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In the last lecture, we continued our consideration of the effect of chemical reaction on mass 

transfer and completed a discussion of all the regimes. So, as the value of root m increases as we 

consider a reaction of increasing severity we first pass through the situation of slow reaction 

regime. In which the reaction is so slow that it is enable to influence the concentration gradients 

within the film. And then, we go to the fast reaction regime where quite in constraint to the slow 

reaction regime the reaction is virtually completed within the film itself. 

Then the extreme case of reaction severity raises when the reaction is instantaneous in relation to 

mass transfer. In the sense that, it is a situation where a and b cannot co exists within the film. 

So, in that situation we saw that the reaction actually takes place at a single plane which is 

located somewhere within the film. And the location of the film itself is determined by the 

condition that the fluxes of a and b should match at the film with respect to the reaction 

stoichiometry.  
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So, towards the end of the lecture yesterday we were considering the enhancement factor versus 

hatta number curve. And we saw that the curve generally has a shape of this kind when the value 

of the hatta number is very small we are in the slow reaction regime. The enhancement factor is 

equal to 1 that is to say that the mass transfer coefficient is equal to the physical mass transfer 

coefficient. And then as root M approaches a value of n the enhancement factor curve starts to 

left half the floor. And when the enhancement factor when the value of the hatta number is more 

than 3 we enter into what we call as the fast reaction regime in which the bulk of the of the liquid 

is not carrying out any reaction at all.  

So, the system proceeds along this asymptote where the enhancement factor is given by E equal 

to root M. And then depending on the value of q that is the relative abundant parameters that we 

have discussed earlier its settles down to 1 of these asymptotes as the value of the root M 

becomes much larger than q. So, this is the situation on this we can mark our regime this is the 

slow reaction regime this is transition from slow to fast reaction. In which the enhancement 

factor is given by that expression this is the fast reaction regime and depending on the value of q 

the system settles down in asymptotic enhancement factor equal to E infinity.  

So, that is the instantaneous reaction regime and this region here where the system has deviated 

from the fast reaction asymptote, but has not quite reach the instantaneous reaction asymptote. 

This we call as the region of regime of transition from fast to instantaneous reaction. So, this is a 

name that we can give to that regime. So, has you have seen we have got expressions for 

enhancement factor in all the regimes analytical expressions, within the framework of the film 

theory. So, here the enhancement factor is 1 here, it is given by that expression here; it is on this 

asymptote it is given by that expression.  

Here, it is equal to infinity this is the only regime the transition from fast instantaneous where we 

do not have an expression. But, knowing this asymptotes and that asymptotes we can do some 

kind of interpolation in order to track the codes of the enhancement factor. As root M increases 

in the transition regime we will in a moment derive an approximation solution to track that codes 

as well. But, for the moment all though we do not have a regress solution here it is it is possible 

to do an approximate interpolation between the fast reaction asymptote and the instantaneous 



reaction asymptote. Just to complete the picture what we shall do is we shall edict an additional 

access here, which will track the concentration of the a in the bulk.  

So, this of course, in the non dimensional terms this has a maximum value equal to 1 and the 

concentration of the a b is indeed equal to 1 in the kinetic sub regime or the sow reaction, as we 

have seen. So, its start there and it comes down and then attains value of 0 and then there after it 

remains 0. Now, at what value of root M does? The concentration decaying to 0 depends on 

another parameter, which we have called as the ratio of the film volume to the bulk volume. So, 

this is the direction in which this parameter a hat delta increases. So, depending on the value of a 

hat delta you have a kinetic sub regime and you have a diffusional sub regime before the reaction 

starts influencing the proceedings within the film.  

So, this kind of summarizes this plot now summarizes all we have discussed in the last we 

lectures in terms of the effect of chemical reaction on mass transfer, Now, before we leave this 

topic and go to see what the surface renewal theory is have to say about the reaction. Various 

reaction regimes are there any similarity what the film theory has to say and where are the 

differences and so on. We shall just address this transition regime where as we note it we do not 

have a regress analytical expression; because that regime involves the simultaneous solution of 2 

ordinary differential equations which are coupled.  
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So; obviously, you know that is not going to be an easy task and numerical solutions would be 

needed. But, a very cleaver analytical solution has been approximate analytical solution has been 

derived in the literature and because of the physical insides it gives into the transition regime we 

shall consider that briefly. So, we began our discussion by noting the that the equations that 

govern the transition regime are the seconnd order differential equations; D square a upon d zeta 

squared equals Mab and d squared b by d zeta squared equals m divided by q ab with the 

boundary conditions zeta equal to 0, a equal to 1 and db up on d zeta equal to 0.  

Then zeta equal to 1, a is 0 and b is 1. So, these are the boundary conditions that govern this; 

these equations and we also noted that in general the profile would look something like this. So, 

that is the film, this is your zeta equal to 1 and zeta equal to 0 the gas liquid interface and that is 

your concentration equal to 1 non dimensional concentration 1. And we noted that in general the 

profiles would look something like this the concentration profile of a goes to a 0 gradient, 

somewhere within the film. And then the concentration of b has starts with a 0 gradient at the 

interface and then it goes like that.  

So, now what we note from this is that this the region where a and b are both present and much 

of the reaction takes place in the part of this region which is close to the interface. Because, that 

is is where the concentration of a is high. Now, we notice that because of this condition here the 

concentration profile of b is going to start with a 0 slope there, which means; for some small 

distance close to the gas liquid interface. The concentration of b is not very different from its 

interfacial value which we shall call as bi. So, we are saying that b equal to b bi at zeta equal to 0 

we of course, do not know the value of bi.  

But, if we knew the value of bi a good approximation would be to consider the reaction to be fast 

order once again because the concentration of b is approximately equal to bi. If you can make 

that approximation, then we do not have to solve this equation because after all what this 

equation gives is the variation of b with a distance. Which we now neglect and say that to a good 

approximation we can assume that in the regions where we are interested in tracking the 

concentration profiles b is substantially equal to bi. So, if that is the case then of course, the 

equation becomes no different from the equation that we have already solved.  



If b is consider approximately equal to bi, then we have seen that we have already solved this 

first order equation. And that led to the situation that E is equal to root M divided by tan h root 

M. Except that, here instead of M we have M times bi as the as the first order rate constant if like 

that multiplies the concentration a. So, this is an expression that we can use in the transition 

regime fast to instantaneous now that is all very fine except that, how do we know the value of 

bi. And unless we knew the value of bi we cannot of course, calculate the value of E.  
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So, in order to get the value of bi we go back to our original equations here and note that in 

general whether we assume b as equal to bi or not we can always write d squared a up on d zeta 

squared equals q times d squared b upon d zeta squared. That is because if you look at these 

expressions the only difference between these 2 expressions is on the right hand side where on 

the in the side equation we are dividing by q. So, if we multiple by this equation by q the right 

hand become identical and we can then equate the left hand side. So, that is the equation that we 

have and we further note that the value of we know the gradient for b and we know the 

concentration for a.  

So, what is the gradient for a. So, if we has that question then we see that d a or let us consider 

the definition of the enhancement factor the enhancement factor is nothing but minus d a d c a 

upon d x at x equal to 0 divided by minus d a c a star or plus d a c a star divided by delta which is 



the physical mass transfer weight. So, the actually mass transfer weight in the present of 

chemical reaction as given by the solution of these equations divided by the physical mass 

transfer rate. So, that is the definition of e and.  

So, canceling of d a and making use of the use of the dimensionless numbers that we have 

dimensionless concentrations that we have defined earlier. We see that the concentration of 

gradient a in dimensionless terms at zeta equal to 0 is nothing but equal to the enhancement 

factor. So, we can use this and we shall of course, calculate denote the concentration of b at the 

interface as bi. So, we can say we have additional conditions available now at zeta equal to 0. 

We can say that d a up on zeta at 0 is minus E that is this equation here and b equal to bi of 

course, both of these are unknown at the stage.  
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But, we shall see how we can relate these. So, starting with this equation and integrating it once 

we get d a upon d xi equal to q d b upon d xi d zeta rather plus a integration constant which we 

shall call as d 1. Now, if we implement this boundary condition there then we know that at zeta 

equal to 0 we have d a by d zeta is equal to minus E d b by d zeta is 0. So, I am implementing the 

boundary condition at eta equal to 0 and I am saying that at this point E is or minus E my 

concentration gradient of a and b is or rather the concentration gradient of b is 0.  



So, this concentration becomes equal to d 1 and therefore, this equation becomes d a upon d zeta 

equals q d b upon d zeta minus E. So, now, we can integrate this once again and that is gives us a 

equal to q times b minus E times zeta plus a. Second integration of constant which we shall 

called as d 2. So, now, we apply the boundary condition that at zeta equal to 1 we have a as 0 and 

b is 1. So, this gives we put a equal to 0 and q b is 1 minus e plus d 2 or d 2 is E minus q.  
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So, substituting this back in the expression for a that is in this expression here we have a as q b 

minus E zeta plus E minus q. So, this is the concentration profile of a in terms of the 

concentration profile of b. So, of course, in this equation we do not know the value of E. So, we 

bring in the additional condition that at zeta equal to 0 we have b equal to bi and a equal to 1 all 

right. So, that is 1 equals q bi minus this terms goes plus e minus q or this is the equation that 

gives us the value of the concentration of b at the interface which is nothing but 1 plus q minus E 

divided by q.  

So, we can write this in terms of since we are trying interpolate between the instantaneous 

reaction and the fast reaction regime. We can note that E infinity is 1 plus q which implies that bi 

can be written as e infinity minus E divided by E infinity minus 1. 
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So, going to back to this expression now, for the enhancement factor E we can substitute the 

value of bi and finally, conclude with this equation E. So, this is equation that governs the 

transition from fast to instantaneous. So, E is given by square root of m bi is E infinity minus E 

divided by E infinity minus 1 divided by tan h of same quantity m e infinity minus E divided by 

E infinity minus 1. So, this is an implicit equation that allows the calculation of E that is because 

e occurs in a transcendental form um.  

However, in most cases the tan h term in the transition from fast to instantaneous the tan h term 

goes to 1. And if that is the case you can take E equal to the nominator and square both sides end 

up in a quadratic which can be solved. So, if you are trying to solve this equation by try and error 

you can start with the solution. That obtains by assuming that the denominator is equal to 1 with 

that as the starting or the initial guess you can do newton raps. And other methods of solving 

these kinds of equations you can implement 1 of those methods with the initial gas given by the 

equating nominator with E.  

So, we now have an approximate way of calculating the enhancement factor in the transition 

regime as well as. So, no matter what our regime is we now have a way of calculating the 

absorption rate because once you know the enhancement factor you multiple the physical mass 

transfer rate with the enhancement factor. And you have the absorption rate for that regime. So, 



that completes the discussion of the various reaction regime within the framework of the film 

theory.  
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So, now, we address the question of whether you know we are just estimate at all in using the in 

the using the film theory. And that we do by considering the same regimes or considering the 

same situation of mass transfer occurring with a chemical reaction with a second order chemical 

reaction of the stoichiometry. A plus mu b going to c a is the in the gas phase b is in the liquid 

phase and let us assume that is in the liquid phase as well. The same reaction taking place in the 

in the liquid a is getting transported from the gas to the liquid, but now we assume that that 

transport is govern by a surface renewal type of mechanism.  

So, in other words to recall the surface renewal mechanism there is a bulk that is in a state of 

churning in a state of agitation. And because of this agitation the surface element the elements of 

liquid from the bulk are thrown on the gas liquid interface; each element spends a certain length 

of time at the gas liquid interface. And during this time it is absorbing gas from the interface and 

while we did not consider the chemical reaction when we consider this picture in the context of 

physical mass transfer. Now, we shall consider chemical reaction in other words the surface 

element has going on within it a process of unsteady state mass transfer accompanied by a 

chemical reaction.  



So, this process goes on and it leaves a certain concentration of a and concentration of product in 

the element by the time it leaves the gas liquid interface. And then these concentrations are even 

doubt as the surface element gets completely mixed within the bulk of the liquid. Now, we have 

seen that there are differences as to you know what is assumed for the distribution of residence 

time or distribution of surface ages. You know as given by the Higbie theory and as given by the 

Danckwerts surface renewal theory. But, in order to keep matters simple we shall take the 

attitude; we shall take the Stans that kl is given by square root of d by some quantity with 

dimension of time which we should call as tau.  

So, we note that, if tau is pi t b divided by 4 we have the Higbie postulate in which every element 

of liquid is spending exactly the length of time given by t b at the interface or if tau is given by 1 

over s. The surface renewal a surface renewal rate of surface renewal frequency then we have the 

Danckwerts picture. So, both of these theory can be combined in this manner into 1 expression 

which gives that tau is this is the incidentally. So, d a squared divided by kl so this d a divided by 

kl squared. So, this is the definition of the time that is time defined by this equation.  

If you substitute the orders of magnitude for diffusivity which is of the order of 10 to the power 

minus 9 meters square per second usually and kl is of the order of 10 to the power minus 4 

squared. So, that is meter per second squared we note that this is of the order of 10 to the power 

minus 1 second. So, that is the order of magnitude of this characteristic time that we have 

defined by looking at the experimental mass transfer coefficient. So, that is 1 circumference we 

make use of the other 1 is that we have already made use of the expression for the Hatta 

numbers. In terms of the physical mass transfer coefficient rather than in terms of delta in terms 

of which we had 1st defined it. 
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So, if you look at this expression now there is nothing in it to suggest that the film theory 

postulate are in any way involved because of film theory construct, which is the film thickness 

has been eliminated in favor of mass transfer coefficient which is an experimental parameter. So, 

we will keep these 2 things in the background that is the definition of root M in terms of the mass 

transfer coefficient. And a characteristic time, that is calculated by reference to the experimental 

mass transfer coefficient which is of the order of 10 to the power minus 1 second.  

So, the governing differential equations for the case of you know a second order reaction 

accompanying mass transfer would be can be written down in that manner D CA upon dt equals 

D AD squared CA upon dx squared minus K CA CB. So, what is this is saying is that 

accumulation within a differential element within located within the surface element is equal to 

the input minus output minus consumption by chemical reaction. So, when we last considered 

the surface renewal theory in the context of physical mass transfer this reaction term was not 

there. It now makes it appearance because we are now considering the effect of chemical 

reaction on mass transfer.  

Similarly, for b we have this equation D BD squared c b upon d x squared minus nu times K CA 

CB which is the rate of consumption of b within the surface element. The initial and boundary 

conditions that are applicable are at t equal to 0 that is initial condition for all values of x. 



Everywhere within the surface element we have the concentration of A as equal to the 

concentration of bulk, where the element is coming from and the concentration of b is equal to 

the concentration of b in the bulk. In other words the surface element is taken out of the bulk 

liquid.  

Therefore, when it just comes to the interface nothing has changed within the surface of the 

element at t greater than 0 we have 2 conditions at x equal to 0. We have CA equals CA star in 

equilibrium with the prevailing partial pressure on the gas side and we have d CB upon d x equal 

to 0. And at large distances from the interface which we call as extending to infinity because the 

element is pending fraction of a second at the interface. There is not enough opportunity for the 

gas to diffuse very much deep into the surface element. Therefore, we can regard the surface 

element as infinitely deep from the point of view of the diffusing salute.  

So, we have CA bulk and CB bulk in other words the conditions at x tending to infinity for large 

times for times larger than 0 are identical to the conditions at all x at t equal to 0. So, this as we 

have noted earlier suggest a combination of variables which we will come to in a in a minute. 

But, before we do that as usual we want to minimize our work of having to solve these 

complicated partial differential equations where which are which are coupled. Therefore, rather 

than go to the computer and starts solving these by methods of brute force we shall do dome 

analysis by 1st non dimensionalizing these equations.  



(Refer Slide Time: 29:50) 

 

So, in non dimensionalization we have no difficulty in defining a non dimensionalization 

concentration A because we have already done that in the context of film theory. And we 

similarly can find defined a non dimension concentration b again in identical terms to what we 

did in the context of film theory. But, when it comes to a non dimensional distance we note that 

there is a bit of problem because the field of diffusion is semi infinite. In this case it is bounded 

on 1 side by the gas liquid interface, but on the other side it goes to infinity.  

So, this problem as no characteristic length so; however, we note that there is a characteristic 

time for the process that is tau, which we have defined by looking at the physical mass transfer 

coefficient. And in terms of tau a dimensionless time can always be defined and that is t divided 

by tau where tau we have seen is DA divided by kl squared. And we note that a characteristic 

distances can be calculated from this characteristic time by reference to the equations of physical 

mass transfer.  

You recall the error function solution we derived for the concentration profile as a function of 

distance and time in the physical mass transfer case. And if you plug in the you know x is equal 

to square root of dt, in that equation. Then it shows that this is the depth to which approximately 

the salute will penetrate in a time t that is, because if you plug this condition into the error 



function complement solution. It shows that, the significant part of the concentration profile lies 

within this distance.  

So, this can be made use of as a characteristic distance that is the characteristic depth of 

penetration by substituting the characteristic time in this expression. So, x equal to square root of 

d tau will be our characteristic x with that we can define a dimensionless a distance as x divided 

by square root of d tau. So, we have now ready to go through with the non dimensionalization of 

our equations and if we do that for A we have the flowing equation. We have this equation for A 

and this is the 1 that i am considering right now.  
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So, we have CA star da divided by d theta divided by tau here and DA CA star divided by the 

characteristic distance comes out here raised to the second power, because we have a second 

derive here. And therefore, that is d a tau minus k times CA star CB bulk ab all right. So, getting 

rid of all the variables from the left hand side we have da upon d theta d a will cancel here and 

CA star upon tau will cancels there. So, we have d square A upon d zeta square minus k CB b tau 

multiplied by ab. Now, recalling that tau is nothing but d a divided by kl squared. So, this term is 

1 upon kl squared da k CB b. So, this shows that this is nothing but square of the Hatta number 

itself written in terms of the mass transfer coefficient.  



So, our equation now becomes da upon d theta equals d square a upon d zeta squared minus Mab 

which shows that the effect of any effect of that the chemical reaction has on the concentration 

profiles. So, these terms would be absent and in physical mass transfer. So, any effect that the 

chemical reaction has on the concentration profile has to be understood in terms of the 

magnitude of the dimensionless parameter M. So, what is this M, M is of course a same quantity 

that we have visited earlier, but if we want we can interpret m in terms of the postulates of the 

surface renewal theories. So, M nothing but k CB times tau.  
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So, it is some kind of Damkohler number in that sense because k CB b is the first order rate 

constant and that is the time required for the reaction to proceed to a significant extent. And tau 

is the time that is available for reaction to occur because after time tau typically characteristically 

the surface element sees us to be at the surface. So, naturally if large values of m corresponding 

to significant amounts of reaction taking place within the life of the surface element. And small 

values of M corresponds to a negligible amount of reaction taking place within the a life of the 

surface element.  

So, that is as for as m is concern. So, we can do a similar non dimensionalization as we did for 

the case of a for the case of bi shall leave the details to you. But, basically the equation that 

results is something like this M up on qab. So, just as in the case of film theory you note that m 



upon q is making an appearance in the reaction term here where as M appeared in the equation 

for a the other difference. That we note from the case of film theory is that the ratio of 

diffusivities a to b is appearing in this equation. Whereas, that was not a parameter a that 

appeared anywhere in the in our considerations in the film theory.  

So, that will have some consequences as we go along, but for the moment we shall continue with 

this and write down the initial and boundary conditions in terms of the non dimensional 

parameters. The initial condition is at theta equal to 0 for all values of zeta you have a is ab 

which is the ratio of the concentration of a in the bulk to CA star and b is 1. Because, the element 

is coming from the bulk and for values of time greater than 0, that is once the element has landed 

at the interface at zeta equal to 0. Then you are a is 1 and db upon d zeta is 0 and as zeta tends to 

infinity we have a going to a b and b going to 1 and these 2 conditions are similar.  
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Now, so we have these equations we have the equation for we have equation for a and the 

equation for b with the applicable initial and boundary conditions and let us consider these 

equations in terms of increasing severity of m. So, the q parameter that appear is the relative 

abundance parameter that we have already seen in the in our consideration of film theory. And 

we have noted that q is usually a number that is much larger than 1. So, that continues to be case 



here. So, we shall 1st consider the case where for value of m is much larger small than q. So, we 

are considering very slow reactions for which the value of M is small any way.  

Then considering that q is usually large number we are approaching the matter of the effect of 

chemical reaction on mass transfer from a point of view a from the point where the reaction is 

very slow. Now, if that is the case then the equation for b becomes D upon DB db upon d theta 

equals d squared b upon d zeta squared, because the other term is close to 0; the term that 

contains the ratio of M to q. Now, in the case of film theory the moment this assumption was 

made it fell out that b is equal to 1 everywhere within the film. We did not have to do much work 

we should persist with the equations of surface renewal theory for a bit.  

If only to demonstrate that there is a lot more work involved in arriving at similar conclusions as 

we arrived at in the case of film theory. But, within the framework of surface renewal theory 

surface renewal theory is a transient theory the equations are partial differential equations the 

film theory is a steady state theory the equations are ordinary differential equations. So, we shall 

see how things were come. So, a conclusion that was self evident in the case of film theory will 

be made with considerable effort in this case.  

So, we need to it is not clear from this although in an intuitive sense since we are saying that the 

reaction is slow and the relatives supply of b relative to the h rate at which it is required by 

stochitometry is much larger than 1. So, a combination of these 2 circumferences should mean 

that the concentration of b is uniform right up to the interface at all times in the case of the 

surface element. But while that is intuitively obvious the mathematic should also its says the 

same thing and it is not obvious whether this equation is saying the same thing. So, we shall 

solve this equation once again by combining the variables manner in which we did it for the case 

of physical mass transfer.  

We can define a a combination variable eta and I shall directly write the equation for eta. So, if 

you make this substitution here calculate these derivatives in terms of eta for example, you can 

say that d upon d theta is d a upon d eta and d eta partial d eta upon d theta so on. So, we can 

work out all these sorry this is i should have b there. So, we can work out all these derivatives on 

both sides by these kind of application of chain rule of differentiation. And if we did that and 



wrote down the final equation we see that theta and eta theta and zeta disappear from the 

equations leaving behind only eta.  
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So, this is the equation that results and the corresponding 2 boundary conditions for this ordinary 

3 differential equation. Now, is eta equal to 0 is d b upon d eta equal to 0 this is this comes from 

non volatility of of b and as eta tends to infinity b equal to 1 this is the 2 conditions 1 for t equal 

to 0. And the other for extending to infinity, which can be combined because; under both of these 

conditions the concentrations are identical. So, we can integrate this in a straightforward because 

if we let u stands for db upon d eta the first derivative then this equation is du upon d eta equals 

minus 2 eta u which has a straightforward integral Ce to the power minus eta squared.  

Then if we apply this boundary condition and noting that this is u at eta equal to 0 this term is 1 

and we are saying u equal to 0. So, this application of the boundary condition this 1 shows that C 

equal to 0 which means u is 0. And if u is 0 db upon d eta is 0 and; that means, that b is a 

constant for all eta. And since b is equal to 1 at 1 value of eta that we know that we have this 

condition. So, this leads us to b equal to 1. So, we have to do ... So, much work to realize that the 

concentration of b is uniform throughout.  
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So, once we when once we realize that we can now rewrite the equation for a as d upon d theta 

equals d square a upon d zeta square minus M a because b is equal to 1. And this therefore, now 

becomes the pseudo first order case because the order with respect to b is degenerate. And 

therefore, we have this equation here once again within the pseudo first order case, we will first 

consider where we are considering case 1 which is pseudo first order regime or pseudo first order 

case.  
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We shall now consider under case 1 a, which is m being for less than 1 it is not only for less than 

1 q it is additionally for less than 1. So, in this case we have da upon d theta is equal to d square a 

upon d zeta squared there is no appearance of the chemical reaction term anywhere in the works. 

And we have the equation and initial and boundary conditions which are identical to the case of 

physical mass transfer. So, in another words what we are saying is that the reaction is sufficiently 

slow in this case, that from the point of view of the surface element. Which is spending time at 

the gas liquid interface; the reaction is enabled to make any dent in the concentration profiles. 

And therefore, the concentration profiles will work out to be exactly the same as in the case of 

physical mass transfer which means we have the error function complements solution applying 

and we arrive at the instantaneous flux which we average with respect to the weighted with 

respect to the surface age distribution and so on. So, everything works out in an identical manner 

to the case of physical mass transfer, so the mass transfer rate or mass transfer coefficient is not 

influenced by chemical reaction. This is equal to case of physical mass transfer coefficient.  

So, this conclusion is identical to identical conclusion to the case of film theory all right. So, 

now, we has the question then what is the role of chemical reaction here and we come up with 

the answer that in order look for the effect of chemical reaction. Now, we have to look at what is 

happening in the bulk because that is where the reaction is actually occurring. So, we make a 

bulk balance and again we have to anticipating that the volume of the liquid in the surface 

elements is going to be much smaller than the volume of element volume of liquid in the bulk. 

We can write the bulk balance in a manner that is identical to the case of what we did when we 

were discussing film theory.  
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So, this is the rate of mass transfer per unit liquid volume multiply that by the liquid volume and 

that is the we should have had the volume here. But, we are using the liquid volume here. So, 

this is equal to vl into k into CAb times CBb. So, this is the same equation has we did earlier and 

therefore, this will of course, lead to this equation that the bulk concentration of a is equal to 1 

plus p where p is k CBb divided by kl. We had shown this as equal to m divided by a delta here 

in the case of film theory and in this case it turns out.  

If you do the manipulations that it is it is this quantity where the quantity within the in the 

denominator is nothing but the volume of liquid within the penetration depth penetration depth 

divided by total volume of liquid. Since this is the same equation that same expression that we 

are dealing with this. You can plug in the actual numbers tau is equal to minus 10 to the minus 1 

d a is 10 to the power minus 9 so and so forth. And this turns out to be of the order of 10 to the 

power minus 3 all right.  

So, all this to just say that in the event of m being much less than 1 there is virtually no 

difference between what the film theory has to say and what the surface renewal theories have to 

say. So, this you know which variant of the surface renewal theory you are considering does not 

really matter because the mechanism of mass transfer itself is such that the reaction does not 

have any influence. And therefore, whatever remarks we made for the surface the Higbie version 



of the surface renewal theory versus the Danckwerts version of the surface renewal theory in the 

case of physical mass transfer. Those remarks apply identically, in this case when we come to the 

considering the effect of mechanically reactions it centers on the value of this parameter p.  

Then the value of parameter p can be either much greater than 1 or much less than 1 both of 

these conditions are possible. Because, the volume of the liquid that is contained within the 

surface element within the penetration depth is much smaller than the total volume liquid, there 

is in the tank. And with that understanding both p much greater than 1 and p much less than 1 or 

possible, so in 1 event we have the kinetic sub regime in the other event we have the diffusional 

sub regime.  

So, up to the end of the slow reaction regime we are solving i mean our solution of the surface 

renewal theory equations; gives us nothing different from whatever we have concluded from our 

consideration of film theory. So, what happens for faster reactions is something we will take up 

in the next lecture.  


