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Okay so in the last lecture we are looking at --
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Linear quadratic regulator problem so you have taken the most basic model in the beginning

which is the model which is 3 of measurement noise any state disturbance somehow the initial

state is not equal to the origin and the problem is to move the question from a non zero initial

state to zero initial state that is your simplest of the problem that we are able to look at that

approach and slowly relax all  the assumptions and then move towards the problem which is

completely inversely consider disturbances not only just simple disturbances.

But different disturbances and talk about a regulation at any obituary set point so all that will do

okay but let begin with the simplest problem so this is a right now determines the module a, b

and c are known to me okay let us assume that system is reachable which means I can move this

thing from any initial condition to any final condition and now I want to find out a control law

okay that is moved at distance from initial point to origin that is the problem right now we say

that is problem is now can be holder in optimization problem.

The reason for coursing at a optimization problem is to hold one is that optimization prime work

particularly this one which we are going to develop will ensure two things it will also ensure the

stability performances the optimization objective function allow this to specify performance so

here this term here is square of the distance from the origin this is better nom of x vector with

waiting matrix w is typically a diagonal matrix and it is used to do scaling of the variables that is

one thing second thing is  also used to tell  which error should go to zero part  there are two

purposes that is curve one is you know difference state can have different numerical value.



So you can make them same scooting by multiplying by a scaling process second thing is you

can specify relation is important to give higher rate okay that means that error should go to zero

part okay so in systems where state has physically you can specify that this particular you know

this concentration should go to should be controlled faster some level we do not care if it is

oscillating relation base.

So you can actually do trade off by specifying this waiting mater same is to about this second

term here second term is trying to weigh the input effects okay you do not want very large input

effects also you have trade out input you know some inputs are costly to manipulate some inputs

are cheap to manipulate for example it is quite likely that if I am manipulating in certain scheme

and  cooling  water  and  a  coolant  water  it  might  be  people  to  manipulate  to  cooling  than

manipulating scheme because scheme you know energy cost cooling water just pumping cost

you know.

So you might use cooling water liberally but not in scheme liberally so all those things can be

actually incorporated by using this matrix w, u this is again typically a diagonal matrix this is not

going  to  be  a  so  diagonal  matrix  diagonal  elements  are  all  positive  these  are  all  positively

different matter okay and they will give you relative importance of each or you know if you hear

it other way round if you put large weight on a particular input that input will not change too

much okay that input will not change too much.

Because  your  diffusion  variable  are  u  suppose  u1  first  component  of  u  I  will  large  base

associated with it in matrix wu then the first component will not change too much because if you

change first component  the cost function will  change by larger amount  okay so you specify

relative importance of each manipulate variable all these things are very difficult to do when you

do poles likes matrix you cannot say place the poles such that input one is not changing too fast

but input two is changing fast all these things becomes very difficult coming to poles of design

only  this  is  possible  to  do this  using optima ion framework.  Because  optimal  framework is

directly  relate  to  time  domain  you  can  very  easily  give  you  know  translate  your  control

requirement into optimal problem that is not terrify okay so the third term is off course waiting in

the terminal on the final state.
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Now is this problem solved okay so solution is found by simple dynamic programming okay so

this is a famous method dynamic programming because develop by bellman it has been used

vary widely in optimization of optimization based p the idea here is very simple that you work

here backward in time so you see here the problem if you go back here so look here this problem

is forced over a finite time, time 0 to time n, n is the final time so you want to reach goes to the

origin in N factor N is not equal to state dimension the N is some number okay.

So this problem is goes for a finite time okay we will then relax this also will then because the

real systems you know that they come from a chemical plant or a power plant in does not work I

mean in reality it works on finite time but you cannot develop a controller it will be for your one

year and solve it so here right now even though n has been used you will first develop a method

for n  and then will say n goes to infinity  and derive asymptotic device okay that is what is going

to be done.

So what is done here in dynamic programming  you start from the end sample okay the last

sample you choose an optimal input for the last sampling having chosen in optimal input for the

last circle you move back in time to n-1 okay then choosing optimal input for n-1 having chosen

for n and n-1 you will back in time to n-2 okay in optimal state estimation in bellman filtering we

are moving forward into okay now here you are specified you know the final time and then you

are moving backward in time.



So you have to have some patients before you finish okay I am sure I can see a question on a

face how can you specify a final time well displayed look at the development and then you will

come back to okay now let us define this quantity this matrix s okay this is a matrix x which is

defined as wn what is wn? Wn here is this weight here on the terminal okay so wn is the positive

definite matrix it is a weighting on the final state okay that is after n times that is the
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So I am starting with this algorithm with wn and then look at what I have to solve I have to solve

I want to minimize these jk okay starting from time k to time n-1 okay I want to choose time k to

time n-1 summation see this problem has been defined from k=0 to k=n-1 and now I am starting

at some point k okay so at k=n only this last term remains which is it see I have this summation

see I have this summation here go back here I think there is one index is around it should be k=0

so j it should j=0

So this last term is what remains see if I want to optimize this backward in time okay first I

should consider the last term so last term is this term right yeah so the bellman principle is this

you start with the last term and you need index to optimism the last term having optimize last

term then you optimize last but 12 then having optimize those two you go back ward in time and

you need to go to zero that is bellman’s  that is the method okay how it will lead to a controller

design you will see that this tool okay no you actually solve you actually formulate you break it

into multiple optimal problem okay.



This is one joint optimization problem okay see this problem here is a joint optimization problem

this is from u0 to un-1 you have to decide everything okay now un-1 see look at this particular

system there is a time evolution thing here why we are going to use this particular concept of

elements having difficulties see ui-1 you just tell me if I am optimization with this particular

problem un-1 is it going to affect say x0 or x1, x2 it is not the un-1 will only effect xn okay.

So actually choosing an optimum un-1 can be solved independently of u0 to un-2 okay so you fix

un-1 optimally I have been un-1 you move to un-2, will not going to again effect thinking the

past it is going to affect only future okay so you move backward so you take advantage of this

particular fact okay to break this problem one sequence of molar problem okay and that will lead

to you to a very legend solution to this particular problem okay.

So what I am going to say here is a so this is staring from any obituary k it can be 0 if k is 0 it

excess to the original problem  I have written it clear from any orbit arty k why this is written

from orbiter case and become clear as we go on okay I am defining this term jk I am defining

two thing s and jk, is the problem starting from time k time, time n-1 so this is at so we can say

this is at kth sub problem in the kth sub problem.

So I am going to solve actually instead one big optimization problem I am going to solve a

connected  series  of  a  optimization  problem and that  will  lead  you to the  solution   so I  am

defining two things sn and jk okay so accordingly to this definition this here what you have here

this which is j0 because j0 to n-1 and what is jn, it is the last term okay jn will be only this term

okay sorry for jn will be the last term will be the last term yeah okay so what is jn-1 is xn-1

transpose wx+u term +jn right okay 
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So what I am going to do next so with last term I substituting in terms of un-1 what is the

diffusion variable here see what is the diffusion variable for the last term it is only un-1 okay I

only have to choose un-1 because un-1 will have effect on xl okay so my jn is now written in

terms of un-1, sn is wn you have defined this okay and this is the term that I want to minimize

with respect to un-1 okay so if I minimize this now you have to expand this right and what you

have done here is here the 84 terms right.

You just matrix multiplication you just multiple and then rearrange and then you will get this you

know in between thing if you are not a very difficult to get so this is just a multiplication and

rearrangement and the first term if you see here this first term here okay, x(N-1)T this term this is

x(N-1)T x(N -1), this cannot be influenced by can be in influenced by u(N-1) this cannot be okay.

So this term is rules out this cannot be influenced by N-1 only this term, this term and this term

this last three terms can be influenced by u(N-1) so actually when you minimize you only have

to worry about 1,2, and 3 okay, is that okay. There are four terms xTx okay xTu, uTx and xTu so

last  three  terms  are  relevant  first  term  is  not  relevant  okay,  because  first  term  cannot  be

influenced by u(N-1) it  can be influenced by u(N-2), u(N) minus elected different storing it

cannot be influenced by u(N-1) okay. Which one, yeah so J(N) I have defined.
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So I am going to define this J(k) loop so the first you define the last term that is J(n) then what is

J(N) and -1, J(N-1) is J(N)+one mole term okay, what is J(N-2), J(N-1) two I mean there will be

three terms okay, and when you collect from J(0) will be collection of all terms from N to 0. No,

no, no right now so this is an intermediate set in the derivation this do not try to write now

interpret okay, so right now N even though I am saying it is a final time the system may not have

reached the final stage 0 at time and so you may not have become 0 so just see the derivation,

okay.
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So this with this J(N) and did J(N-1) is everyone with me on this I have just combined added

terms together  and club the terms  of  u(N-1) and x(N-1) they have separated them and then

written it like this okay, so this last term cannot be influenced and then how I going to solve this

problem okay, I have to solve this problem of minimizing this function with respect to u(N-1)

okay, so this is done by a method of completing squares okay.

(Refer Slide Time: 18:13)

So thus keep that J(N-1) be this aside look at this now, consider a scalar quadratic function okay,

just look at this steps are you convinced here or has been done, just see the just try to derive this

can you derive this, see this form what I have done is I have written this abstract form here see

what is the abstract form xT something into u, uT something into x, uT a positive definite matrix

into u, so there are three terms uTu, uTx, xTu okay, so I can now think of.

See this is I get multi dimensional quadratic equation okay, I want to converted into a complete

square okay, if I can write it as sum of 22 okay, then I can use that to solve the problem that is the

idea okay, so just see whether you can derive this, just see if this result can be derived just check,



let us do the algebra. So if you have a scalar function in abstract form see that A and what is A

matrix and all is very, very compression okay leave it aside right now.

Just see whether you can derive this results okay, uTAu+zTu, uTz so second step is very obvious

the third step would require expansion, the third step requires expansion, okay. how will you find

a minimum of this function, got me no, no, no see this is, is this see what is A, A is a positive

definite matrix that is very, very important so what about A-1 A-1 is also a positive definite matrix,

okay so what is the property of the positive definite matrix, xT any vectors transpose A into that

vector will also be a positive continent, okay.

So this is the positive quantity, this is also a positive quantity for any x any u this is always a

positive quantity if I virtue of the fact that A is positive definite, what about this guy this is also

positive continent okay, what is the lowest value this function can take you know, what is the

definite variable my definite variable is u, v is some vector see actually here map what will you

map, you map u to u(N-1) and if entire thing xTϕTS(N)Γ that you can map to G okay, that you

can map to G, so we will see what is that mapping, okay.

So what is the minimum value it can take, the minimum value it can take if I am, I have to do

minimize this function with respect to u it is a function of u, z is some vector which is constant

yeah, so if you can put this equal to 0 see if you put this term equal to 0 this is this A is a positive

definite matrix so the smallest value this term can take is 0, when will you take it 0 only when

this vector is 0 okay, so the minimum value is this okay, that is when you choose u= yeah, -A-1z

okay, so now this do this mapping choose A to be this matrix ΓTS(N)Γ+Wu okay.

This is the matrix which appeared in uT part okay, and see z ΓTS(N) x(N-1) okay, if you do thisϕ

what is the solution A-1 so inverse of this matrix okay, into z, z is do you get this A-1 A is a I mean

A always be invertible this A will it be always invertible why, S(N) is Wn okay, Wn is a positive

definite  matrix  so is  A always a  positive  definite  matrix,  S(N) is  a  positive  definite  matrix

ΓTS(N)Γ is a positive definite matrix, Wu is a positive definite matrix okay, so addition of two

positive definite matrices will give you a positive definite matrix, okay. So this is, this A is a

positive definite matrix so A is invertible okay, and you get this.



(Refer Slide Time: 23:46)

So my controller can be written like this, this is A-1  see look at this here, look at here A-1  okay

times this whole thing into x actually what I am getting is a state feedback control law, what I

what you to derive as a state feedback controller okay, I got state feedback control law for one

particular instant so what was this particular matrix, this A-A-1 into this matrix is the gain okay, is

the gain and x(N) is the state feedback controller okay, is everyone clear about this.

So which gives minimum loss function to be equal to this, if you actually substitute and find out

the minimum of J(N-1),  J(N-) will turn out to be this where S(N-1) is actually I have just done

the algebra okay, you can go back and substitute and see how it works. Yeah, so what I have

done here just go back and see here, see I had this I wanted to minimize this function I want to

minimize this function okay, so I am just doing it by a completing the squares, okay.

I am not worried about this part because this first term is not going to be influenced by Wu okay,

so to find out a minimum for the remaining three part what I have done is there I have expressed

it as sum of two squares this is one square this is another square, see this is always a positive

number this is always positive number okay, the smallest value this can take is 0 okay, and then I

just choose A to be this and z to be this okay, this gives me a minimum of the original objective



function I go back and substitute the optimum value of u and then so this is my state feedback,

this is my optimum u(N-1) okay, which is this matrix times x(N-1) okay.

Now this is the result which you would have got given by minimization, if you have done τ/ τu

you would got the same result okay. Why do we need Bellman principle will come to that, so this

is a local result for one you can get by minimization Bellman principle talks about the series of

connected problems okay, so that where so if you actually take the solution what is the minimum

value of J(N-1) substitute the solution into the you know that J(N-1) expression.

You will get this, but J(N) and J(N-1) I will combined into one because J(N) and J(N-1) both will

be influenced by u(N-1). See u(N-1) appears in two terms okay, it appears in J(N-1) by virtue of

the fact over definition of the objective function it appears in J(N) because u(N-1) influences

x(N) okay, so actually if you go back here, see J(N) is only this but u(N-1) appears in J(N-1)

because the way optimization problem is defined.

See you just, see the optimization problem is defined with respect to, see what is J(N) only x(N)

okay, what is J(N-1) this also contains this term so I have grouped all the terms that contain u(N-

1) together okay, so that is the reason I looked at J(N-1) okay and I optimize J(N-1) with respect

to u(N-1) okay, and that optimum is optimum u(N) is formed to be this okay, I am going to call

this particular time varying matrix as G(N-1) okay, this is my notation.

And when I substitute this particular solution into J(N-1) I get this quantity okay, this is pure

algebra I just took the solution substituted there whatever term I get okay, that I am calling as

x(N-1) as I am calling as x(N-1) my intension here is to derive or recurrent relationship between

S(N-1), G(N-1) do you remember what we did in Kalman filtering we had covariance and we

had Kalman gain and there were coupled with each other okay.

Kalman gain okay, is used is based on the covariance updates okay, then you again update the

you  have  create  that  covariance  Kalman  gain  calculation  updated  covariance  again  you  do

Kalman gain calculations created covariance as it goes to the cycle okay, so likewise here I want

to derive a recurrent relationship in time okay, which are again called as Riccati equations except

now it is done in the context of control other than the context of you know state estimation, so

the okay, so now having optimize J(N-1) you move to J(N-1) you are moving backward in time

okay.



So now I want to minimize this term here J(N-2) with reference to u(N-2) because I have see this

term here is influenced by u(N-2) okay, and here this is influenced by u(N-1) okay and this has

already been optimized except there is one thing here which is influenced by u(N-2) what it is

x(N-1). See look at this, look at this, look at this relationship here I want to point out that they

are actually analogous see here this is x(N-1), x(N-1), x(N) so this term will appear here earlier

we had.
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See earlier you had x(N-1) and J(N) okay, you just shift and time okay, and you have already

chosen u(N-1) so now only you have to choose optimally u(N-2) okay, so algebra is multi, you

know and if you sit down and do it, it is not difficult to do this algebra but just understand the

concept if you are getting stuck anywhere please stop me, okay. So again okay, again see this

expression looks very, very similar except this matrix here has become little complex, this S(N-

1) is now a very complex expression you see this okay.
Apart from that see if you accept that somehow this S(N-1) is coming from the one side bad in

time okay, then this expression is loss of equally same, I mean it is the same expression okay, so

you have this term and then you have N-1 what is in the N-1 that you can influence using u(N-2)

x(N-1) okay. Now see earlier what was the case even here then it was J(N) it was x(N) into x(N)T

some matrix x(N)T okay, so u term was not there in the last term.



Here also now after you implement this control law u term is not there you just have this optimal

you just have this optimal J(N-1) which is where this S(N-1) is given by this big matrix here

okay, so now how do I minimize this again same thing complete the squares okay. Now using

this term okay, if you complete this squares.
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You go back in time okay, like this by completing the squares you get what are called as Riccati

equation okay, well Riccati equations are moving backward in time okay, so where G is given by

this and S(N) so your controller use found like this you start on S(N) okay, S(N)=WN okay, then

for that you find out G(k) that is your control that is your controller J(N) at time instant N, N is

the last time in your optimization problem, okay.

So you find this G(N) okay, for the time being be aside the fact that how will you implement this

just looked it as a you know optimization procedure okay, we first fix u(N-1) having fix u(N-1)

we go and fix u(N-2) having fixed u(N-1), u(N-2) we fix u(N-3) so we go backward in time

okay, so actually we are what we are getting here is a series of time varying gain matrices, you

will do not get a control law with a fixed fit gain you get see just like in Kalman filter we got

gain matrices that are changing as a function of time, okay.

So here to you get a sequence of gain matrices whether changing with time they are coupled with

each other through these Riccati equation okay, through this Riccati equation except that you

start from N that is your last time and you go backward in time and you will get a series of gain



matrices okay. Now a practical problem you might ask is that, what do I do I mean suppose I am

running some plant okay, let us say I want to take drive a motor automatically on some road and

every one second I will take a decision and I have to go from here to the other end and if takes

the you know one hour or two hours you go to a one hour to go to the other.

So do I actually compute 3600 gain matrices do I save them and then at each time point I just

retrieve one gain matrix multiply and find the controller that is impractical okay. So we will sort

this problem out do not worry about this right now yeah, I finally want to read x(N)=0 no, no, so

now aim in this particular case is not x(N)=0 in this particular case is to make x(N) as small as

possible  very close to  0,  asymptotically  I  want  to  go to  x(N)=0 this  is  called  any arbitrary

reaction.

Now what we will do they will say that under certain conditions you can find a, see this is a

coupled equation okay, this is a difference equation see why it is a difference equation k depends

up on k+1, see normally you are used to difference equations which move forward in time this

difference equation moves backward in time okay, this difference equation move backward in

time. 

What is elegant about the solution is that we have a close form solution okay, you get sequence

of optimal  gain matrices  okay, and you get  a close form solution.  Now this is  not practical

because many times you do not know how many, suppose you are going from here to the other

are you want to you know automate your car and leave it on the road you cannot predict what

time it will take, whether it will take one hour 20 minutes or two hours depends up on the road

condition.

So you this is not unless in some cases if you are you know hitting some target and you will

know you are going to hit a particular target in so many second then probably you know you can

be calculate  all  the gain matrices  keep them and then it  will  you will  know, but this  is  not

practical but this gives you a recurrent formula and how will I use this next to we come to your

next.

So let me just summarize this first what is the, how do I calculate this so my feedback gain is

G(k) and then G(k) is calculated by this recurrent relationship these are appearing here in the this

difference equation back in time and then what is guaranteed in this S(k) is always a symmetrical



positive definite matrix, because you start with S(N)=Wn this is a symmetric positive definite

matrix and the way the whole thing is constructed you are guaranteed that this S(N) matrix S(N)

will always be symmetric and positive definite.

But the problem here is that N should be known a priori how many N, how many such gain

matrices  you find out  okay, so but  now for  the  time being you get  a  ,  you got  a  way ofϕ

calculating  the optimal  solution okay, we will  find the asymptotic  solution of this  particular

problem by leading N go to ∞   okay, we will find that solution and we will use that solution to I

just want to draw parallel to EKF do you remember what we did in EKF, in EKF you know we

had this solution which was last time solution or infinite solution.
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Okay, so in this case you just said that this goes to ∞   and then time goes to ∞   as k goes to ∞

the solution converges to a steady state problem okay, and then you can get here you can get L*∞

okay, you can get this infinite time gain which is only one matrix okay, so this is that you do not

have to compute L(k) matrix and every time instant so after sometime when you program this



you will realize that after sometimes these L(k) goes to a steady state you do not have to actually

keep computing it every time all these matrix equation.
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So they are under certain conditions of course on observability and so on.
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So I had talked about Kalman predictor, remember Kalman predictor in Kalmam predictor we

had  two  equations,  we  had  gain  update  covariance  update  right,  we  had  gain  update  and

covariance update and then this Lp*, Lp* was the optimal gain and then we computed this gain

for moving forward in time and then we had of course.
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Conditions  under  which  you know you have  this  coupled  equations  and you can  solve  this

algebraic Riccati equation you can solve them you know the solution exits and I talks about this

lemma you know which tells you under what conditions the solutions exists, when this √Q isϕ

controllable and R is non singular lemma unique solution exists solution exists such that Eigen

values of this matrix are inside unit circle.

So we had solve this problem earlier and I just want to draw analogy here see there are two

things here this covariance update  or covariance equation and a gain equation and they are

coupled okay, same thing is happening here if you just look carefully at least this LQG notes as

in upload today okay, see here there are two coupled equation this is something like covariance

update which is something like covariance update this is I mean qualitatively this is similar to

covariance update this is similar to gain Kalman gain update.

So there is a gain calculation covariance calculation similarly here this S(N) calculation and gain

calculation okay.
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So now what I am going to do, if you lead S(k) go to S∞ which what happens is that G(k) will go

to G∞ this will happen only under certain conditions of controllability and you know like we had

conditions for algebraic Riccati equation for the Kalman filter same thing should be equal to

here,  so you can  show that  under  certain  conditions  these couples  are  the  equations  have a

solution and this equation is actually G∞ because let call it G∞ this gain, so now if you solve this

coupled equations you have one gain matrix which is optimal when N goes to ∞, okay.

And for practical implementation all that derivation which I did I am not going to use, I am

going to use this algebraic Riccati equation find out G∞ and use it for my control okay,so that

starting with last point going backward in timer all that was in between step, all that where in

between step okay. Now that I have derived it I am interested in this infinite solution okay, and

this  infinite  solution is  what  I  am going to  use for  designing my, so this  is  the k feedback

controller which I have now, okay.

How do you solve this, this coupled equation can be solved under just like you has conditions

there, you have conditions here okay, if you consider if  and γ is controllable there we had aϕ

condition of observability  and C where observable here you have  and γ is controllable okay,ϕ ϕ

and this matrix Wu matrix okay if you take this square root of Wu matrix and if this is observable

yes, so you take square root of that okay this is called square root this ω is called the square you

know about LUD composition, a positive definite matrix can be written as LTL.



So this it is a diagonal matrix so it is biggest square root Wu will typically as it be a diagonal

matrix so this should be just a diagonal matrix that, okay. So if this pair is observable and if this

pair  is  controllable  okay, then  you  can  guarantee  that  there  exist  a  unique  solution  to  this

particular problem so this problem have a unique solution and you will get a unique gain matrix

G∞ which means stabilize the close loop, okay.

Which will bring the system from non zero initial condition to zero initial condition okay, which

will ensure that the Ω of.
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See  if  I  substitute  this  control  law what  is  the  closed  loop solution,  what  is  the  close  loop

behavior is this okay, is everyone with me on this. correct so now I will prove stability okay, I

will show that asymptotic step this using this controller is equivalent to I will prove asymptotic

stability with this controller okay.
If it is asymptotically stable it should go to 0 yeah, so well while doing the derivation whether I

started by showing x=0 or not is a different story all that I say when I started a derivation that

extension should be as small as possible and minimizing your objective function with respect to

use okay, so my objective there was to choose inputs such that x(N) is a smaller problem okay, I

did not said it equal to 0 okay, I did not said equal to 0 I just said as should be very small.

No, no but I do not have to choose now no, see I have just now got treat of that x(N) business see

now I just going to say that N goes to ∞ let N go to ∞ okay, then I actually have to solve this



problem this couples equation okay. So that x(N) and all that business program intermediate step

to derive this  algebraic Riccatic equation okay, solution of the algebraic  Riccatic  equation is

going to give me G∞ which I am going to use as, as my control law is everyone clear on this.

All that dynamic programming and you know all that I did just had an intermediate step to derive

this particular control law okay, but this is the state feedback control law your state feedback

control law okay, yeah no that is you know for existence of solution of that particular equation

you have to have two condition matrix you can go and check this proof in the one of the standard

text which has been listing at the end of the, so the proof is very elaborate I do not want to get

into the flow.

So this is a I am just coding the, I am not written as a theorem but in any book this will be a

theorem which talks about conditions under which the solution exist for the algebraic Riccatic

equation. See this is not matrix coupled matrix equation it is not an easy equation to solve okay,

so because these are this G is a matrix S is a matrix and these are coupled equation so solving

this matrix equation is a tuff problem. 

And then there is been lot of borer call how do you solve such Riccati equation, so you can just I

refer you to the books. Yeah, so let us see the composition any W you can write so these things

used in MATLAP and you have function called it OSP, that is standard. See the nice thing about

all these things if I just use linear algebra so ultimately just algebra, linear algebra simple linear

algebra that you applied you can view this entire control theory as you know in state space  τ

domain as applied in linear algebra. So is everyone is clear with this now you know u is G∞

times this so my close loop become this okay, is this clear.

I do not see lot of convince people I can go do it again you tell me where you are stuck which

part you did not understand. See let us look at like this I started doing this derivation let us go

over it again. 

(Refer Slide Time: 50:36)



So then what I do is once I do this I ignore the fact that gain is time varying I just look at J(N) at

as N goes to ∞, I am just finally interceding deriving the algebraic Riccati equations for that I am

doing these are the intermediate shape, how do arrive at the algebraic Riccati equation so I am

starting with unsteady state case okay, where N is from intermediate point you are not reached

the originate okay, N is some intermediate point okay.

I am not specified N okay, I use this only to derive this recurrent relationship so what is the

recurrent relationship, the recurrent relationship is between this I mean finally you know you got,

let us go to the yeah, so you I just wanted you to derive this recurrent relationship between the

gain  and this  positive  definite  matrix  S(k)  this  is  not  covariance  here  but  you know in  the

Kalman filter derivation this is somewhat similar to the covariance update, so this matrix update

and gain update that is how you got this equation.

And then finally what I am interested is not in this time varying solution I am interested in the

solution which is as N goes to ∞ okay, so I am going if it is in the steady state solution and then

finally I am never going to implement a control law like this where G(k) is time varying I am

interested in this control law where G I am interested in this control law okay, so all that dynamic

programming I have just used as an intermediate step to arrive at this algebraic Riccatic equation,

algebraic riccatic equation give me okay.

See now here you know going back in time everything has vanished because here when the

solution is converged S(k+1) and S(k) are same right, when the solution has converged they are



going to send between S(k+1) and S(k) so that is why any state solution is nothing like moving

back in time or moving forward in time is the steady state solution.

So I am just interested in finding out the steady state gain I have used that final end as a vehicle

to  arrive  at  this  steady  state  solution  okay, and  then  I  am stating  you  the,  giving  you  the

conditions under which the steady state solution exists okay, yeah. So many first Q sample it is

not but as if you take N to be very large then it is optimal okay, so this G∞ is optimal G∞ okay,

so this is my close loop solution. 

(Refer Slide Time: 53:38)

Okay, now I want to show that this is asymptotically stable okay, I want to show that if I drew

asymptotic stability okay, then you know yeah then see we have seen one thing for Lyapunov

functions if  Eigen values of this matrix are inside the unit  circle okay, then you can always

construct  and  Lyapunov  function  okay, whose  you  know derivative  is  negative  and  strictly



negative and we will you know if the system will be asymptotically stable and vice versa, so

close inside the unit circle and ability to construct Lyapunov function for a linear system time in

variance system or phenomenon.

So if I construct a Lyapunov function for this it implies that the poles are inside the unit circle for

linear systems these two things are equivalent asymptotic stability and being able to construct a

Lyapunov function okay, for the particular system. So instead of trying to find out the poles of

the  system and show that  there is  head the  unit  circle  I  am going to  construct  a  Lyapunov

function  and show that  you know the  Lyapunov  function  you know the  rate  the  change  of

Lyapunov function is negative definite so this is asymptotically stable system which means the

poles of -ΓGϕ ω have to be inside unit circle so this is stable asymptotically stable, okay that is

the argument I am going to use, so I am constructing this function v(x) which is xT(k) S∞ S∞ is

the positive definite matrix by the way okay, S∞ is always a positive definite matrix.

(Refer Slide Time: 55:32)

So what do I have to do to find out to the Lyapunovb stability find out the difference between

two successive values of the Lyapunov function so this is v(k+1) and this is v(k) okay, so is

everyone with me on this I am just substituting for the close loop okay, so this becomes yeah,

this will becomes negative definite because look at this term ST(k) S∞ S(k) will it disappears orϕ

I have looked out some algebra in between, your very in algebra let me write.



Because  will come ϕ ϕT and you know find out the infinite algebraic you can work out this

algebra the expressions are correct okay, you have to see how one step I have so this Wx+GT W

is a positive definite matrix so you can show that definite in this Lyapunov function okay,you

have this ∆Vx which is positive definite no I am just worried about one term you have to go and

check I will just check this and confirm okay.

So the argument and I want to make here is that the close loop system asymptotically stable for

any size of Wx and Wu that is very, very important I choose these weighting matrices be positive

definite  but  arbitrary  okay. Now in  reality  you  will  not  choose  them arbitrary  but  you  are

guaranteed to get a stable controller, stable close loop behavior.

For arbitrary choice of Wx and Wu okay, for any x of any Wx, Wu you will always get this

matrix be positive definite and then I think you have simplify this using G∞, here to use that

expression for G∞,  G∞ expression is pretty complex, G∞ expression is this right. G∞ expression

is this and you have to substitute and then expand to get so from here to here you have to do lot

of algebra okay, it is not obvious from this so from here to here I have missed out lot of in

between steps you can sit and work out by substituting for G G∞ that expression on the previous

slide and they will do a huge expansion and then cancel all the terms and appears and so you will

have to do lot of work to arrive from here to here okay.

But that is not important for us if there algebra is not so important do not worry about the algebra

this is the standard textbook material in all first worked out they back and this is you know since

it is positive definite you just for the time being what is important to know is that this expression

can be reduce to this simple expression here, and since this is possible definite xT this positive

definite  matrix  so xT  this  into x this whole term will always positive and negative of that is

always negative, okay.

So the so you can construct Lyapunov function for this particular system and if this is negative

definite then for any choice you know you will get a stable close loop behavior, okay. The nice

thing about  this  particular  controller  is  that  it  not  only guarantees  stability  it  also guarantee

performance because how is the performance define,  should the objective function you have

given an objective function okay.



So  choosing  those  Wx,  Wu  matrices  make  sure  okay,  make  sure  that  you  have  desired

performance transited into an objective function okay, and then that get you know accounted for

when you do the gain calculation, so this is like as I said this is just leasing the poles inside the

unit circle is just I saying that you know we have passed the course, you are about four. But here

you know you are ensuring both performance and stability you are above four and then you are

the topper, okay.

So by choosing this Wx, Wu you have to have some experiences as that is how to choose Wx,

Wu you can actually shape the speed of recovery from non zero initial  condition to 0 initial

condition you can choose priority you can priorities different inputs you can actually give more

importance to one input and let us see importance on the input and all types of sequencing, so

you can weight a costly input more and not allow it to move too much if steam is costly okay, do

not change it too much all that can be done by choosing this weighting matrices that is yeah. 

So G∞ can  see  now actually  when you solve  it  when you calculate  you do not  do  all  the

optimization that is just a derivation when I am asking you to now I will now these problem is

that implement quadratic optimal controller on the system that you are okay, so what you do to

do is not do all these optimization what you have to do is take this particular problem you just

define Wu you define Wx okay, define Wu define Wx and then give it to MATLAP there is a

subroutine call ARE algebraic raccatic equations, okay.

You just give γ Wx Wu okay, see what all thing we are ready to specify , you have to give ϕ ϕ ϕ

matrix γ matrix, Wx and Wu if this four things are given okay, MATLAP subroutine ARE will

solve or SILAP will be, there will be some other subroutine equivalent to this it will solve this

problem algebraic Riccatic equations and it will give you these two things what is the, what it

will give you back G∞ and S∞ both will give you, okay.

Of course you should make sure that these conditions are made  and γ should be controllableϕ

okay, and chose Wu in that this pair is observable, what is observable, what is controllable both

you do now okay, so now you make sure these conditions are made so ultimately the working

recipe is that is one slide all that was the derivation. Yeah, but typically this asymptotic so it start

program if you take Kalman filter okay,I am going to run this plant for you know let us say I am

doing it every one second interval I am doing calculation.



I am going to run plan for 20 days okay, so actually it is like saying k goes to ∞ because you

know within some 100 samples that gain will saturated and you will get a steady state solution.

See whether if you start here if you start falling the dynamic Riccatic equation okay, you will

find that in some N=100 you will hit G, G∞ S∞, so will get the steady state solution when no

time you know so those first see suppose I am going to run a plan for you know 20,000 time

steps and if the gain saturate to G∞ within half of 100 okay, I ignore first 100 error I am not so

much worried about 1 to 100 being non optimal.

I am if 100 to 20,000 is optimal I am willing to you know scarifies on 1 to 100 not be in optimal

okay, so long time solution which actually mean within some you know 100 or 200 samples you

will read this G∞ okay, so very short time which solutions will converged if the conditions are

met, okay. So how do you find out the close loop tools.

(Refer Slide Time: 01:04:34)

So this can be done using of course you can solve for this determinant of this it can be shown

that it is also a solution of these generalized Eigen value problem and this particular solution, if

this particular equation is called as Euler equation on linear quadratic problem and you can, you

are guaranteed that for any choice of Wu and Wx you know you will get a stable solution okay,

so stability and performance both are guaranteed by this particular approach that is the teeth in

here, okay.



Now see these things you read the derivations and then of course once you start implementing it

on the reason I am given the third problem is because I wanted to go back and implement it in

other type problem immediately okay, that is the way you will understand in this course if you do

lot of algebra and you know you cannot understand things even by solving some tiny problems

of 2x2 matrices or 3x3 matrices.

Actually implemented on a real system at least in a stimulator and see how it works okay, you

will now have γ matrices you start about non zero initial condition and see whether you go toϕ

the 0,okay. 

(Refer Slide Time: 01:05:51)

So of course you can do what about we started this problem by saying xT Wn x x right, this

objective function was sum is equal to x, if you have you know a model which is develop from

data then x may not  have any physical  meaning only y has a physical  meaning so you can

actually solve this problem yT Wy.uTWu like this all that I have change is instead of xTx I have

changed to yTy but this problem can be easily transformed into xTx problem.

Yeah, this can be very easily transformed into xTx problem so that is not an issue, so problem

which is originally yTy can be converted into xTx problems okay, what is this Cr here is you

know I have set that those output which you have to control, you may have mdeled many outputs

not all of them you want to control so Cr will give you that part of the outputs from the states

which you want to control it is okay, so this is so you can convert a problem which is output



regulation to see many times you know that model is developed not from physics is developed

from data, in that case x does not have physical meaning so it is difficult to choose weighting

matrices and all that only y has a physical meaning, y is a real measurement.

So you can define a problem with respect to y and converted into a problem of x, because x and

y are related okay, you can convert that problem and then you can solve this problem in by you

choose Wx to do this Wu to be this and then you can solve the derived problem so that is.

(Refer Slide Time: 01:07:44)

Well, now let us relax one by one we said that they must know, we said that there is no state

noise  there  is  no  measurement  noise  okay,  so  what  do  I  do  is  there  is  a  state  noise  and

measurement noise, what we do is of course we have a state observer and then we have observer

controller pair okay, so my process then actually now this okay, so I am not going to ignore Wk

and Vk okay, I am not going to ignore them.

I will implement the Kalman predictor for example, I can do this with Kalman filter also I am

just showing you this is Kalman predictor that is because Kalman predictor I have to deal only

one with one equation if you here to do algebra for me for the fisrt I will put Kalman predictor

here, so this is my Kalman predictor I will get estimate of  k given k-1 okay, my controller willxx

be okay, it should be here not Lk it should be Gk here sorry, this Lk is the observer gain this is

the Lk here is the I made a mistake.



It should be u(k)= this should be J∞ okay, and even here this can be okay, is this okay, so how I

am going to take care of measurement noise and you know state noise I have a optimal state

observer combined with a optimal controller  okay, this is called as linear quadratic Gaussian

controller, why it is Gaussian business comes in because I am using Kalman filter to estimate the

states to construct optimal estimation of the state okay, I am using optimal way of computing the

gain matrix using Riccatic equations so this is computed using another set of Riccatic equation

this is computed using some of the set of Riccatic equation.

So both cases where we use the same theory okay, optimal estimation theory optimal control

theory they are just you know mirror images in some sense if you try to draw parallel if you see

there is a close parallel except one deals with something in future other deals with something in

the past, okay. So you have this so I can have this pair optimal observer controller pair and of

course I have to worry about whether this is you know jointly stable or not so I will be talking

about  what  is  called  as  a  separation  principle  in  my next  lecture,  where we will  talk  about

stability conditions joint stability of Kalman filter and optimal controller pair, okay.

So they can be showed by jointly stable so if I design my observer to be optimal observer which

is Kalman filter and then I design my controller to be optimal controller give a quadratic optimal

controller  and  then  I  implement  the  control  law  to  reconstruction  of  the  states  then  I  am

guaranteed  under  nominal  conditions  they  are  jointly  stable  okay,  I  can  separately  design

observer I can separately design the controller I can vary the two okay, they are together they

form a stable closed loop pair, okay.

Effectively if you see here this is an output feedback controller why it is an output feedback

controller, see because how is extract competence using the model and measurement okay, so the

measurement  if  feedback  to  this  observer  which  reconstructs  the  state  that  state  is  used  to

compute u(k) and that is injected here okay, see the state is not measurable so the idea of soft

sensing is implicit here I do not have direct measurement of it I have only measurement of y, y is

used u and observer to estimate x, estimated x is used for close loop control, okay.

I have a way of computing optimal gain for the observer given the noise model okay, I have a

way of computing optimal gain for the controller given and performance objective okay, but I

want to reduce it close to 0 as fast as possible by considering the input weighting and all that,

there is a problem here. First of all you have to look at stability so you can think you have to see



you know we said that non zero initial condition to zero initial condition very, very restrictive I

want to go from any output to any other output I want to specify a set point and move from one

set point to other point tracking okay. 

So second problem is there are drifting disturbances they could be plan model mismatch okay,

and then this controller will not give you objective behavior, how do you get objective behavior

with this pair okay, now you do some modifications to.

(Refer Slide Time: 01:14:16)

Do that your Kalman predictor of course I will just summarized here.



(Refer Slide Time: 01:14:24)

Okay, so I need to do couple of things I need to now so now I know how to compute gain

matrices  is  that  okay, I  need I  know how to  compute  observer  gain matrix  I  know how to

compute optimal controller gain matrix. Now I will done that, I have to move on and talk about

two things okay, what is the model and the plan are not matching is it mismatch within the plan

and the model. What if the disturbances see here when we derived this Kalman filter we said that

is Wk is a white noise okay, in reality there could be a disturbances which is not of zero mean

white noise.

It could be a drifting disturbance okay, which is most slightly the case in the real system there is

never see one example of let us say this disturbance modeling is when you are driving a car so

you know you have wind or air resistance okay, so air resistance if there is no wind but there is

general motion of the air it could be probably approximated as some white noise affecting the

you know some local motions of air affecting your car, but if there is a strong wind in certain

directions then you cannot approximate it is a white noise you know that particular disturbance



might be something like a colored noise and then you have to account for it systematically in

your controller calculation, so how do you do that, so that is going to be our next task.

So now I want to move yeah, so it is a problem of regulation but for disturbances that are drifting

okay, so how do I  now modify my controller  in such a way that  I  can account  for drifting

disturbances okay, I also account for the fact that the model and the plan may not be identical

they might be a mismatch so how do I, so  and γ which I am assuming might be different fromϕ

what is actually you are in the plan I identified them now today, okay after a period over a period

of time the plan characteristics has change, okay.

I am still using my same old model okay, see now that you are doing perturbation in the plan and

collecting data. How many times you can keep doing this you will do it once and then you know

you will do it after sometimes so in the meantime the plan can change okay, so now what, now

will you be able to do the control with this so I need to do some tricks to account for the fact that

the model plan mismatch can develop over time I also want to do something to make sure that I

reject drifting unknown disturbances, okay.

(Refer Slide Time: 01:17:22)

So now what I am going to do is I am going to modify my control law like this okay, I am going

to modify my control law what was my originally control law my control law was u(k)= - okay,

and I wanted to go to origin okay, now what I am going to say is that origin itself is not fixed

okay, I am modifying this control law by using a steady state target here this x is called as a



target state, okay. So instead of saying that take x to the origin I am saying that take x2 a target

set excess so difference between this should go to 0 okay, what is this target state how will I

compute this target state.

So I am going to compute this us and xs these two quantities this is target input this is the target

state  okay, this  target  input  and target  state  are  computed  to  account  for  two things  one  is

unmeasured disturbances second it is computed to account for set point changes. See and I want

to move the distance from one set point to other set point okay, using the same controller how do

I do this okay.

So that is going to be done by managing, so the control now looks very, very similar if you see

here are there my control law was uk=-Gx(k) I am just putting some compensation terms here

okay, this compensation terms will allow me to take care off moving target you will take allow

me to take care of unknown disturbances, okay so excess represents the final steady state target

okay, and at excess changing as a function of time where I should reach because it depends up on

the drifting disturbances and so this is the more realistic formulation of LQOC in which the

disturbances are not white okay, the model is not perfect okay.

I will ever do now is now, I will now solve a more realistic problem okay, using now what I have

sorted out till now is how to find out G∞ okay, all that I have sorted out till now is how to find

out G∞ okay, I did not find out G∞ now I am going to modify my controller to take care of

drifting disturbances to take care of any set point okay, or because I was only worried about

moving to origin 00 very restricted invention.

Now I want to change it to so how now do this okay, that we will see in the next lecture you have

to do lot of.

(Refer Slide Time: 01:20:23)



So when I will do now is I will upload this hopefully within a day I will upload this well and the

thing that I am expecting what to do is as a part of your project is implement these controllers

okay, implement state feedback, implement the state observer okay, to open the first and then

implement linear quadric optimal control and observer together and control your plan okay, that

is what and actually when you do it that is the time and you will learn it more because this

algebra here on the you know, on the board becomes very, very messy and then you do not get

deal for what is happening unless you do it, you put your hands into it you actually control one

particular stimulator at least  the stimulate  system then you will get deal for what you really

happen it, okay. Load this.    
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