught d X by d lambda, 

that is equal to minus r A minus C A naught into E lambda by 1 minus F of lambda. And 

so, that can actually be written as d X by d lambda equal to r A which is the rate of 

generation of the species divided by C A naught which is the concentration of the species 

in the inlet stream into E lambda by 1 minus F lambda into conversion X.  

So, while solving this equation you will be able to find out what is the conversion, if we 

know the residence time distribution function. So, what are the boundary conditions for 

this equation? Boundary conditions are very simple. So, lambda goes to infinity when C 

A equal to C A naught, that is, at the entry point into the reactor with the age of the fluid 

is actually approximately infinity. So, how do we integrate this, we have to integrate this 

equation from backwards starting from very large lambda.  
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So, we have integrate this equation by starting from large lambda and move backwards 

till lambda equal to 0. So, that is the method to integrate this equation. And once we 

integrate the equation, you will be able to find out what is the conversion in under the 

situation of maximum mixedness. So, now, so if RTD is known. So, if RTD is known, 

then the conversion for the maximum mixedness situation can actually be model, can be 

estimated. So, this can conversion provides a bound for the conversion of the species in 

the non ideal reactor. So, far n equal to n greater than 1, it is been observed that for n 

greater than 1, the maximum mixedness model gives the lower bound on the conversion.  

So, the maximum mixedness model actually gives the lower bound on the conversion 

and the complete segregation model gives the upper bound on the conversion. So, now, 

we have looked at the single reaction case. So, now, is it possible to extend it to multiple 

reactions. In reality, many reactions are actually occur simultaneously in parallel. So, 

there can be sequence reactions that can be sequential parallel reactions etcetera. So, 

several reactions can actually happen simultaneously in a reactor. So, is it possible to 

predict conversion, when the multiple reactions happening inside the reactor? And the 

answer is yes it is possible.  
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So, it is very simple to extend the segregation and the maximum mixedness model for 

multiple reactions. So, if there are multiple reactions which are actually happening. And 

let us A and B is the reactance. And P is let us say the products which is formed, let us 

say the products which is formed. And if it is a segregation model, if it is a complete 

segregation model, then if we assume that each globule has different concentrations of A 

and B. And if we assume that, each of them behaves like a batch reactor, which is 1 of 

the assumptions of the segregation model each of the globules. Then C A bar which is 

the concentration of the species, the average concentration of the species.  

Remember that, if you are looking at multiple reactions and multiple species, it is 

actually better to work with concentrations rather than conversion. So, the average 

concentration of species, say will simply be the 0 to integral 0 to infinity C A of t E of t 

dt where E of t dt is the residence time function distribution function of that reactor. And 

similarly C B is given by integral 0 to infinity C B t into residence time of the reactor. 

And the C A t and C B t are essentially the concentrations up the can be achieved from a 

batch reactor because, this is the concentration of the species in each of the globule and 

we assume that each of these globule actually behave like a batch reactor. So, now if 

write the batch reactor performance equation for each of these species.  
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So, if there are q reactions occurring simultaneously. So, if the reactor volume is v and q 

reactions are occurring. If the q reactions which are occurring simultaneously, then for 

batch reactor, we can write the perform equation as d C A by dt that is equal to the rate 

of generation of r A. So, that is equal to sigma 1 to q that is some over all the reactions 

and the reaction rate of the individual reactions, it is leading to the formation of species 

a.  

Similarly, we can write for the species B; d C B by dt equal to r B which is equal to some 

1 to q r i B. Now this actually has to in order to find the concentration of the species A 

and B in this model, in this in this reactor for following the segregation model. So, these 

2 batch reactor rate expressions have to be solved simultaneously with the other 2 

reactions which represent the overall concentration of the species in the reactor.  

So, d C A bar by dt, that is equal to C A into E of t. So, that that defines how the 

concentration of the species, overall concentration of the species in the reactor that 

changes with time. And the corresponding equation for species B, that is equal to of t 

into E of t. So, by solving these 4 equation simultaneously this 1 equation 1, equation 2 

equation 3 and 4. So, these 4 equations have be solved simultaneously and need to find C 

A of t and C B of t. So, that gives as the concentration of the species as a function of 

time, which actually follows the segregation model. So, next let us look at the multiple 

reactions for the maximum mixedness model.  
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So, for a maximum mixedness case of it is the maximum mixedness model. If, once 

again if we assume that there are q reactions which are actually happening 

simultaneously, then the model equation is d C A by d lambda, is just an extension of the 

a single reaction case. So, d C A by d lambda is minus summation of reaction rate over 

all reactions which is actually happening simultaneously, plus C A minus C naught 

where C A naught is the concentration of the species in the feed stream of the reactor 

multiplied by E lambda which is the distribution function for that particularly reactor 

divided by 1 minus F lambda. And similarly for d C B by d lambda that is equal to minus 

some i equal to 1 q r i B plus C B minus C B naught into E lambda by 1 minus F lambda. 

So, where E is the RTD function for that particular reactor and F is the cumulative 

distribution function.  

So, now, for once we know the rate law for all of the reactions. So, if we know the rate 

law. So, we can simply have to plug in this a rate law and then solve for the 

concentration. So, solve for C A and C B from large value of lambda to lambda equal to 

0. So, once we solve this equation, we will be able to find out what is the concentration 

of the C A and C B as a function of different age. So, this is the a set of equations and 

this can actually be extended for many other species. Even if n species are participating, 

1 can actually write the maximum mixedness model, for all n species and similarly for 

the segregation model.  



So, let us summarize what we have actually discussed in the last several lectures, in the 

residence time distribution problems.  
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So, first we looked at the ideal versus non ideal reactors, we looked at ideal versus non 

ideal reactors. And then we looked at the RTD functions, we looked at the r t d functions; 

what is RTD function, why do we need RTD function etcetera. And then we looked at 

measurement of RTD functions, measurement of the RTD distribution function in real 

reactors, where we looked at the pulse tracer input and we looked at the step tracer input 

and we looked at how to perform these experiments and how actually estimate the RTD 

function, what to measure etcetera.  

Then, we looked at RTD properties of distribution, properties of RTD function. So, 

particularly we looked; the mean, we looked at the variance and then we looked at the 

skewness of the distribution which actually tells us how skewed is the function around 

the mean of the distribution. And then we looked at RTD that is the residence time 

distribution in ideal reactors. We looked at plug flow reactor, we looked single CSTR 

and then we looked at the laminar flow reactor. These are the 3 cases that we looked and 

for RTD ideal reactors.  

Then, we observed that the RTD function can actually be used for diagnostics purposes, 

in order to estimate whether the reactor is operating under perfect conditions. Usually it 

never perfect, but how close is it to a perfect operation, whether there is by passing of the 



fluids that is actually entering the reactor, on and if there is a dead volume which may be 

present inside the reactor. And then we looked at the combination of reactors, we looked 

at combination of reactors particularly; we looked at the PFR-CSTR combination. And 

we looked at how to estimate the residence time distribution and we also observed that, if 

the residence time distribution a for PFR followed by CSTR and CSTR followed by PFR 

is actually same; however, the sequence is actually a dictate as to what is going to be the 

performance of the combination of reactor.  

So, which is suggested that the RTD function alone is insufficient to actually predict the 

complete conversion or it is not the complete picture of the performance of the reactor, 

additional piece of information is required. And from there we marked on to the next 

topic of looking at the predicting the conversion. So, in this case we looked at the 

segregation model, and we looked at the maximum mixedness model. We looked at the 

maximum mixedness model, then we extended we looked at these models for first order 

reaction and we also extended this to multiple reactions.  

Thank you. 


