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My name is A.K. Suresh and I am from the department of Chemical Engineering at IIT 

Bombay. In the next few lectures, I will be talking about an important class of 

heterogeneous reactions namely: Gas liquid reactions. Now, these are important from an 

industrial point of view as well as an academic point of view. From an industrial point of 

view because, industry uses these reactions for 2 important objectives; one is to do a gas 

cleanup.  

For example: removal of carbon dioxide from flue gases and removal of catalyst poisons 

such as h 2 s etcetera or carbon monoxide from gas streams, which are to be subjected to 

any further reactions steps. And the second objective is to make products of commercial 

value such as for example of absorption of sulphuric oxide in sulfuric acid to produce 

oleum, absorptions of nitrogen oxides in water to produce nitric acid and so on. They are 

important from an academic point of view, because there are more complex 3 phase’s 

systems or even more complex multi phase systems who analysis runs in a similar 

manner to the analysis gas liquid reactions.  

Let us, provide some contexts. So, you can see where, this class of reactions fix into the 

general landscape of reactions engineering that you have been seeing so far. When we 

study reactions, we usually begin with the simplex class of reactions which is 

homogeneous reactions. Now, these are reactions in which everything is in the same 

phase, all the reactants and products and catalysts. If there are some, they are all in the 

same phase and the reaction expressions turn out to be simple. They are often of the type 

you know c a raised to m and c b raised to n type of rate expressions. 
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Let us take an example such as reactions A in the liquid phase reacting, with B in the 

liquid phase; lower case b being the stoichiometric factor giving C also in the liquid 

phase. So, this is the liquid phase reaction, because the reactants as well as the product 

and if there is a catalysts the catalysts as well are all present in the liquid phase. Now, 

such reactions we have seen before and they are often analyzed using expressions of this 

type. 

The analysis is simple, the experiments to recover the values k, m and n are straight 

forward to set up and interpret. And the design of reactions using these kinds of rate 

expressions is also relatively straight forward. Now, the method of analysis that we use 

for these kind of reactions can also be extended to simple heterogynous systems, as long 

as the species influencing the rate are in 1 phase. 

So, what I am saying is in this reaction for example: the rate expression contains the 

concentration of A and the concentration of B and as long as the ads A and B is present 

in the same phase. It does not really matter whether C is in the same phase or not, it 

might volatiles volatile product or it might precipitate out of the phase. But, the method 

of analysis is essentially the same as if C was also in the same phase. However, the 

matter gets somewhat complicated when the reactants and catalysis’s, if there is 1 are 

distributed among different phases the simplest of… So, these are what are 

heterogeneous reactions as you know and the simplest of these reactions. 
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So, let say heterogeneous reactions and simplest of these are those in which there is a 

continuous phase and there is disperse phase and there are just 2 phases. Now, we have 

already seen 1 class of such reactions, which are gas solid reactions and in gas solid 

reactions you have seen 2 types. One is catalytic, in which case you model diffusion in 

the porous of the solid catalyst. And you recover a concentration profile of the diffusing 

reactant and use that to construct what is known as an effectiveness factor, which has the 

factor that modifies the intrinsic rate. 

On the other hand you have also studied non catalytic gas solid reactions. Which further 

can be grouped into models in or situations in, which the reaction takes place at a front 

and this leads to the shrinking core type of models. And you have also seen reactions in 

which the reaction takes place throughout the solid and these are these reactions are 

described by what are called as Uniform Reaction Model, Uniform Concentration 

Models. 

In the catalytic reactions as well as the Uniform Reaction Models will call this URM 

Uniform Reaction Models. As I said earlier, you are modeling the concentration profile 

through the solid and for simplicity you can create the solid particles to be spherical in 

shape. And then you write the diffusion equation for a sphere. Get the concentration 

profile diffusion with reaction get the concentration profile. And differentiate the 



concentration profile at the surface to find out the rate at which the reactant is entering 

into the solid, which is the rate at which the reactant is being consumed by reaction.  

Now, whether it is catalytic, whether it is non catalytic, whether it is shrinking core, 

whether it is uniform reaction the point to be noted is that the reactions are in the 

dispersed phase.  
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The reactions are in the dispersed phase which happens to be solid in this particular case. 

By contrast the type of reactions that we are going to study now, which are gas liquid 

reactions are those in which the reaction is the continuous phase. This is because the 

normal situation with gas liquid systems is, for example: a gas being bubbled through a 

column of liquid, which may be being stirred as in a purged in a stirred reactor or which 

may be being stirred by the flow of the gas itself, such as in a bubble column also there 

are equipments such as packed be D and so on, where also where you can say that there 

both the gas phase and the liquid phase are continuous. 

But, the point is that the reaction is in the continuous phase, which is the liquid phase. 

So, here the although the although conceptually is shows the very similar to the case of 

gas solid reactions, the method of analysis has historically evolved in a different way. 

What is considered for example in the case of gas solid reactions, which I talked about a 

minute earlier? Is that the reaction is taken as the basic process, there is a certain reaction 

that takes place at certain intrinsic rate. And the rate of that reaction is modified 



downwards that is it is decreased by the influence of transport factors by, the fact that the 

transport is not able to cope up with the velocity of the reaction under all circumstance. 

So, there is an effectiveness factor which is which has a value less than 1, which 

multiplies the intrinsic reaction rate and you get the actual rate of reaction. Where as in 

the case of the gas liquid reactions, we are going to consider now, what is taken? As a 

basic process is the process of mass transfer that is, there is gas, there is a liquid, there is 

a process of mass transfer that can occur weather or not there is a reaction that is taking 

place. That, if this substance from the gas phase, that is dissolving in the liquid phase has 

a reactant within the liquid phase to react with. Then the occurrence of the reaction is 

speed up the rate of mass transfer. 

So, there is a basic process of mass transfer, which is speeded up by the occurrence of 

the chemical reaction. Contrast this with the situation in the heterogeneous catalysis case, 

where there is a reaction which is slow down by the occurrence of mass transfer or by the 

existence of mass transfer limitations. So, this is a difference in perceptive that is needs 

to understood because, here we are going to talk about enhancement factors, which has 

values more than 1, which multiple the basic mass transfer rate to give you, the rate at 

which the gaseous salute is being consumed. 
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So, the basic process being mass transfer, we need to understand the theories of mass 

transfer, at least we need to revisit the theories of mass transfer. Because these theories 



provide a mechanistic basis and that mechanistic basis serves as in good stead when we 

want to include a reaction in the works. So, there are basically 2 theories of mass transfer 

that we will consider, one of which is called as the Film Theory and the second of which 

is actually a class of theory, it is not a single theory and that class of theories we will call 

as the Surface Renewal Theory. 

Now, in what I am going to be a talking from a now on I am talking about the processes 

which are occurring in at any particular location in an equipment like this, for this sake 

of concreteness. 
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Let us take, bubble column as our equipment now this is a cylindrical such as this and 

gas is being continuously bubbled through and the liquid may be continuous flow or may 

be sitting there getting converted it may be batch. So, the gas inside the bubble column 

exists in the form of bubbles of various sizes, and because of the churning action of the 

bubbles the liquid is in the state of agitation there is a state of turbulence and what we are 

talking about is the events that occur at any particular position in the in this kind of an 

equipment.  

For example, say a particular location on the surface of a bubble at which absorption of 

the gaseous component a is occurring into the liquid ok. So, the gas contains is salute a 

which is soluble in the liquid and. So, there is no reaction for now. So, the a dissolves in 

the liquid and diffuses into the liquid that is the process that we are considering. So, the 



first model that we will consider and additionally, I must also mention that in such a 

process from your knowledge of mass transfer you know that there is a gas phase 

resistance and there is a liquid phase resistance in order to keep matter simple.  

We will assume that there is no gas phase resistance in the in the initial discussion, we 

will looked the consequences of including a gas phase resistance towards the end of the 

this set of lectures.  
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So, with those assumptions, now we are ready to consider both types of a visualization 

which have appeared in the literature the first 1 as I said is called the film theory.  
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Now, in film theory the situation is assumed to be something like this; this is the gas 

liquid interface the solid line here, is the gas liquid interface on this side is the gas this is 

part of the bubble and. On this side is a liquid which is in turbulent motion and what is 

assumed in the film theory is at the entire resistance to mass transfer is located in a thin 

film, which is shown by s the region between the solid line and the dash line here.  

So, this is called as the film and outside the film the concentration of the salute or 

concentration of whatever there is in the liquid is assumed to be uniform by the... And it 

is kept uniform by the action of turbulence there is assumed to be an equilibrium at the 

gas liquid interface itself in other words the concentration on the liquid side of the 

interface which I have called asc a star here is in equilibrium with the partial pressure of 

a on the gas side of the interface, which is assumed to be note because we are assuming 

that there is no gradients in the partial pressure, there is no mass transfer resistance on 

the gas side.  

So, and this region this thickness of the film is usually denoted by the symbol delta, the 

Greek symbol delta and it is assumed that there is no turbulence of there is no motion of 

any kind within this region delta. In other words this film is assumed to be essentially 

stagnant. And it absorbs the gas by a process of steady state diffusion. Steady state 

because irrespective of whether, the entire bubble column is operating at steady state or 

unsteady state the film is always assumed to be in a state of what is called as quasi steady 



state; what it means is that because the volume of the liquid within the film is so, small 

the contents of the film get adjusted to any changed to that are happening outside or an 

instantaneous basis. Therefore, the diffusing species always feels as though conditions 

are not changing with conditions are study. So, what we have said.  
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So, for is that there is film and the film is stagnant. And the film is of thickness delta and 

the diffusion process within the film is steady state molecular diffusion, that is because, 

turbulence cannot penetrate into the film. The effect of turbulence is only felt outside the 

film in the liquid bulk. So, with these assumptions the governing differential equation is 

easy to write, you can either make a shell balance as you have done for example, in 

transport phenomenon, you can refer to the pages on mass transfer Bird Stewart 

Lightfoot if you need to refresh that that part of the syllabus. 

Basically the continuity equation for a is given by DA d squared CA by dx squared 

equals 0, which basically says that: if you take any you know in the film that I showed of 

thickness delta, this is the x direction that is the direction away from the gas liquid 

interface is the x direction. And that is the diffusion is assumed to unidimensional 

unidirectional. And what we are saying here is that if you take a an infinitesimal element 

here of thickness dx then whatever is entering at this point must equal the rate at which 

material is leaving at that point, because there is nothing no accumulation this being 

steady state. And there is no reaction, therefore there is no consumption.  



So, this is the differential equation that describes the transport of a through the film. In 

this DA is the diffusivity of a through the liquid; these all a through the liquid. Now, this 

being a second order differential equation requires 2 conditions, 2 boundary conditions in 

order to formulate it completely. And those conditions are given by saying at x is equal 

to 0 which is the gas liquid interface, the concentration of A is equal to concentration of 

A in equilibrium with the partial pressure on the gas side of the gas liquid interface. And 

A t x equal to delta the concentration of B is equal to CAB, which is the concentration of 

A in the bulk of the liquid.  

So, this is a particularly simple differential equation to solve and what it essentially 

saying is that: the second derivative of the concentration with respect to x is 0. If the 

second derivative is 0; the first derivative was be a constant and if the first derivative is a 

constants the concentration profile is a straight line. So, the solution to this equation is 

can be shown graphically in this manner.  
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So, this is x is equal to 0 this is x is equal to delta and there is a straight line profile that 

stretches from CA star at the gas liquid interface to CA bulk at the edge of the film. The 

particular equation that this follows is CA equals CA star minus CA star minus CAB 

divided by delta multiplied by x you can easily verify that this is a straight line its linear 

in x. And A t x is equal to 0 this gives CA is equal to CA star, if you put x is equal to 

delta CA star will cancel and you get CA is equal to CAB.  



So, it is satisfies the differential equation it is satisfies 2 boundary conditions. And 

therefore, this is the solution; what we are interested in is the rate at which gas is entering 

the liquid. In the gas at the gas liquid interface and that is denoted by NA the flux of A in 

units of moles of a per unit area, per unit time and this is given by minus DA d CA by dx 

which is fixed law. So, d CA by dx to be evaluate DA t x is equal to 0 because that is 

where we want the flux. And d CA by dx is evaluated in a straightforward from the 

linear equation and we obtained. If you did the simple differentiation you will get this 

equation coefficient and at driving force.  
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Let me, write that again n a equals DA divided by delta into CA star minus CAB 

compare this with usual way in which mass transfer into turbulence liquids is described 

in terms of a mass transfer And comparing these 2, we are arrive at the interpretation of 

the mass transfer coefficient in the film theory paradime as k l is equal to DA by delta. 

So, what is this says is that the mass transfer coefficient varies in direct proportion to the 

diffusivity a in the liquid.  

And it varies in inverse proportion to the film thickness. In spite of its appearance this is 

not in equation that you can use to predict the value of k l, because the value of delta is 

unknown all you can say is that the stronger the turbulence the more intense turbulence 

the thinner is the film expected to be, because turbulence can now reach to closer to the 



interface. Beyond that it very difficult to calculate a value of delta given the conditions 

of the you know, let us say power input or whatever in the into the liquid.  

So, this equation is as much of a definition of k l as it is a definition of delta. So, there is 

now ay in which you can calculate a value of delta. And therefore, calculate a value of k 

l this should be taken as saying that the only way to calculate delta is to actually measure 

the mass transfer coefficient experimentally. And use this equation to calculate delta. So, 

then what is the use of this equation it makes 1 testable prediction that the mass transfer 

coefficient is proportional to DA how does this prediction bear out in practice. It turns 

out that the diffusivity of gases in liquid do not vary over a very wide range. So, it is not 

the not the most straightforward of matters to actually test this equation rigorously.  
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But, available data indicate that k l is actually proportional to DA to the power n, where 

n has a value that varies between 0.5 and 0.67. In other words it is less than proportional 

to the value of the diffusivity. So, this is what experiments indicate to the extent that we 

can make out what the experiments are saying. So, now let us proceeds to the second 

theory and this as I said is not a single theory.  
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But, this is unknown as we will call this as surface renewal theories. And we will make 

use of this nomenclature surface renewal to indicate that, the picture of the gas liquid 

interface in this theory or in this class of theories is 1 of is something that is constantly 

being renewed. So, material from the bulk of the liquid is constantly being brought to the 

interface and is constantly being removed from the interface and mixed into the bulk.  

So, in this surface renewal theory under this heading of surface renewal theories, we will 

consider 2 variations 1 due to Higbie and the second due to Danckwerts. The Higbie 

version of the surface renewal theory is also called as the penetration theory. And 

Danckwerts version of theory simply called as Danckwerts renewal theory. So, 

irrespective of whether, we are talking about the Higbie theory or the Danckwerts theory 

all surface renewal theory I mean there are other versions of the surface renewal theory 

as well.  

But these are the most classical once and it is enough for our propose to really 

understand these 2 theories, because as we will see later there is no qualitative difference 

between these theories and various other theories that I have later been proposed. So, 

irrespective of whether, we are talked about Higbie theory and Danckwerts theory the 

development is identical up to a point. And it is only at the late stages of theory that, we 

have to invoke an assumption which will distinguish the Higbie theory from the 

Danckwerts theory.  
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So, let us proceed with a development here what is assumed is that the picture at the gas 

liquid interface is something like this. So, here this bold line once again is the gas phase 

liquid interface which is part of the surface of a bubble as we have considered earlier. So, 

what is assumed here is that the liquid bulk; which is in a state of constant churning 

because of either agitation or because of gas flow or other means of a creating turbulence 

and the action of this turbulence is essentially to through elements of liquid on to the 

surfaces that is what this arrow indicates.  

So, elements of liquid from the liquid bulk are thrown on to the liquid gas liquid 

interface and once there they spend a length of time which we call as residence time of 

the surface element And A t the end of the time they are removed from the surface. And 

then recycle to the bulk. While they are residing at the interface they are in direct contact 

with a surface element is in direct contact with the gas phase salute, which is on this side 

and the gas phase salute, we have called A and A has a concentration of c a star at the 

inside the inside the element at the gas phase liquid interface.  

In other words what we are saying is that moment, the liquid element lands at the gas 

liquid interface the interface achieves equilibrium with the gas phase and from there on 

the salute tries to diffuse into the liquid into the liquid element, for as long as the element 

is at the surface once the element leaves the surface, it is mixed up with the liquid bulk 

and the concentrations are even doubt.  



So, while the liquid element is at the gas liquid interface what is taking place is a is a 

process of unsteady state diffusion unsteady state, we came diffusion contrast this with 

the situation earlier where the processes that we considered, was a steady state k n 

diffusion process. So, and we are saying that on the microscopic scale at any particular 

location at the gas liquid interface, the processes an unsteady state p k n diffusion 

process irrespective of whether the microscopic process in the entire equipment is taking 

place at a steady state of unsteady state.  

This is to be clearly understood because, we are here talking about local rate phenomena 

only. So, that is what the concentration profiles shown as dash lines here indicate the as 

time progress as the element spends more and more time at the interface the 

concentration profiles proceed into liquid in that manner. So, what is the and also another 

important assumption here, is that the time for which the liquid element resides at the 

interface is. So, short that the and the penetration of the gaseous salute so, small that the 

penetration is confine to a region that is close to the interface. So, for all practical 

purposes the liquid element may be considered to be infinite in depth.  
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So, what is the governing differential equation then? So, we have to write the unsteady 

state balance for A and that is shown in that manner. It is a same equation except that the 

difference in the input minus the output for any differential element is equal to the 

accumulation here because, we are considering an unsteady state process. So, here x is 



that direction away from the interface as before. So, this is now a partial differential 

equation first order in time and second order in x, and therefore we need an initial 

condition and 2 boundary conditions.  

The initial condition is specified by saying that, at t equal to 0. The concentration at the 

concentration everywhere, within the element is equal to the bulk concentration. So, at 

time equal to 0 the element has just landed at the gas liquid interface. And throughout the 

element the concentration is equal to the bulk concentration, which is where t came from 

at t greater than 0. We have the first boundary condition at x is equal to 0, we have c a 

equal to c a star in other words what we are saying is that the moment the element arrives 

at the interface at the gas liquid interface the concentration achieves equilibrium.  

At t greater than 0 as x tends to infinity remember that, the element can be considered to 

be infinitely deep because, the gas does not get to penetrate anywhere near the far end of 

the element. So, as x tends to infinity the concentration is unchanged, it is the same as 

what it was at the beginning of the process. So, this is the differential equation and the 

governing this is governing differential equation and the initial and boundary conditions. 

Now, you might have seen these kind of equations in our transport phenomena course 

again either, in a momentum transport or heat transport or mass transport.  

These are unable solution by a technique called as similarity transformation; what you 

notice is that the conditions at t equal to 0 and x equal to infinity are identical at t equal 

to 0 the concentration is equal to CAB for all x at x equal to infinity for all time the 

concentration is once again equal to the same value. This suggest that you might be able 

to define a variable which is a combination of x divided by t to the power alpha; such 

that the by replacing by doing transformation in terms of this combined variable. We will 

be able to element t and x completely and have a single ordinary differential equation in 

terms of xi alone.  

So, you can see that the basis for this comes from the fact that this works for an equation 

of this kind number 1 and number 2 whether x is equal to 0 t equal to 0 or x is equal to 

infinity xi has the value of infinity And at that value the concentrations are the same. So, 

the value of alpha which makes this transformation work, can be calculated by 

substituting this into the differential equation and then find looking for such a value of 



alpha the. So, that x and t do not occur except as the group of x divided by t to the power 

alpha, it turns out that the value of alpha that does the job is half.  
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Or you can deal with a variable of the type x divided by root t. And in order to eliminate 

some constants what is normally done is this variable is used in order to transform the 

partial differential equation to an ordinary differential equation. Now, I will not go 

through the details of the derivation this can be if you substitute this into the differential 

equation here. It gets transform to an ordinary differentia equation which turns out to be 

fairly simple to solve. Now, once you have done that you get an equation for 

concentration which is an error function.  

So, it is actually CA minus CA bulk divided by CA star minus CA bulk equals error 

function compliment of x divided by 4 DA t. This error function compliment is nothing 

but 1 minus error function of x divided by 4 DA t. And error function itself is define 

DAs: 2 by root pi 0 to u e to the power minus let us, say t squared d t. So, that is the 

definition of error function. So, error function is a tabulated function you will find this 

for various values of u tabulated in mathematical hand books. So, you got this as the 

concentration profile.  
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If you plot this concentration profile for various values of time you will get a picture that 

is something like this. So, you have x And A ll concentration profiles start with CA star 

as soon as the element lands at the interface it has a profile that is something like this: 

that is a t equal to 0 at larger values of time you have concentration profiles developing 

in that manner as t increases. From these concentration profiles, we can calculate the 

instantaneous rate of absorption in a surface element which has spent.  
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Let us say t second at the interface, we do this by applying fixed law as usual except that 

in this case because, we are dealing with a concentration profile that is the function of x 

as well as t, we have to use the partial derivative of concentration with respect to x 

evaluate DA t x equal to 0. So, we do this as follows.  
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We have the concentration profile as given by this expression here, if we differentiate 

this.  
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We get D c a upon dx, we have to differentiate the error function here. So, we get first of 

all CA star minus CAB. And As usual we apply the chain rule of differentiation; 

differentiate the error function with respect to the argument and then differentiate the 

argument with respect to x.  
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So, when we do that the first. Differentiation of the error function with respect to the 

argument is simply the integrant itself evaluate DA t the upper limit.  
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So, we get that as 2 by root pi e to the power minus x squared divided by 4 DAt. And 

differentiating the argument with respect to x we get 1 by square root of 4 DAt. So, the 2 

will cancel with the square root of the 4 here and this whole thing has to be evaluate DA 

t x equal to 0; which means that we get there is a negative sign as well coming from the 

fact that we have the error function complement. And. So, we get minus CA star minus 

CAB 1 over root pi DAt. And substituting this in that expression over here we will get 

NA i of t as square root of DA upon pi t CA star minus CAB. So, this is the rate of 

absorption in an element, which has spent let us say t seconds at the interface. So, now, 

let us step back a moment and take stock at what we are trying to do.  
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So, we start at with an operating piece of equipment such as the bubble column and then 

we said that we want to understand the local phenomena which are taking place at any 

location in this bubble column. Let us say, at a particular point on the surface of a typical 

bubble. Now, we are saying that even that particular point on the surface of a typical 

bubble is itself composed of several thousands of these what we have called surface 

elements and each of these elements has spent a different length of time absorbing at the 

interface.  
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In other words the interface itself, can be pictured you know this particular location on 

the surface of a bubble that, we are talking about if I want to spread that out in this 

manner then it is nothing but  a Mosaique of surface elements which I can picture like 

this some of these surface elements might have just arrived some of these might have 

arrived a little earlier and so on. And there are those elements which are about to leave 

right.  

So, there are short leaved elements there are I mean; there are elements which are just 

arrived that are elements, which have been absorbing for some time and there are 

elements which have been there a long time. So, what we have calculated on the previous 

slide is the absorption rate in a typical element of this kind which is if edge t. So, this 

absorbs we said at this rate. Now, if you want to calculate the rate at which the entire 

surface is absorbing then we need to know what part of the surface is how old.  

In other words what fraction of the surface elements that makes up this unit interface, as 

spend what length of time at the interface. So, in order to do this, we define the age 

distribution function I of t d t which is the fraction of all surface elements of age t to t 

plus d t.  
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If we define this internal age distribution as it is called then the average rate of 

absorption by the entire surface or average flux of absorption is given by. Integrating the 

instantaneous rate of absorption with respect to time waited with the internal age 

distribution function. So, what we are saying here is that this is the rate at, which an 

element of age t is absorbing. And this is the fraction of the surface which is of age t and 

therefore, the average rate of absorption of the entire surface is given by this expression.  

Now, what do we use for this function i of t. So, this is where the difference between 

Higbie theory and Danckwerts theory plays out. So, we will consider these 2 concepts 1 

by 1. So, if we consider, the Higbie version of the surface of the renewal theory what he 

said was that every element of every surface element every surface element spends 

exactly the same length of time at the interface spends the same time. And let us call that 

as t b at the interface this is the central assumption.  

So, if you look at this assumption this is what happens in the plug flow an element enters 

into a plug flow environment spends exactly preorder amount of time which is decided 

by the volume of the plug flow environment divided by the volumetric flow rate. And 

there it leaves. So, since every liquid element is spending, the same length of time at the 

interface. So, as we have said this is similar to plug flow we can use the internal age 

distribution of a plug flow environment for i of t d t in order to calculate the average flux. 



Now, if you go back to the residence time distribution theory then you will recall that for 

a plug vessel.  
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Plug flow environment the i of t function as this form, it is 1 over t b for t is less than or 

equal to t b and it is equal to 0 if t is greater than t b graphically this looks something like 

this. If you are plotting i as a function of time there is a time t b and this is the kind of 

distribution that we are talking about, there is nothing of age greater than t b and less 

than t b for every age there is an equal fraction. So, this is what is the inter aged 

distribution for a plug flow vessel and using this we can calculate NA.  
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As NA i, which is square root of DA by pi t multiplied by the inter aged distribution and 

integrated from 0 to t b because, outside of t b for all time is greater than t b this function 

is 0. So, this is quite easy to evaluate, I have forgotten the CA star minus CAB which is 

of course, there. So, what we get is 1 over t b square root of DA by pi CA star minus 

CAB integral of 1 over root t d t 0 to t b. So, if you perform this integration the result is 

square root of 4 DA by pi t b into CA star minus CAB comparing this with the usual 

mass transfer rate expression, we find that the mass transfer coefficient in this theory 

interpreted as 4 DA by pi t b.  

So, this has 2 things to say that k l is proportional to square root of DA number 1 and k l 

is inversely proportional to 1 over square root of the mean residence time at the interface. 

Now, Higbie was led to this model by consideration of a single bubble that lies through a 

quiescent column of liquid.  
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So, if we have a quiescent column of a liquid and let a single bubble arise, in such a 

column then it is easy to imagine that for every bubble leave liquid meets the bubble at 

the North Pole slights down the surface of the bubble and disingenuous from the bubble 

at the South Pole. So, if this is the kind of manner of contacting between gas and liquid 

then you can calculate that the time for which the gas is in contact with any element of 

liquid is nothing but  the diameter of the bubble divided by the raised velocity of the 

bubble.  

So, for these situations you can actually calculate t b from these kinds of considerations 

and plug it into this expression here. And therefore, you can actually do a prediction of k 

l. So, if you do that it turns out that the results are quite in a quad with experimental data 

and this equation bares itself out the quite credibly, but you can do this kind of a 

calculation t b only for very simple situation such as this. And the actual situation is then 

operating phase piece of process equipment is for more complexes.  

The bubbles are do not raise in a single straight line they are moving in zig zag ways all 

over the place the liquid is not quiescent the liquid is itself turbulent motion. And in 

addition there are covalence and radiation process to which the bubbles are subject. So, 

in this kind of complex situation, it is not possible to calculate the value of t b from first 

principles.  
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So, we should regard in those kinds of situations the equation as providing a definition 

for t b as much as the equation provides a definition for k l in other words what I am 

saying is t b is to be regarded as a fitting parameter to be calculated from experimental 

measured values of k l. So, if that is the case then this equation leaves just 1 testable 

prediction that is k l is proportional square root of diffusivity and we have already 

remarked at the beginning of while dealing with film theory this is quite in accordance 

with experimental date.  
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So, experimental date do bare out that the mass transfer coefficients are proportional to 

something like this square root of diffusivity. Now, let us look at what Danckwerts have 

to say about the surface age distribution and how the predictions of that theory are 

different from the Higbie theory.  
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So, Danckwerts surface renewal theory. So, what Danckwerts said was the Higbie is 

concept of plug flow of surface elements and every elements spending an exactly equal 

length of time at the interface is all right for very simple situations as single bubbles 

rising through the a quiescent column of liquid, but in actual operating pieces of 

equipment the situation is being for more complex elements of liquid are landing 

randomly at the interface. And they are randomly being taken away from interface.  

So, the situation here is for more like in a well mixed vessel and very different from what 

it is plug flow vessel. So, he said why do not we look at the gas liquid interface as though 

it was well mixed environment. If that is the case we turn back to the residence time 

distribution theory and see what it has to say about the distribution of inter ages for well 

mixed environments. And there we come up on this kinds of an expression i of t for a 

well mixed environment i of t is given by 1 over t b e to the power minus t upon t b.  

Or this is written in the language of Danckwerts theory in that manner, where s what 

Danckwerts called as a surface renewal rate is nothing but  the reciprocal of the mean 

residence time. So, that is the internal age distribution that we have to use in 



consumption with instantaneous rate of absorption in order to predict the average rate of 

absorption which therefore, for this theory takes on this form DA divided by pi t that is 

the instantaneous rate of absorption multiplied by s into e to the power minus s t d t.  

The whole thing integrated from 0 to infinity and we have to add the driving force term 

which is the part of the NA t DA by pi t under the square root multiplied by CA star 

minus CAB. So, when we do this.  

(Refer Slide Time: 53:39) 

 

So, this you know if we take the constant elements out then we see that it is nothing but  

square root of DA upon pi CA star minus CAB into s integral 0 to infinity 1 over root t e 

to the power minus s t d t. Now, the simplest way to evaluate this integral is to recognize 

that this is nothing but the Laplace transform 1 over square root of t. So, if you look up 

the Laplace transform of 1 over square root t from a table of Laplace transforms. And 

substitute we will find that this amounts to root of DA s multiplied by CA star minus 

CAB.  

Comparing this with the mass transfer rate expression, we find that the Danckwerts 

theory predicts k l as being able being equal to square root of DA s. So, we have this and 

we have the earlier expression due to Higbie and if we compare this and this 2 things are 

obvious 1 is the square root of DA dependence is there in both of them.  
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And. In fact, if you look at the way in which we are doing these integrations it does not 

matter.  
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It does matter as to what you assume for this function i of t d t the square root of DA 

dependence comes from within the expressions from NA i of t. And therefore, that is not 

going to change irrespective of what you substitute for i of t d t. So, it is not surprising 

that both Higbie and Danckwerts theory predict that k l is proportional square root of DA 

and in that respect therefore there is nothing to distinguish 1 one theory from the other.  
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As to the other prediction of whether k l is universally proportional to square root of t b 

both of these do predict an universe proportionality between square root t b there is a 



constant here that is not very different from 1 which is the only difference between the 

Higbie theory and Danckwerts theory. So, all in all there does not seems to be very much 

that distinguishes the Danckwerts theory from the Higbie theory especially, when you 

consider that this t b something that cannot be measured from first principles and 

therefore, the only way you can fix t b is to actually go back to a measured value of the 

mass transfer coefficient.  
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So, we will conclude this section by making some concluding remarks on the 2 theories 

that we have seen, under the surface renewal category the first remark we make is that in 

the surface renewal theories. It is a given that k l is proportional to square root of DA. 

And in that respect these theories are better than the film theory, which predicts that k l is 

proportional to DA to the power 1 linearly to proportional to DA. And the second thing 

is that the Higbie theory and the Danckwerts theory are somewhat similar in terms of 

their quantitative predictions of the mass transfer coefficient.  

There being a difference of about 10 percent, if the value of t b is exactly known given 

that the value of a t b is not known and it can only be obtained from experiments, there is 

you can say that the Higbie theory and Danckwerts theory are virtually saying the same 

thing the third point is if that is the case and the Danckwerts theories seems to be more 

complicated in terms of the internal like distribution function its uses why worry about 

the Danckwerts theory at all.  



The real advantageous of the Danckwerts theory is mathematical advantageous nature of 

Danckwerts theory surfaces, when you have got linear systems to consider such as the 

simple mass transfer problem that we have considered so far.  
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That arises, when you look at this integral here and we made the point that the way to 

evaluate this. Integral is to recognize the parallel between the averaging process that is 

going on here and Laplace transformation. So, what that this suggest is that if you have a 

situation in which the governing equations can be solved by Laplace transforming the 

equation remember that the governing equation in the surface renewal theories is always 

going to be a partial differential equation. And 1 of the techniques of solving partial 

differential equations which are linear is to Laplace transform the equations with respect 

to time and eliminate time and converts this to an ordinary differential equations.  

So, if you use that technique and get the equations in the Laplace domain as an ordinary 

differential equation and solve it then the required quantities, which are flux the 

concentration profile etcetera the average concentration profile etcetera can be obtained 

without actually inverting the transform to back to the time domain and you can work in 

the Laplace domain as itself and directly obtain the results. So, this gives you an 

advantage in terms of the mathematical aspects of solving the differential equations that 

arise. So, we will conclude by summarizing the important aspects of today’s lecture.  
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So, we considered the problem of mass transfer or what we may call as physical mass 

transfer because, there is no reaction here into an agitated liquid. Experimentally this 

situation is always explained using in mass transfer coefficient and usual way in which 

the absorption flux is written is to invoke a mass transfer coefficient And A  driving 

force of this kind. So, this is how experimentally, we describe the physically mass 

transfer into an agitated liquid.  

So, we considered 2 theories 1 is the film theory and the film theory said that the k l is 

proportional to diffusivity. We considered the surface renewal theories. And the surface 

renewal theory is said that k l is proportional to square root of diffusivity. Now, this is 

more correct when you look at the evidence that is available of the way in which mass 

transfer coefficient dependence on diffusivity and this is not, so correct; however, the 

advantage here is that there are ordinary differential equations to solve and here there are 

partially partial differential equations to solve.  

Therefore, from the mathematical point of view, if we can use this theory based on some 

consideration it is going to be always easier to solve. So, we will keep that in mind and 

in the next lecture, when we take up the effect of chemical reaction on the mass transfer 

rate we will first do our deliberations in terms of the film theory. We will disregard from 

the movement that the film theory is less realistic as compared surface renewal theories. 



We will assume that the film theory is a model that is acceptable in some sense and then 

we will look at the effect of chemical reaction on the physical mass transform.  

We will go through the development and then we will see how the development will 

differ, if we were to use surface renewal theories. Then it will turn out that if all your 

interested in is in predicting the effect of mass transfer effect on effect on mass transform 

of the chemical reaction then 1 theory is nearly as good as another having said that there 

are some kinds of reactions for which the surface renewal variety of theories. We will 

give a better prediction as compare to the film theory.  

So, we will come to those aspects as we go a long, but I have made these comments just 

to justify my use of the film theory in the initial sections of the consideration of chemical 

reaction and its effect on mass transform.  


