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Lecture - 21 

Illustrative Example: Stability of Exothermic Stirred Tank 

So, we look at practice problem in energy balance in this lecture. Let me first describe 

the problem to you. 
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So, that we understand what the situation is? We have here a stirred tank and it has a 

cooling coil, all right. A reaction A going to B and it is quite reversible. So, this is the 

kind of reaction taking place. Seat v naught and then, composition C A naught cooling 

temperature T C, and feed temperature T naught. These all this some data that is given is 

as follows; C A naught equal to 1.66 K moles per cubic meter. T naught is 21 C, v 

naught 0.6 cubic meter per hour. Activation refer reaction 1; this is 1, this is 2 is 25000 K 

cal per K mole. Cooling temperature T C is 10 C, and heat transfer coefficient this is 

between coolant and reactance, this 1000 K cal square meter per hour. So, this is the data 

that is we have. 
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Now, some more data we would require because the reaction is reversible. Therefore, we 

need some data which is also available which all. So, we have T k 1 and K equilibrium 

constant; 293, 303, 315, 323, 1.06, 4.37, 21.3, 57.2, 21.6, 6. 96, 1.97, 0.89. So, these data 

on reaction velocity constant and equilibrium constants are given. The question in front 

of us is the following. Now, there we this is very heat of reaction I have forgotten, I am 

just heat of reaction there is delta H heat of reaction is give as minus 20000, A going to 

B this is for A going to B, heat of reaction calories K cal per K mole. So, this is a 

reversible reaction, and plus is exothermic. So, we know that if you have a reversible 

reaction, which is exothermic. It has some interesting features show in where it has a 

maximize reaction rate and so on, which you have already in our discussed. 
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So, let us look at first part of the exercise is; 1 is derive locus of max rates. What is the 

locus of max rates, how did you do this? So, suppose I say r B is a rate of formation this 

is our reaction A going to B, and this way this is 1 and this is 2. So, r B is what? k 1 C A 

minus k 2 C B. Now, since there is no volume change, I write this is C A naught times 1 

minus of X minus k 2 C B naught plus C A naught X. And, we take this as 0. So, 

essentially it is k 1 C A 0 1 minus of X, k 2 C A 0 x, ok. Now, locus of maximize rates is 

understood like this; del X del r B del x at constant, this is what we to find out. That 

means; del r del X at constant T so, del sorry, del r del T at constant sorry I am sorry. 

This is, are we wanted to know how the rate of formation of component B changes with 

temperature. 
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Let us let us do that; we just go throw that very elementary manipulations. So, we have r 

B equal to k 1 C A 0 times 1 minus of X minus of K 2 C A 0 X. We want to find out del 

r B del T at constant X. So, we have to differentiate k 1 with respect to T that k 1 E 1 by 

R T square at constant X. Therefore, we do not change this similarly, we differentiate k 2 

is respect to temperature we get k 2 E 2 divided by R T square C A 0 times X. Now, we 

have shown that exothermic reversible reaction r B goes throw a maximum, we have 

shown that earlier. 

And therefore, at the point of maximum we should have this. I will call this X as X m so, 

1 minus of X m divided by 1 minus of X m multiplied by k 1 E 1 by R T square C A 0 

equal to k 2 E 2 by R T square C a 0 times X M. or, X m divided by 1 minus of X m 

equal to X m divided by X equal to k 1 by k 2 E 1 by E 2, or some equilibrium constant 

times E 1 by E 2. This is something that we all know based on the elementary principle 

((Refer Time: 07:52)). 
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Now, suppose you look at the same reaction at equilibrium, which is you have r B equal 

to k 1 C A 0 1 minus of X minus of k 2 C A 0 times X. At equilibrium we have r B equal 

to 0. Therefore, we should have k 1 C A 0 1 minus of X e equal to k 2 C A 0 X e or X e 

divided by 1 minus of X e equal to k 1 divided by k 2. Or, also means X e equal to if I 

call this as k you know equal to k, X e equal to k by k plus 1. At equilibrium we have the 

equilibrium conversions given by k by k plus 1, ok. Now, we also said that that x m by 1 

minus of x is equal to therefore, this also means x m equal to if I call this term as delta, 

we call this as delta this becomes that means this is delta so becomes k delta divided by k 

delta plus 1, is that clear. 
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So, if we want to make a plot of what happens to X for different T. On other words; X e 

equal to K by K plus 1 or it is also equal to 1 by 1 plus K. Now, for a reaction which is 

exothermic, for exothermic reaction we know that k decreases as T increase. We know 

that this is familiarly is principle therefore, we have as K decrease as T increases. So, 

when K decreases what happens to this denominator this increases, correct. So, as T 

increases you know that x keeps on decreasing. Therefore, equilibrium if this is the 

equilibrium line, I hope you understand this. I will go throw this once again; as T 

increases K decreases for exothermic reaction. We are talking about exothermic reaction. 

For exothermic reactions as T increases K increases, when k sorry, as T increases K 

decreases therefore, this quantity keeps on increasing. So, 1 plus the denominator keeps 

on increasing therefore, X e keeps on decreasing as T increases that is what I have 

drawn. 

Similarly, you have this X m which is given by k delta divided by 1 plus k delta and they 

this also can write as 1 by 1 plus 1 by k delta. Therefore, the behavior of X m also we 

looks something like this. This is X m, what is X m? X m by definition is the locus this is 

the locus of max rates. And, what max are we talking about del r B by del T at constant 

X. So, this is the locus we are talking about. Therefore, in our design by an large you 

would be interested in ensuring that the reaction rate that we are attain in the equipment 

is as highest possible. What is if rational for this I mean if the reaction rates are very 

large then, clearly the equipment there is required to do that processing would be the 



smallest. And therefore, it sort of makes sense to have your process operating at the 

highest reaction rate. 

So, what we are saying now is; that this is the first part of the question. It says the 

question let me state the question once again, question is recall first page when did it 1 

this. We said that we have here we want this X says specify best conditions required get 

a conversion of X equal to 0.52. So, the problem that you would like to address now is 

what are the best condition that is required to get an outlet conversion X from reactor 1 

equal to point 52. So, this is the question. 
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Now, how do you address this? You address this recognizing so let us just state that 

question once again. We have a stirred tank, we have a coil, this is coil coming in and 

going out, fluids coming in and fluids going out. Now, you want this X to be 0.52 

number 1. Number 2; we also want that the reaction rates shows in here be the highest or 

the size of the equipment for this choice should be the smallest. That means; we want to 

get the highest reaction optimum conditions to achieve X equal to 0.52. 

What are the optimum conditions achieve X equal to 0.5. Now, we said X m divide by 1 

minus of X m equal to 1 by 1 plus K delta. That means; the choice of the conditions 

should be such that this condition be satisfied. Now, if I put X m as 0.52 by 1 minus of 

0.52 equal to 1 by 1 plus 1 by K delta. Essentially, this equation defines what should be 



the value of K, or equilibrium constant at which I should operate the process. You can 

solve this and then, find the value of K that gives you, that satisfies the any quality, ok. 
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Now, to be able to do that; what is that we require to be able to do that delta, the way we 

have define delta is E 1 by E 2. Which means; that if this is the reactance these are 

reactance these are products. And, now this is given as heat of reaction is given as; how 

much is the heat of reaction? Heat of reaction is given as 20000. So, this is 20000 or 

20000 calories per mole, it is given. What is this? This is E 1, and this is E 2. Therefore, 

E 1 minus of E 2 equal to delta H. This is given as this is equal to 20000 this is what is 

given I am sorry; I am not able to not write. E 1 minus E 2 is and E 1 is given as E 1 in 

the problem statement is given as 25000 minus of E 2 equal to this is exothermic heat of 

reaction minus 20000. 

Therefore, E 2 equal to 45000 calories per mole. What we are saying is that in the 

problem that is specified in front of us; the active energy for the forward reaction is 

given as 20000. And, heat of reaction is also given as 20000, but it is exothermic. So, I 

put all those conditions here, and we find E 2 which turns out be 45000. So, we have in 

this reaction that E 1 is 20000 E 2 is 45000. Therefore delta; so, what is delta equal to 

25000 divided by 45000 so, this is a heat of reaction. Is this 5 by 9, correct that is equal 

to 0.5 about 0.55 so, that is delta value. So, we recognize that to be able to so what we 

saying is the following; that our process runs in such, should run in such a way that the 



exit conversion should be 0.52. For which you have to appropriately take care of the heat 

load using this device the heat removal system. 
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So, what we are saying is that if k delta so, we have X m it is equal to 0.52 equal to 1. K 

delta divided by 1 plus K delta. 
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Therefore, this equation defines what is the value of k delta? Can we calculate, I will 

calculated that and found k delta values to be, so if you put all the numbers you get 0.52 



divided by 1 minus of 0.52 equal to K. We do not know this and then, 25000 E 1 45000 

is E 2. So, this gives you a K value of 1.97, this is what we get. 

So, that means if we choose a temperature; so, choose T of reactor so, that equilibrium 

constant K becomes equal to 1.97. Now, how do we do this? See we have to look at the 

data that we have after all this data available to us it is given to us, it is given our data for 

this reaction is already given corresponding to 1.97. We find there is a temperature of the 

reactor must be chosen as 315 degree K, this is degree K. So, what is that we have done 

so, when implies T equal to 315 K. 
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So, what are we saying? What we are saying is that; we must operate the process in such 

a way we must operate this process. Which means; to be able to operate the process 

corresponding to the maximum reaction rate that means you want this 0.5. This is X 

equal to 0.52 you want yes. But you want this in such a way that this process should run 

here at the at the highest reaction rate. That means; the condition was to be chosen 

should be on the locus of maximum reaction rate, which means; what we are saying is 

the following. 

For X m equal to 0.52 we have shown the this K must take a value of 1.97, which means; 

the temperature at which this is a equipment this is a reactor must be operated the 

temperature must at which this must be operated is T equal to 315. So, it is 

corresponding to if this is 315 then, we can get 0.52. Which means; if 0.52 is the 



conversion which you must operate then, you have to choose temperature to be 315 so, 

as to satisfy the criteria that X m equal to k delta by 1 plus k delta, ok. So, is that means 

if you want to choose a temperature of T equal to 315, how do we get this? We get this 

by recognizing that this you can get 315 if we satisfy the energy balance which means; 

what the whole procedure says is that the maximum reaction rate locus defines 

temperature. And, energy balance defines the heat load to be handling so, as to achieve 

this kind of operation, ok. 
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So, have I said that let us see how we can get forward? Now, the question is that we have 

this reactor now, to which feed is coming in it. It is you know and this X is given as 0.52, 

and we have said for this X to be then, the T should be 315. So, what are the unknown 

quantities now? We know v naught, but we do not know that the residence time here. So, 

residence time tau is unknown, there is 1. And similarly, the amount of heat to be 

removed Q is also unknown. Therefore, once we specify tau and Q the problem is fully 

solved. How do we do that? To get this, we look at the material balance. 

What was material balance tell us? Material balance tells us the input minus of output 

plus generation equal to accumulation and that steady state accumulation is nil. So, what 

is F A 0 and F A? So, we can put all these numbers here, F A 0 minus of F A is simply F 

A 0 times 1 minus of X, and what is r A? By definition is k 1 C A minus of k 2 C B 

times V equal to 0. So, we can simplify this recognizing that C A equal to C A 0 times 1 



minus of X. And, C B equal to C B 0 plus C A 0 X and then, C B 0 is 0. So, putting all 

these simplification; we can get this is so, F A 0 this is become F A 0 X, first term minus 

of k 1 C A 0 times 1 minus of X minus of k 2 C A 0 X times V equal to 0. We divide 

throughout becomes X minus 1 minus of X times k 1 tau minus of k 2 equal to 0. 
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So, we can simplify this as will be write here. We get x equal to X multiplied by 1 plus k 

1 tau 1 plus k 2 tau equal to k 1 tau, which comes directly from here. I am this collecting 

the coefficient of X so, X multiplied by 1 plus k 1 tau plus is it write, is this 1 minus of X 

is it all right, X just a minute minus is plus ok, fine. So, it is so we get X multiplied by 1 

k 1 tau equal to k 1 tau. So, this is taken to as a plus k 1 tau is fine. So, this is gives you 

X equal to k 1 tau divided by 1 plus k 1 tau plus k 2 tau. Now, k 1 at 315, and k 2 at 315 

k; we can get from the data that is already given. Therefore, on the in this equation only 

unknown is tau, because k 1 at this temperature 315 and k 2 at this temperature is also is 

given in the table. 

Therefore, you can calculate on the, if you given X, you can calculate tau. So, putting 

numbers access 0.52, and k 1 and k 2 at k 1 at 315, and k 2 at 315, this is numbers I have 

calculated. And then, I will tell you this numbers k 1 at 315 and k 2 at 315, k 1 at 315 is 

2.34, k 2 at 315 is a 10.08. So, I calculated these numbers units are per hour all this at per 

hour. All the data is per hour, I hope let this k 1, k 1 is an per hour, so per hour 

everything is per hour. So, you can put these numbers so, what we get is that k 1 is 2.34 



tau divided by 1 plus 2.34 tau plus 10.8 tau. So, if we solve this we get tau equal to 0.11 

per hour. So, this is material balance. 
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What we have done? See what we have done is we have this is our problem. Our 

problem is we have a stirred tank, where this exit conversion is specified it is also said 

we must operate along the locus of maximum reaction rates which means; that we should 

have X m by 1 minus of X m satisfying this relationship. So, putting the value of X m 

which is specified as 0.52; we can get k delta. Delta is also known, because delta is E 1 

and E 2 are known. Therefore, k 1 therefore, all the numbers are known, and on that 

basis from the material balance which is given by this equation. You can find out the 

residence time provide the others are known, in this case others are known. That gives 

you a residence time of 0.11 per hour. 

So, our problem now is that the residence time tau is known. In this tau is equal to this is 

known so, flow rates are known, all these are known, X is known here. So, only 

unknown quantity now is; how much heat to be added or removed to maintain the 

temperature here as 315 degree C 315 degree k. How do you do this? Now, we look at 

the energy balance, and see what the energy balance says; as far as maintaining this kind 

of temperature. 
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So, what is the energy balance saying? Energy balances for a stirred tank; because this is 

a stirred tank. So, we write the equation that we know; d T d t equal to v naught C P 

times T naught minus of T plus r 1 minus of r 2 times minus of delta H 1 star times V 

plus Q minus of W S. So, in this case steady state therefore, this goes to 0, so r 1 minus 

of r 2 so everything is known here excepting Q. So, if you put all our numbers; let us do 

those numbers so, it is 0 equal to 0.6 and this is cubic meter per hour. C P is 1000 and 

this is 40 minus of 42, T naught is given as 40, is it right. T naught is given as 40, ok. 

And, then r 1 minus of r 2 this from our material balance we know it is simply F A 0 

times X. I will not show this now, so it is simply F A 0 is what C 0 which is 0.6. C 0 is so 

this is simply F A 0 times X times minus of delta H 1 star times V plus Q. Now, what is 

V; reactor volume is equal to volumetric flow rate time’s residence time. Volumetric 

flow rate is given as 0.6. And, then residence time; we calculate it is point 1 so, this is 

becomes 0.6 cubic meter per hour, is that clear. 

So, we have got volume reactor volume to be 0.6 cubic meter not per hour, 0. 6 cubic 

meters this is 0.6 this is equal to 0.06 cubic meters. So, we can put this in here and then, 

only unknown here is Q you can put all the numbers, I put most of the numbers. So, let 

us say this is 0.6 times 1.66 times 0.52 times plus 20000. And then, 0.52 is also to be put 

here. And, so essentially what we are saying is r 1 minus of r 2 times V is a F A 0 X if is 

this not there, plus Q. so, this is gives you value of Q equal to minus of 3158 k cal per 



hour. What is minus sign mean in the first law convention? Minus sign means; the heat is 

going out of the system, heat input is taken as positive in first law. Heat output is 

therefore, the negative sign means so much of heat will have to be removed, so as to be 

able to maintain the temperature of 315 degree C. So, the most important thing here is 

that we have been able to specify; what is the temperature at which we must operate? So, 

that we get conditions corresponding to the maximum reaction rates. 
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Having done this, there are few simply calculation we can do after all. The design you 

will require you would specify things properly. So, if Q is equal to minus of 3158 kilo 

cal per hour so, what is the surface area heat area we have to give? So, heat transfer area 

is what h A times delta T equal to Q, Q is given therefore; A equal to Q divided by h 

delta T, correct. Q is 3158 h is thousand, what is delta T? Our delta T is temperature is 

315 which is 270 and then, 315 means 42. So, it is delta T is 42 minus of 10; that is equal 

to 0.26 square meters, ok. This is given, this you have found out as 315 k, and this 

temperature is given as 10 C. So, I have that is how it becomes, what it is. So, we have 

we will able to calculate what is the heat load and what is the heat transfer area. 

Now, the second related question in all these is to be able to see whether the process that 

we are running will be stable or unstable. On other words; you must check for the 

stability of our process, for various kinds of disturbances. That is what you would like to 

do know how stable is our steady state. 
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So, to be able to do this; what is called as steady state stability? What we try to do is; we 

try to plot what is called as U g and U r. What is U g and U r? U g is heat generation and 

U r is heat removal. And, our steady state is about the quality of heat generation, heat 

removal. When they are equal, we know is the process is at steady state. 
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We can plot these curves U r, just write down what is U r and U s? Something we have 

done before is not a very complicated thing anyway. So, U r s U g s is r 1 s minus of r 2 s 

multiplied by tau and J 1, ok. And then, it is we can show this is no point to doing, it 



once again we know that r 1 s minus of r 2 s is equal to C A 0 X s divided by j. I will not 

show this is because you already done this before. Therefore, U g s equal to C A 0 X s 

times J, which is equal to C A 0 k 1 s tau divided by J 1, 1 plus k 1 s tau plus k 2 s tau.  

These things we have derived before therefore, this is not do it again. Notice here, that if 

you want to plot U g s; all that you need to know is what is the temperature 

corresponding to this X s. Or, in other words; you want to plot U g s, on this right hand 

side k 1 s is a functional temperature. And, k 1 s we know k 1 is what some k 1 0 e to the 

power of minus of E 1 by R T. And, therefore since; the right hand side fully known k 1 

is known therefore, you can plot u g as a function of temperature. 

(Refer Slide Time: 36:00) 

 

Similarly, what is U r? Our U r by the U r s equal to 1 plus beta, we have done all these. 

Therefore, I am not doing it again T s minus of T C star, were T C star equal to T naught 

plus beta T C divided by 1 plus beta. So, all these we have done where beta is equal to h 

A by v naught C P all this is known. So, what we are saying is that; we can now plot U g 

versus temperature; we can now plot U r versus temperature. Therefore, the points at 

which they intersect are the points at which steady state occurs. So, this is what we are 

trying to say, and you can plot this. How do you plot this? Show you how to plot this 

they are not difficult to do, but I just do some calculations to illustrate how this plotting 

is to be done. 
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So, let us say T and k 1, say k 2 so, k 1 tau, k 2 tau, X s, U g s and U r s. What is U g s? 

C A 0 X s J 1, what is U r s? 1 plus beta times T s minus of T C star. And, all these are 

known so, I will just put some say 293; I will just 21 or 2, 293, 303, 315 and 323. I am 

just calculating some numbers; see we put all these calculations we can find at 303, 293 

these terms out to be 3.32 minus 15.6 and then, that is 293, 303 is 9.96 minus 1.29. Then 

this is 17.2 comes out the 15.9 and then, 26.1 and 41.6. 
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And, other words; what we are saying is that; you can now plot see this data here, you 

can see here this data got this data here. U g s you can plot U g s versus temperature and 

then U r s. You can plot U g s versus temperature. This curve looks something like this 

and then, U r s versus temperature like this. And, this is the point of intersection, which 

is 315. So, what we are tried to say here is the following; if you have a stirred tank, in 

which exothermic reaction is taking place. And, then you have to operate this process at 

the maxima and reaction rate, which means; it specifies the temperature at you operate 

and so on. 

Now, you can also understand the steady state by plotting U g s, this is U g s or U r s this 

is U r s. Or, in other words; the pointed which the intersections takes place is the point of 

steady state. So, we can understand steady state in various ways this is a another way of 

understanding steady state. Our interest now is; now that we know it is that is point of 

intersection; how stable this steady state is this stable, is this unstable. Now, to 

understand stability of steady states we have done this already. I will just quickly run 

throw this procedure for understanding stability of steady state. 
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We have shown in an earlier discursion that and exothermic stirred tank stability can be 

understood in terms of 3 numbers. L M and N where, L is defined as 1 minus of tau by C 

A 0 del by del X of r 1 minus of r 2. M is equal to 1 plus beta where, beta is h A by v 

naught C P and then, N is equal to J 1 tau within brackets del r 1 minus of r 2 divided by 



del t at steady state, ok. And, stability is L plus M greater than N, L M greater than N. 

So, steady state is stable if these 2 criteria are satisfied. So, what is L M and N these are 

all number which is determine by what is given here, at residence time here is known C 

A 0 is known r 1 minus of r 2 at s all these are known. 

So, for a given reaction kinetics L M and N is fully specified. So, what you want to do 

now is to illustrate to you, how you can actually calculate L M and N for this specific 

problem that we have in front of us. I want to calculate this in front of you. So, let me go 

throw this whole thing quickly. So, r 1 minus of r 2 for example; for us to calculate L M 

and N, we should know r 1 minus of r 2 so, that we can differentiate with respect to X 

and T. And, find out the value of these numbers at steady state that is what I am trying to 

do. 
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Now, r 1 minus of r 2 is k 1 C A 0 1 minus of X minus of k 2 C A 0 X. So, del r 1 minus 

of del X equal to k 1 S with a minus sign minus k 2 S multiplied by C A 0, these obvious 

from here, ok. So, that is equal to minus of k 1 s plus k 2 s times C A 0. Therefore, what 

is L; we have to calculate L here; we want to calculate L, because tau is known 

everything else is known. So, let us calculate L; so L is equal to 1 plus tau by C A 0 

within brackets of k 1 s plus k 2 s, or this is equal to that is multiplied by C A 0 is there 

equal to 1 plus k 1 s tau plus k 2 s tau. So, k 1 s is known k 2 s is known tau is known 

therefore, L can be calculated. So, will have put numbers if you have put these numbers; 



this becomes 1 plus 21.3 times 0.11 plus 10.08 into 0.11 that is equal to 4.45. The value 

of L for this particular problem, where tau is 0.11 per hour, k 1 and all that we have 

calculated L is 4.45, ok. 
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Now you have to calculate M. What is the M? M we said M is equal to 1 plus beta which 

is 1 plus h A by v naught C P. That is equal to 1 plus h is let me put this numbers here, 

calculated it here somewhere else. H is 1000, and we are calculate this area just now we 

calculate area is 0.24 square meters divided by v naught C p. v naught is 0.6 and C P is 

1000 kilo calories per cubic meter and so on, that comes out to be 0.43. So, L please 

notices here, M is this. 
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Now, you have to calculate M, this is J 1 how to calculate N? N equal to J 1 tau del by 

del t of r 1 minus of r 2 at s. So, when we do this differentiation this becomes N equal to 

J 1 tau del by del T becomes k 1 s E 1 C A 0 times 1 minus of X divided by R T s square 

that is 1. And, the other side is k 2 E 2 C A 0 X s divided by R T s square. Now, once 

again all these are known so, we can calculate this we can put all the numbers I just put 

all the numbers here. J 1 notice here, the J 1 by definition is minus of delta H divided by 

C p volumetric. I am putting all the numbers here, and then we do that it terms out to be 

0.03. I put all the numbers here this is whole calculation terms of 0.03. Now, our steady 

state stability criteria our criteria of a stability; L plus M greater than N, value of N is 

0.03 pleas N is 0.03. 
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And, L value we calculated as; L is 4.45 and, so let me let me put all the numbers 

together in front of you. We get L plus M so, L is summarizing here L equal to 4.45, M 

equal to M is 0.43, N equal to 0.03. So, L plus M greater than N, L M greater than N, we 

can see here, both the criteria both the criteria are satisfied. Which means what? Which 

means; that the steady state that we have chosen steady state is stable. By stability what 

we mean is that; to a disturbance the steady state would returns to its virginal state, 

because is the after the disturbance. By these criteria; what we really mean is that after 

disturbance it will take time to reach the steady state but it will reach that old steady 

state. That is the point this is mean by this is satisfying of these 2 criteria, ok. 

Now, the question is that; this whole analysis is based on what is called as small 

deviations from steady state, which means that; our disturbance should not be so large. 

That the linear approximation that we are assumed in this steady state analysis that 

should be violated. So, small disturbances these are all correct; but if the disturbances are 

very large then, clearly our approximations in the analysis not satisfactory. There were 

alternative techniques should be required, I will stop there. 

Thank you very much. 


