Optical Spectroscopy and Microscopy
Prof. Balaji Jayaprakash
Centre for Neuroscience

Indian Institute of Science — Bangalore

Lecture — 13
Fundamentals of Optical Measurement and Instrumentation

Hello and welcome to the lecture series on optical spectroscopy and microscopy. So far what
we have seen is that how to treat the interaction between the light and the matter and we were
trying to obtain the expression for expansion coefficient ak to the different order and
specifically we obtained an expression for ak to the first order correction.
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If you rehash, go back to our notes what we will see is that we have obtained the expression
in the last lecture as ak of the first order the modulus square of that is equal to 4 by h cross
square modulus square of ek Hamiltonian, the Hamiltonian this is a perturbation Hamiltonian
eg and modulus square times sin square half omega kg + or - omega t by omega kg + or -
omega. Now towards the end, what | claim is that this allows us to look at the process that we
did not necessarily know about to start with or did not make any assumption about it to start

with.

The process | claimed was that or the phenomena that 1, it is not the process, the phenomena.
The phenomena that | claimed was that the probability that the light will interact with the
matter and take the system from a state eg to ek, is exactly equal to the light interacting with

system already present in ek and then taking it to eg or in other words | said given the



expression of ek, the order in which the transition is going to happen is immaterial to its
magnitude. So either going from g to k or k to g, it has equal magnitude.

How do we know that? The reason the way we know that is because it is actually goes as the
modulus square right, so please note here we are using the modulus square and since it is a
modular square, you are insensitive to the fact where are you starting from and as a result
there are some interesting consequence and let us look at that in this class and try to see what
we can actually learn or what we are going to measure when we take this system and put it in
an absorption spectrometer, alright.
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So the first thing we realize is that, first thing | would like to state is in obtaining this
expression, we made important observation that the Oth order correction for ak right, when
we are looking at that ak dot turned out to be 0 and that implied ak to the Oth order can be
written as a constant right, and | said this reflects essentially the initial conditions that is the
condition in which you are starting your system. What we did here was that of all the possible

ak’s that of the various different values that the ak can take.

What we did was to say that okay, | am going to pick out one of them because | know that is
where | am actually starting, that is where my system is starting, and | gave a rationale for the
thermal equilibrium and so on and so forth., but the point here is | am going to pick a state in
which the system is starting right and let us we call that state ak, the state in which I am
starting as g, | said that equal to 1 that is the coefficient of that is equal to 1, which essentially

means the entire superposition right, is dominated by this because for every other ak which is



not equal to g, | am setting that equal to 0, which is basically if you remember our psi is a

linear combination right.

So that in the linear combination, we are saying that it is nothing but just eg and everything
else is 0. So I could in principle have taken any state k, let us say for example here give a
name not g but any state ak = 1 as 1 and all other states k not equal to 1 equal to 0. This
would include that ag is also equal to 0. This is also a perfectly possible situation right, it is
not contradicting anything. All that we need is that this were to reflect the physical reality of
my system at time t = 0.

So, what would that be? That would mean that the label that I am giving ak = 1, the el the
system is in the state el and | would not be able to find the system in any other state to start
with. If that is so, now we can look back at our integral, look back at the expression for ak of
t to the first order and then ask what the different terms in that expression mean? So let us
look at this now. This is the expression right before the box that | am talking about, ak to the

first order of as a function of t has many terms and let us look at.

Let us call this as term number 1 and the rest of it, the addition right, this as term number 2.
Now if you notice carefully, they are different, where they are different is in the term omega
kg - omega versus omega kg + omega that promptly gets reflected in here right. There is an
omega kg + - Omega, so the minus term will correspond to the minus and the plus term will
correspond to the plus and so forth. So now we are going to dissect out in scenarios so where
omega Kkg is lesser than 0, let us call that as scenario number 1 and omega kg greater than 0

scenario number 2.

We can call omega kg greater than or equal to 0 as scenario number 2. All | am saying here is
that omega kg is in one is negative and in the other is positive, alright and for both the cases, |
am going to pick my light radiation such that the frequency corresponding to its energy
omega is pretty close to omega kg, the frequency corresponding to the energy gap between
them alright. So using these, we can look at, we can kind of try to reconstruct the physical

equivalence of these 2 scenarios what would they would correspond to.

Now, the omega kg is lesser than 0 scenario number 1 what it means is that remember omega

kg is omega k - omega g. The situation here is that we are going to say that omega K is lesser



than omega g okay and in the scenario 2 what you are saying is that omega k is greater than
omega g. Now remember that k and g are arbitrary terms that we have introduced. All it
means is that this is the state that we started with right, g is the state that we start with you

can think of, this is the assumption that we made.

This is the statement that we made and the assumption that we made and then obtain the
expression that we discussed in the previous lecture or the expression for the ak itself., which
means you can see that all it tells you is that the starting energy state is of a higher energy
than the ending state okay. Now this | am going to claim corresponds to the situation where
my ek in this case just to distinguish between ek you can think of the label being 1 and eg
okay, this would mean that we are starting.

So we are still looking at the transition between k and g, however, the omega kg will be
negative only in the situation where if we have started from the higher energy state. That is to
say that for some reason | am choosing my initial state such that ak for equal to k is 1, but for
all other cases including ag equal to 0. So it could be just ak or ak prime or whatever. This is
an arbitrary label that we have chosen right. So this corresponds to the fact that we are

starting from the excited state and going down that is what omega kg being negative would

imply.

However, for omega kg greater than or equal to 0, all it means is that omega k is greater than
omega g, this allows us to order the eigenkets terms of energy okay, that is all it is. We saying
ek which is equal to 1 or just ek and this is eg. Here the initial state is here the eg okay and
then we go to ek, so this would reflect absorption alright. So the key point here we need to
remember is the g is an arbitrary label that we have introduced in our derivation. So at that

point there is no necessity for us to order them in energy okay.

So you would order them in energy only if you are trying to relate it to a system that is taken
physically and then at that point, then you have these different possibilities okay. In such a
case what we are looking at is that 2 different processes, a process starting from the ground
state going to the excited state, where ground state has the lower energy and you could as
well start from a state corresponding to a higher energy that is from ek in this case, | could
have set my ek of 1 or ak of the excited state to be 1 and all other coefficients to be 0 that

would be the scenario number 1.



So for each of these scenarios, you will see one of the terms will dominate, why? Because of
this denominator, omega kg - omega right. So, we are going to take the omega that is pretty
close to omega kg, so if it is pretty close to omega kg this is going to go pretty close to 0 and
you are actually looking at the limiting value of this expression. On the other hand still it
would be this term, term number 1 when omega kg is positive and since it is going to close to
0, this term will be much greater than the second term where it is omega kg + omega and all

it boils down to is 2 omega kg and that is not going to contribute much at all.

On the other hand when omega kg is negative, the situation reverses wherein you have the
second term dominating over the first. So, you could think of this corresponding to the
second term, corresponding to transition from the higher energy state to the lower state you
may think of that as emission process and this as absorption process. Remember for this to
happen, you need to have the light, you need to have the perturbation right.

If not for the perturbation, we will not have even come this far and hence the emission that is
resulting from here we never intended to have any emission, we just took the system and
shine the light on the system, but yet here we are where we arrive at an expression that
predicts that the system can undergo a transition from a higher energy state to the lower

energy state in the presence of the light.

Light can induce that transition with equal probability, why | am saying equal probability?
Now when | said that one term dominates over the other, practically what you are saying is
that ak of t is either this or the other and they are exactly equal except for the signs and if you
take scenario 1 or scenario 2, you will see that both of them if you calculate the ak of t
keeping in mind omega k is greater than omega g and omega Kk is lesser than omega g in

scenario 1 and otherwise in the scenario 2.

You will see they are absolutely equal, they are exactly equal, ditto equal okay. Now that is
why we say that the emission, the stimulated emission probability is exactly equivalent to that
of the absorption okay, Now that is about the probability, but in reality if that being the case,
then why do we even see an absorption, right? We visited this little while ago when we are

talking about setting the initial condition right.



There is a thermal equilibrium, so in that situation what happens is rarely, almost never, you
see a situation where the ground electronic state is sparsely populated than the excited
electronic state when a thermal equilibrium is reached that is at a normal condition okay, and
unless you have a special way of doing that, in fact we will see it later on in the course when
you are talking about lasers and so forth, you actually want to create that and we have to take
some extra measures to be able to really create that.

In such a case, what we are left with is even though the probability is equal you have to start
with a bias towards some more number of molecules present in the ground state. As a result
what you see is a dominant absorption process and the rate of such process we can actually
go ahead and start to write down because that is exactly what you are going to measure when
you are taking the system of a chromophore and then put it inside your absorption
spectrometer and shine some light and then and then see how much of the light that you are

shining is getting absorbed.

So if this were to be true, the whole framework and whole expression that you have obtained
for measuring this transition, the probability of this transition is true, we should be able to
predict what we would see in an absorption spectrometer. Now, we can actually do that and
we are going to do that now. How are we going to do this? First we need to understand there
are a few important things that is away, | mean that is different from what we have done here

in an absorption spectrometer than here.

Number one it is going to be a broadband spectrum that is what we are going to use to excite
the molecules. So what we need to do is that we need to estimate not the probable, it is not
just sufficient to know the probability of transition caused by a light of angel of frequency
omega. We actually need to know the probability of or we actually need to know the number
of transitions per unit time in some sense that is exactly what we are going to measure in a

spectrometer over a broad range of omega okay.

These are broadband excitation as we call it. So we would like to know if | were to give a
light that is having a bandwidth okay, you can alter this bandwidth, you can actually make it
very sharp but still there is a finite bandwidth of that light, if you are going to give that how is
the system going to interact? There is also another way of looking at this whole thing. Even

in a situation where we have, | mean in a hypothetical situation of where we have very



defined light with the supremely sharp bandwidth okay very very very very small bandwidth,
very precise wavelength.

The energy states themselves alright, can fluctuate in its energy, why is that? There are
several reasons starting from collision broadening to in the sense that when you have a
system either in a solution phase what you are actually doing is that the chromophore
molecules are in constant collision with that of the solvent molecules. When they are engaged
in these collisions, what you end up having is a situation where the energy states are not
necessarily sharply defined but rather it is spread about the ek’s that we have actually
proposed, | mean as eigenkets of that.

The eks are the unperturbed eigenkets, but then the collision by themselves can act as a
perturbation right, the result of that is that you can you will see that the eks are not exactly
defined as the ek, but there is a probability of you finding an eigenket which is slightly
different because of you can think of this as a the spread of the ek about a mean okay. In such
a case, you can think, you can talk about what is called as a density of the states okay.
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So if | were to diagrammatically represent this, we would like to draw or we would like to

imagine the eigenkets to be sharp lines on the energy axis okay. So you have the energy axis

here, increasing energy, so you would like to represent the eigenkets as sharp lines. What |

am trying to claim here is that a more general case, a more useful case would be to think of

this not as a straight line but really as you can think of the energy states as not as broad but

these are my true energy states of energy eigenkets okay.



Now if | had a more general case what | was trying to argue for is really a situation where it
is spread like that okay. The width and then if you were to remark the probability that you
will have an energy state in a given energy, if you are to plot that, then you can think of them
being existing as, this is the probability of you finding energy state and all I am claiming is
that is dependent on omega k and hence the omega kg itself.

This probability that we are actually plotting this, so if the probability that you will see a state
with an energy gap of omega kg is somewhat distributed like this where the central line is
basically omega kg and here | am actually plotting the energy of an omega axis like energy
axis where E goes in like this. So if there is a spread okay, this spread it is more practical and
more useful to take this approach. If that is the case, then we can actually go ahead and
calculate what will be the probability ak of t that is the probability of the transition, does it
get modified or if it gets modified, how does it get modified right?

So you can think of this as is pretty much the same okay. So pretty much the same as what?
As our this equation, equation 10, | am going to write down for let us copy this. It will be
pretty much the same as equation 10 except now what | am going to do is, | am going to do 2
things. One is going to say that there are many such transitions possible around the kg. There
are many states, so there are many such transitions possible, so I am going to multiply that by

the density of the states.

So where | represent the density of the states around kg right, so that | represent it as rho, you
can also think of that as the density of the incident light around omega. Essentially what we
are trying to look at is that how different is our energy gap with respect to the incident light
energy okay. So the spread could be coming from the inherent system or from the light
radiation or in general could be from both. So if you take that as the power density
distribution incident light radiation, then what we need to do is that we need to be able to

integrate these probabilities over this entire omega, alright.

So given omega that is our probability, but there is also a possibility of system going to a
state that is close to omega but not quite omega because the incident light radiation itself
could be having the light whose frequency is slightly lesser than omega, slightly higher than

omega. So, taking that into consideration, how do we do that is that we are going to integrate



this expression, to be general we will write it as minus infinity to plus infinity d omega. Now

at this point we can take a closer look at this whole expression.

Of course now let us say for simplicity sake we are going to concentrate on the semi-classical
representation of the electromagnetic wave and then we can say that the perturbation H that
we have been talking about can be approximated to an electric dipole right. This is called as a
dipolar approximation, basically this is telling you how does the potential gets perturbed at
any given place r at a given displacement R because of the electromagnetic radiation with an

amplitude E r epsilon as | have written it here.

So we can actually write this whole expression as 4 by h cross square modulus epsilon square
minus infinity to plus infinity ek, epsilon has been taken out, so we can actually do that as r
eg modular square sin square half omega kg + - omega t whole divided by + - omega square
rho omega and d omega. At this point, what we can actually think of is looking at this right
ek r eg the modulus square. So now clearly what is going to happen is that this ek is, this term
is very specific, the term I am underlining in this line, this term is very specific for the

transition between two defined states eg and ek okay.

Now since that you can think of as independent of the incoming omega that you are coming
up with, what you can actually do is that you can write this term as independent as a result
outside of this integral minus infinity to plus infinity.
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Now when we do that, we end up having 4 by h cross square modulus ek r eg - infinity to +
infinity your sin square this term times t divided by this d omega. Now it is a sin square
omega kn + omega divided by omega kg + omega divided by omega kg + omega here. So
this integral you can estimate that to be 4 by h cross square modulus ek r eg square and it will
turn out to be 2 pi into t okay. Now since we would be quiet often encountering this term, so

it is very cumbersome to keep writing like this.

So what we can actually do is that we can equate, we can introduce a term called capital R
represents that is the operator that we are using and this whole matrix element as can be
written, 1 am going to write it as Rkg. So we could write the expression for ak modulus
square which is the probability that the transition will happen given that you are shining a
broadband light is given by 4 by h cross square times Rkg 2 pi t. Rate of transition is given by
d by dT of this probability or in other words how this probability ak of t, actually the modular
square of ak of t changes with respect to time.

If you do that, you will see that corresponds to 8 pi by h cross square Rkg modulus square the
t is d by dt of t which is equal to 1, so it will boil down to this 8 pi by h cross times RKg
square or in other words is directly proportional to modulo Rkg square okay. This we missed
this term rho of omega, rho of omega kg around the kg, so it has to be kg so that is also, so
this term carries over here. So this expression of the rate of transition being directly

proportional to modulus Rkg square is also called as the Fermi's golden rule.

Fermi's Golden Rule abbreviated as FGR, it tells you that rate of transition between any two
states k and g in presence of a perturbation, in this case electromagnetic radiation, goes as the
modulus square of the matrix element and that is the bottom line of this entire derivation that
we have seen. As long as you get that or you remember that, that is what you will be expected
out of from this whole derivation.

(Refer Slide Time: 40:50)



So, | am going to just rewrite this which is Fermi’s, this is such an important result, so | am
going to write it as Fermi's golden rule. What you say is that rate of transition is proportional
to the modulus square of the matrix element Rkg and the density of the states. This we will
come back to time and again in this entire course when we go from studying one kind of

interaction to the other interaction.

In the next lecture, what we will see is that using this how we can actually predict or how we
can obtain the relationship between the intensity that we observe in a spectrophotometer and

the atomic system alright. I will see you in the next lecture.



