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Hello and welcome back. So, in this week we are going to look at convolutional neural

networks or otherwise CNNs as they are referred to as. So, these are the kinds of networks

that are specially used for analyzing grid-like data, specially images. And so, they have wide

applicability in medical image analysis. And many of the state-of-the-art research that you

see in especially image segmentation arise from a CNN like CNN algorithms.

So, there are CNN architectures, we will see what that means, developed specifically for

image analysis, which do very well for all kinds of images from radiology to history of

pathology. So, we are going to briefly look at what CNNs, what kind of algorithm CNNs are,

and how to use them in the context of medical image analysis.



(Refer Slide Time: 01:10)

So, here is the organization for this week's lectures. So, we are going to look at introduction,

which is basically the motivation for having a convolutional neural network, especially in the

context of image data. We will look at what are the operations that go into a convolutional

network. So, we have looked at feed forward neural networks. And we know the operations

involved there, here there is some slight differences. We will look at what they are and the

consequences of these operations.

And we will also take a brief look at some training tips, kind of important factors to keep

track of when you are training a neural network. And you look at some architectures, the ones

that are often used when designing CNN architectures for medical image analysis. So, these

are architectures which were mostly developed for the image recognition.

And these are of course adapted for other variety of other tasks, even like segmentation. And

so, we look at these architectures and some of the salient features of this aspect just to get an

understanding of how they work.



(Refer Slide Time: 02:21)

So, some fully connected, from fully connected to convolutions. So, what do they mean?

What does it mean? So, if we consider a artificial neural network, what it does, or ANN as it

is called. We also refer to it as feed forward neural network, you must have seen this feed

forward, this is what we refer to. It takes a vector of inputs.

Now these inputs, this vector of inputs, as we call them, we sometimes refer to them as

neurons in intermediate layers. Each element of this vector we referred to as a neuron, or a

unit, and these are used interchangeably throughout this lecture. So, an artificial neural

network, which is basically a feed forward neural network takes a vector of inputs and

produces as output, another hidden layer vector fully connected to the input.

So, what does that mean? It means that so for instance, if you have, I will just draw

something very simple. Let us say three inputs. We call them, x1, x2, x3, and then let us say

you have three outputs, the output layer, we call them h1, h2, and h3, each of them has a

hidden unit. And this is a hidden layer, this whole thing is a hidden layer. This is a hidden

layer.

So, now, we know that when we say fully connected, we mean that if you take h1 is connected

to all of its inputs in the previous layer, take h2 it is connected to all of its inputs in the

previous layer. If you take h3, once again, it is connected to all of its inputs and the this layer.

So, which means that if you have n1 inputs, and n2 in the outputs, you need a n1 n2 matrix of×

weights. So, with n1, n2 being the total number of elements. So, but let now, let us consider,



let us say, an input, which is actually an image. For instance, let us say RGB images, these

are images that you find on the internet that you take with your cell phones, etcetera.

These are the size 224 224 3. So, if you just say, in fact, this is basically of the order of 104× ×

features. So, if you take consider each pixel has a feature that is about 104 features, 104 to 105

features depending. So, now, if you look at this, then we need to connect, if you ever try to

analyze these images, let us say the task of image recognition using a fully connected feed

forward neural network.

And if you take let us say 1 neuron, which is I am going to draw this here, if you take this one

neuron, let us say there are just 104 neurons here, we say one neuron and output layer it has so

many weights coming, just 105 weights coming into it alone. So, if you think about it, then

you can see that the weight matrix, which takes which maps this input to the output layer, no

matter how many neurons you make it to be, it is going to be a very large weight matrix.

So, it means there is an explosion in the number of weights, typically means that we ended up

requiring more memory and computations. And of course, since there are more weights, we

need more data to estimate. So, this is again a very nominal example. You can see just for one

neuron, if you, how do we, if you rasterize this picture, let us say we take an image, images

you see it as a grid and then you rasterize it, like you let it leave a flat on it like a vector and

this out like a vector, now, we can have a fully connected neural network, which takes this as

a feature input.

Entire image is like a vector of features, every pixel corresponding to a feature. And now if

you even to produce one output neuron, you need as many connections as these, it is about

105 weights. So, imagine if you have a hidden layer, which have like 1000’s of neurons, so

you see the number of weights just explodes.

So, that is the issue with using a fully connected neural network to analyze data which has

grid like structure. So, this is in the form of a grid. So, you can lay out the image pixel in the

form of a grid primarily because there is correlation between nearby pixels. So, if you take an

image, this pixel definitely has correlation with all the surrounding pixels, so it is meaningful

to put them in the form of a grid. So, the proximity has meaning. So, a lot of the such data

exists where you can put them in a grid and where it has meaning.
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So, let us look at how typical output is calculated in a convolutional neural network. And this

process is what is known as convolution, that is where the name comes from. So, we will

look at 2D inputs. So, we have this image, this grid like input, and the values of at each of the

grid points is basically a b, c, d, e, f, as shown by this represented by a b, c, d, etcetera, these

have numerical values.

Of course, if you take a picture or an image, then each of these are nothing but the pixel

values. So, we saw that for CT image, pixel values will go from the, voxel values will go

from (-1000 to 3095). If you have a grayscale image, they will go from (0 to 255). So, those

will be the values taken up by a b, c, d, etcetera. This filtered kernel, which basically these

are the weights of your network.

And it is actually in the form of very small matrix. And these are the order of 2 2, 3 3 or× ×

5 5 matrices. And we will see why it is arranged that way. And we can, of course, we will×

also see how we can represent this in the form of a typical feed forward neural network also.

So, in the case of a convolutional neural network, here is how the output is calculated.

So, you would superimpose this kernel, filter kernel as it is called, on top of the image at

various locations. And in fact, you would do this in a systematic way, by sliding this across

the image at every position at one pixel at a time or two pixels at a time in horizontal and

vertical directions would slide this kernel across the image. At every position, you would

multiply with the corresponding elements of the input, add them to get the output.



So, for instance, if you take this particular output unit neuron, its value is basically a.b, sorry

not a.b, a.w+b.x+e y, like I did, and f time, plus f times z. So, you are going to superimpose.

this kernel on top the input, multiply the corresponding elements and add them up to get a

particular outcome. And you do that by sliding this kernel across the input.

So, we will look at a slightly more detailed numerical examples in later slides. This gives you

an idea of how this works. Of course, we can also represent this in the form of a feed forward

neural network. We will see that also in the subsequent slides.

(Refer Slide Time: 09:50)

So, from fully connected to convolutional. So, I just want to show you this graphic, how we

can understand this. So, if you are thinking of grid like inputs, and this is a grid is a 5 5 grid×

of input, you can call it a small image. And we want to, let us say calculate. So, this is the

smaller box, here is your output. This is one of the hidden layers, if you can call it, the entire

matrix is one hidden layer.

And if you do the fully connected way, then what you would have is a weight arising from

every one of these pixels or grid points to the output. And of course, they are connected to the

output through weights w. So, every output unit here in this grid is connected to all the input,

all the elements in the input grid and through weights. So, there are as many weights as there

are elements in the grid.

Now, when they form, when you come to convolutional neural networks, what we try to do is

the sparse connection, we will see that because this is output, here, this output unit is

connected to only a subset of the input. So, in this case, is connected to a 3 3 set of input.×



So, you can see where the kernel comes from. So, last time, we saw 2 2 kernel, so which×

means that this is being operated upon by a 3 3 kernel to produce this output.×

So, how do we visualize this in the context of feed forward network configuration. So, let us

say this is the input layer right here, and this is the output layer. So, in the feed forward neural

network configuration, what you will have for every output is connected to all its inputs, all

units in the input layer. So, that will just show you for one more. So, that is typical

configuration, that you would see this.

And once again, and the red and blue indicate a unique set of weights. Of course, there are in

a sense, every red is different, slightly different. But this is one set of weights, which only

connects to this neuron to our output unit. So, in the case of a convolutional neural network,

you would represent this this way. So, for instance, this output is only connected to these

three, and maybe this output will be connected to these three inputs, and so on and so forth.

So, this is not, again, this is not for 2D, this is in 1D. But still you can, if you rasterize this

input and lay it out in a proper fashion, we can still illustrate it in this fashion. But just for the

sake of understanding, you understand now for this output you are only connected to these

three. Once again, I am assuming, I am assigning a unique set of weights to each one of these

outputs. And we will see that that is necessarily not the case.

And that is where this concept called parameter sharing comes in. So, this is fast connection,

because now see that this output is only produced by three inputs. So, if you write down the

weight metrics, so if you write down the weight matrix itself, it is a good exercise, write

down the weight matrix for this configuration. And you will see that there will be a lot of

zeros in it. That is the way to understand. That is why it is a sparse connection.

And of course, there is parameter sharing because these sets of black weights, blue weights

need not be different. So, we will see more about that in the later slide. So, that this is the

general understanding of how we analyze grid data, just that we do not connect all the inputs

to one output unit. When you are analyzing grid data, we are just looking at subsets of it. And

they are connected using bunch of weights, which we call referred to as filter kernels.
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So, I will talk more about this sparse connectivity, the sparse connectivity due to a small

convolutional kernel. We will look at what a convolution kernel is again in more detail, but

for this purpose we just see this, but this is just a bunch of weights that take a set of inputs to

the output unit.

So, from the point of view of the input, you see that even as I drawn in the previous slide, you

see this x3 in the input layer, so this is the input layer and this is the output layer. And they

have these units in the input and the output. So, if you see from the input layer point of view,

this particular input feature or unit is only connected to a very small subset of the output

units.

And that happens because of the way we do these connections as you saw on the previous

slide. And but if you look at the typical feed forward neural network we will see that every

unit in the input is connected to all the units in the output. That is typical for in the case of

feed forward configuration this is called, this is densely connected, as it is referred to here.

And these are sparsely connected.
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The other way to look at this from the output point of view. So, if you take one output neuron

here, it is only connected to a subset of the input. So, just through the weights, of course,

when I say connected, I mean the output is a linear combination of a subset of the inputs. In

this case, just three of them.

So, but if you consider, let us say, feed forward neural network fully connected, you will see

that they are connected, that all of the input is connected to each one of the outputs. So, s3 is

for instance, gets its inputs from all of these five, there are only five units in the input. So,

this we again saw a few slides ago some of these pictures.

So, this connectivity, like I said, if you write the weight matrix for this connection, for this

layer, for mapping X layer to the S layer, you will see that that weight matrix has a lot of

zeros in it. So, that is the understanding of how, that is how you understand a sparse

connectivity.
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And we will also see one more concept that we keep running into often is this receptive field.

So, since we are only connecting the output neuron or output unit to a very small subset of

the input, so if you, for instance, if you see let us consider this h3 for instance, h3 is connected

to x2, x3 and x4, so these three. So, this is the receptive field, this is the receptive field. Now,

for h3, this is the receptive field.

Now, if you consider a fully connected network, then for every output unit the entire x1 to x5
is the receptive field. But let us now go one more layer deep and we will do the same kind of

connections. You will see that for instance g3, g3 is receptive field if we call it that is just

again these three. So, now, but if you consider, if you look at h2, h3 and h4, see h2 actually

does look at x1 to x3, gets its inputs from x1 to x3 and h4 gets inputs from x3 to x5.

So, technically g3’s receptive field is this entire input, it looks at all of us. This is very useful

concept to know from the point of view of image analysis. So, this is 1D examples, might not

be so clear. But so, if all the way to understand this, that if you have a convolutional neural

network working on an input image, and as you go deeper into the network, every output unit

in any one of the layers, let us say, if you go to 5-10 layers, there is actually getting input

from a very large piece of the image, a section of the image. So, that is a good point to note.
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The parameter sharing is something I mentioned in passing once again to understand this. So,

the usual, if you look at the traditional feed forward neural network, we saw that if you take

s1, for instance, s1 gets his input from x1 to x5. So, basically you have a bunch of weights. So,

s1 = Wi
S1Xi And, if you look at s2 = Wi

S2Xi that also is based on some, instead of wi’s, IΣ Σ

will just maybe, if I use a subscript here wi
s1.

And s2 is also a linear combination s2 = Wi
S2Xi . Again, I have not shown the non-linearity.Σ

So, you would actually have a point wise non-linearity, some g, which I am not mentioning,

but just to understand where the inputs come from, so, every one of these output units is a

linear combination followed by non-linearity of its input units. And the linear combination is

effect by these weight vectors, once again, you can put them into a matrix form also, where

each of these weight vectors are unique, this wi s1’s and wi s2’s are a different set of weights.

Now, for the convolutional neural networks, they share the same parameters across all spatial

locations, which means, so for instance, if you take s2, let us say, then its inputs are from x1,

x2 and x3. So, s1= w1.x1 + w2.x2 + w3.x3. So, we just write this down here quickly s1, s2 is

w1.x1 + w2.x2 + w3.x3 Now, if you go to s3, we can actually write, just one second, say s3.

Now, s3 in this case can be written as, this we can use the same combination. s3 = w1.x2 +

w2.x3 + w3.x4. So, it is the same set of weights, you just translate along this vector to multiply

and produce this. Once again, I am ignoring the non-linearity, those things remain the same

when you go from a fully connected to convolutional network.



So, the processing is the same, the linear combination followed by non-linearity that process

remains the same from feed forward networks convolutional networks, the only thing that we

are doing is we saw earlier is that we are doing sparse connections in the sense not, we are

not taking all the inputs to produce one output, we are only doing a subsection of the inputs.

And then the weight vectors are shared across different subsets of inputs.

So, x1, x2, x3 is by multiplied by a set of weights followed by non-linearity to get s2. You can

use the same set of weights to multiply x2, x3, x4 for the non-linearity to produce s3, so on and

so forth. So, we can get, we can use these weights again and again over different input units.

So, which means that for imaging, or image analysis, this translates to sliding the weight

matrix filter kernel that we saw across the same weight matrix across the image to get an

output.

We will have a more detailed illustration later, but just for understanding. So, this gives you

another, also another angle. So, now, we have used one set of weights w1, w2, w3 to produce

this outputs s1, s2, s3, s4 and s5. Of course, we are ignoring the, let us assume that there are

some neurons here to the left of x1 and some neurons, which we will not consider them at this

point.

But we are just used one bunch of weights w1, w2, w3, to get s1, s2, s3, s4, and s5. Also, possible

to do another set of weights. So, if you saw, we can call them, we can use different subscripts.

So, let us say we will subscript this as some j. So, we can have j, here the j does not refer to a

layer or anything, it is just one set of weights, they0 set of weights.

So, we can have other sets of weights, three weights, which can give rise to another set of

activations. So, this can be, that can be another set of activation. So, we can have as many

sets of activations or output units by choosing a different set of weights of 3, so we can just

keep doing this. So, one thing that you have to do in a convolutional neural network is to

determine how many such sets of weights, or my filter kernels that you want to define, but

that is a hyper parameter, so called for a convolutional neural network.

So, once again not withstanding parameter sharing I can have multiple such sets of weights.

So, you can say okay, how does this help, you can see that to produce this, so if you think

about this, if you are using fully connected neural network, and this is 5 5, you need 25×

weights to produce one set of outputs. But in this case, we just needed three weights to get an

entire new output layer, hidden layer with 5 hidden units.



And then in fact, if you keep, if you do 5, 6 sets of such weights, you can get multiple sets of

hidden units. So, that is the idea behind parameter sharing. And that is also how you define

multiple layers in one layer like you can. So, every layer in a convolutional neural network

will have multiple sets of such activations. And that is what you would call a layer in a

convolutional neural network.

(Refer Slide Time: 25:17)

So, just to summarize intermediate summary in the for a feed forward neural network, you

have full connections, where every output element is connected to all the input elements. For

a CNN only, a subset of inputs is connected to an output. So, that is why you get sparse

connections. Another way of looking at it is that your weight matrix there will be lots of 0’s.

The same set of weights connect a multiple output to different inputs.

So, you can just basically think of it as sliding that weight vector across the input vector to

get different outputs. These weights are typically visualized as filter kernels, if you are

looking at 2D or multiple dimensional input. So, illustration, so far have all been on a vector

of inputs. But if you can think of a 2D input, then these weights can also be looked at like a

small matrix or a filter kernel, that you slide over the image to get a particular output,

activation map or hidden units.

One aspect of CNN, which we will look at later is that CNN’s enable the so-called

hierarchical learning wherein you learn features, which when composed give rise to a

different set of higher order features. We will look at that later. But this is just something that



comes from the architecture itself, that is basically your, because your outputs are

compositions of functions that this gives rise to the hierarchical learning.

(Refer Slide Time: 26:55)

So, if you want to understand what these filter panels do, again, we will have much more

detailed example next. But just in the context of an actual input, let us say our input is this

dog image, this is our input vector. And this is the first layer we are defining this weight.

Once again, you would randomly initialize your weights just like you do for linear regression,

as well as for the feed forward neural network.

And in this case, we just fixed the weights to be (1,-1). And if you actually superimpose the

weights (1,-1) multiply with the underlying pixel values, add them, add the products, so, you

will get one output there, if you do that, what this does is to highlight the edges of the image,

you get this edge map. Now, this is your output, this is one output layer. Now, what I said was

now you can do multiple sets of such filters.

So, you can have multiple such filter kernels and each one of them will produce a similar

output. You stack them all up to get this output layer in a convolutional neural network. The

other reason why this example is illuminating is because you see that these filter kernel in this

case, you can actually learn this, you can actually learn this edge detector. So, this (1,-1) turns

out to be edge detector.

So, similarly, when you train a neural network, especially the earlier layers, you will get these

primitive image processing operations done automatically, edge detectors, kernel detectors,

bob detectors, etcetera. The compositions of these in the further layers will end up detecting



entire, in this case ears, eyes, nose, etcetera. So, that is why it is also referred to as

hierarchical learning.

(Refer Slide Time: 28:44)

So, we will just illustrate convolution. So, we are going to look at a 2D input, a very small

picture of size 5 5, even the larger picture, let us say 256 256, 224 224 is the same× × ×

operation. Our filter weight, in this case, I will say I will call this weight vector, but here, it is

actually a weight matrix. I should not call this weight matrix, but it is a small filter, or shape

filter kernel.

So, what it does is acts on the input and gives you a particular output. So, this operation,

which I am going to describe is referred to as a convolution, but not to be confused with the

convolution which is in signal processing literature there. The process is slightly different.

So, let us not worry about there, how it is done there. But rather in this context, let us see

what convolution means as you go step by step.
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So, what you do is you will superimpose, you will superimpose this kernel on top of the

image. And zoom in, maybe it helps you, yes. You will superimpose this kernel on this

image. And you would multiply corresponding elements. So, it is 1 1, just write this down, it×

is 1 1+0 1+2 0. That is the first row. Again, second row computation, so on and so forth.× × ×

Third row, plus 7 1+0 0+1 2, this is the third row of computation,, that will give you 13.× × ×

So, this is the computation, this is what is the convolution that way to understand convolution

that as it happens in a CNN. So, this is your filter kernel or these sets of weights in a feed

forward neural network these will be called weights. Here, you just call them as filter kernel.

So, you would do this operation by sliding this filter kernel over the input. In this case our

input is small, it is 5 5. But you typically get much larger input through 256 256 or× ×

128 128. And you can resize them and so if you find that it takes too much memory. So, for×

this particular input, you are superimposing the kernel on top of the image starting from the

top left corner and multiplying the corresponding underlying elements adding them to get one

output here.

Once again, these are just the weights that you estimate in a feed forward neural network.

And we can define multiple such kernel. When I say define you initialize multiple such

kernels, you realize that these are what are learned because the weights are learned in while

training a neural network. Similarly, for a convolutional neural network, these filter kernels

are learned. So, you can have multiple such weights, matrices or weight or filter kernel which

operate on a convolution to produce multiple such output feature maps as they are called.
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Similarly, we will walk through this slowly, so you can move this once again, the next. So,

what you have done here is translated this filter kernel 1 pixel to the right, did the same

operation and got this value.

(Refer Slide Time: 32:21)

Similarly, you can do this for all positions. You can move it to the right, for rightmost now we

are at the rightmost. Now, here is something that to pay attention to. So, here we are not done

anything special to this image. So, it is not uncommon to do this zero padding. So, what you

would do is you would add a bunch of zeros to the boundary of the image or some other

value which is meaningful. So, that absolutely you can push the kernel further.



So, typically, the valid convolutions as they are called, you would start from the top left. And

you always have the filter kernel completely inside the image. So, if top left, as soon as you

hit the point beyond which you cannot slide the filter kernel, you stop, and then you come to

the next row. So, but if you do want to keep going on, then you would have to zero pad

appropriately so that you can move the filter kernel as far as you want to.

(Refer Slide Time: 33:26)

Similarly, here, if you look, you have now after go hitting this rightmost pixel, you are now

moved one step down, put one step down, one pixel down, and then you continue doing the

same operation.



(Refer Slide Time: 33:52)

So, you can keep doing this until we get your final output. One thing you have to notice is

that this output, you will notice that the number of, so you start off with 5 5. Now, your×

output has only 3 3 elements. So, this convolution automatically because you did not pad×

with zeros, the automatically reduces the number. So, you start off with 5 5, you will lose in×

this case, I know you lost two elements when you do the convolution.

So, this basically is where if you start with 5 5, of course, you are looking at always square×

inputs and square filter kernels. So, you would basically, just basically 5-3+1, that is the size

of your output. So, the dimensions of your image minus the dimensions of your filter kernel

plus 1 that will be the size of the output if you do not 0 pad.

So, if you want to preserve the size, you would have to had a zero to the edges so that and as

many zeros as it is required to make sure that the input and output are of the same size. That

is a trick that people do in order to preserve the so-called resolution of the output. Now, this

output here you would often refer to as a feature map or an activation map, either are fine.

Similarly, individual elements here, units here, you would call them neurons or activations,

because it is an activation or hidden units which we all of these are acceptable terms.

But typically, you would say this is a feature map, you would call this an input feature map,

this as an output feature map. These are all terms which are used interchangeably in the

convolutional neural network jargon, but essentially, that is it is just basically our output

layer. In a feed forward neural network, these should be laid out like a vector.



But here, they are still retain the grid structure of the input. The idea here is to retain the grid

structure of the input, because grid structure like we discussed earlier had has some meaning.

Pixels nearby, possibly belong to the same object, if you are talking about an image, and

probably share the same properties. So, that spatial location information has to be maintained.

And one way to maintain that is to put them on a grid.

So, the intermediate layers or in the form of grids also. And you can have, you can define as

many filter kernels as you want. And correspondingly, as many output maps will be

generated.

(Refer Slide Time: 36:54)

So, if one way of, another way of doing this to reduce computations in successive layers,

because you eventually want one output if you are doing regression, or let us say a vector of 3

or 4 outputs depending on if you have usually the k outputs if you are doing classification.

But if you look at the way we have been computing, it seemed like it will take forever to get

to that point, because you have fairly large images 256 256.×

And even if you, and typically you would 3 3 or 5 5 kernels, because larger kernel means× ×

that you will need more computations, then at that rate at which you are doing like, you are

losing about two, size of two on either dimension, as you do convolutions without zero

padding. It will take a lot of layers of computations to get to the output, and you would, and

without increasing number of computations, one way to do that is to do a so-called strided

convolution.



So, the previous one, we were sliding the filter kernel one pixel at a time, here, you would

stride them two pixels at a time. So, you would skip a pixel, you skip a pixel, and that is a

stride of one. And of course, you can skip as many pixels as you want. And that will once

again give a corresponding output. So, let us do this that way.

(Refer Slide Time: 38:19)

You will see that, in this case, the outputs, you can do the same, if you stride one, you have

missed out on instead of 3 3, you will end up getting a 2 2 output, because you are left× ×

alignment was with 1, let me show you zoomed in. So, you skipped this pixel, you skipped

positioning the top left corner of your filter kernel at this pixel, but rather skip this and move

here. So, which means that in your output feature map, this particular pixel is skipped.



Similarly, when you go move down, you will skip this row and then superimposed from here,

and then we will move to the right, you will again once again skip one column. So, if you do

that, you are finally you are output. And keep that again, I urge you to actually do this by

hand you can compute and verify yourself is that you will get this output.

So, you will get 2 2 output. So, your stride and it also reduces the size of your output feature×

map. So, that is one way to of course, quickly, subsample your inputs so that your

computations are not huge. So, that the weight and this was one way of doing that. So, this is

the first operation in a convolutional neural network, the convolutional operation that has a

lot of these variations.

(Refer Slide Time: 39:47)

There are different types of convolutions. That is one we have, I have just showed you those.

And this is again, taken from this particular publication. It is a very, actually very informative

publication, I urge you to all to go through this. So, there are three types that we looked at in

summary, we looked at the so-called valid convolutions, which is when you would

superimpose a filter kernel on top of the feature map or the input feature map, slide it one

pixel across a time in the horizontal and the vertical directions, till you no longer can strike

because you will go out of the picture.

And every time you would multiply the underlying elements, take a summation, do the

non-linearity, get an output. So, in this case, the light blue, use a different color, light blue is

the input feature map superimposed filter kernel is shown here, it is a 3 3. And in every×



location, you would, again form the output, the green is the output feature map. So, for a 3 3×

kernel striding over a 4 4 input using unit strides.×

So, if you read this paper, he has a very nice nomenclature developed, I am not going to

explain this here. So, I would like for you to go read it, it is not too hard to understand.

Similarly, if you have padding, if you do a padding of one is what is shown here, pad with

one set, we can pad with zeros, or just replicate the broader values. And if you would stride

similarly, as you did, then the output feature map, you see that output, the output size is

maintained.

So, you had a 5 5, input, now if you pad one which means that you pad one on either side, so×

that you should do padding and that means that your output size is maintained. But if you do

not do zero padding, but then if you do a stride 2 2 stride then your output ends up being×

2 2. So, 2 2, not 2 2, stride of 2, which means that you actually skipped a pixel.× × ×

So, that is what if you see but from this image to that image, so you have initially

superimposed it here. I did you do the usual computation to get this rain feature map, but then

you kind of skipped this column. You can do that once again, for this particular output feature

map, you keep this row. So, this way you can actually subsample your feature map, there is

one way of doing this, strided convolutions.

(Refer Slide Time: 42:37)





So, we look at now two different sets of convolutions, types of convolutions once again. So,

these are the dilated depth wise and depth by separable convolutions, some of these images

are taken from this publication MobileNets. Just zoom in just to see. Now, if you see this,

first one is the dilated convolution. Wherein so you are convolving a 3 3 filter kernel over a×

7 7 input with a dilation factor of 2, which means that you are taking the filter kernel and×

inserting 0 rows and 0 columns.

So, that way, if you look at it for the same 3 3 filter, we get a larger receptive field. That is×

one of the other concepts that we looked at initially, and I illustrated it with a 2D, sorry with a

1D example. So, in this case, it is a 2D example, you can see that if you use a 3 3 kernel,×

you have a 3 3 neighborhood that each output is looking at a 3 3 neighborhood in the× ×

image.

On the other hand, when you do these dilated convolutions, then also you are inserting the

zeros in here. So, that your filter kernel actually operates for a slightly larger region. Now

here, what is the assumption, the assumption here is that since these are very small 3 3,×

5 5 regions, you would expect that in the image, these regions are fairly uniform.×

So, when you introduce these zeros in the filter kernel, you are actually not missing out much

instead there is no pixel to pixel strong fluctuations in the image in the input feature map. So,

when you do that, and you get for the same thing as three, you get a slightly larger receptive

field.

And again, here all the other routes apply you can stride more or you can stride less and you

can zero pad, all of these are possible, but the advantage is over several layers if the third or

the fourth layer your output neurons or output activation maps are looking at a much larger

field in the input feature maps, several layers down, and this is one trick that has been used

very successfully in many cases.

The other types of convolution we are going to look at are the depthwise convolutions and the

depthwise separable convolutions. These images are again, once again dimension are taken

from this MobileNets paper. So, let me just zoom in a bit just for you to see clearly the paper

as well as the pictures that were taken from them. So, if you look at a standard convolution

filter, DK, let me just red this DK, DK DK M.× ×

So, where does this M come from? And there are N such filters. So, each of them is a filter.

Now, you might be wondering where that comes from. So, like I mentioned earlier for every



layer, you can define as many filters as you want, filter kernels as you want. And each of

these filter kernels will give rise to an output feature map, or output layer or output feature

map, output activation map.

Now, you can stack them all up. So, if you define M such filter kernels, then your output will

have M such feature map. So, in general, if you say for convolutional neural network, your

input is actually a cube, basically, you can have as many feature maps in your input set. And

each of them has a certain size.

So, in this, so, if there are M feature maps in your input, and if you actually define your filter

kernel to be DK, DK DK, which means that it is actual sizes DK DK M. So, the filter itself× × ×

actually extends across the length, across the channel dimension. So, if you stack up the

feature maps, the dimensions along which we stack them up is called the channel dimension.

So, there is, though as the number of feature maps increase, that means that you have more

and more channels. So, to give you an example, RGB image has three channels. So, on an

input RGB image, so, for instance, RGB are three channels which means when you say you

have 3 3 filters, you actually mean that you have a 3 3 3 filter for an RGB image.× × ×

So, let us say you define M such filters, then you will have M feature maps on your output.

And which means that in subsequent layer, when you are actually operating on those feature

maps, your filter would be let us say, if you DK is 3, then your actual filter size is 3 3 M, so× ×

this is your filter size.

That is what happens in a standard convolutional neural network is that your filter has a depth

which is equal to the number of channels in your input. So, for instance, like I said RGB,

RGB image as input your filter actually has a channel dimension of 3. So, when you say 3 3×

filter, which means 2 3 3 filter. Similarly, here in this case M channels your filter has size× ×

3 3 M.× ×

And you would add, so that means the number of computations actually increase. If you think

about it. Let us say you define, you have defined 128 filters in your previous layer, then you

have a current layer as input you have 128 feature maps, so you have your filter size is

actually 3 3 128. So, if you do 256 such filters that is a lot of computation.× ×

So, to decrease the computation, to make computations more efficient, of course, this paper

shows that why they are efficient, you would actually do this so called depthwise



convolutions because you operate on each one of these activation maps like shown here in the

pictures by using just a simple 3 3. So, you will define M, 3 3 filters.× ×

And you just operate them across. So, for each one channel, each one of the input channels,

you will have one filter. And your output, so if you have M filters, you will have M channels

as output, that is what is shown here. So, this is one form of reducing your computational

burden. So, you will have M outputs. So, and if you want to combine information across

channels, then you would do this 1 1 filters N of them.×

So, because you want to get the same dimension. So, basically the standard convolution filter,

if you want to get N feature maps as output, you will define N filter kernels each of size DK×

DK M, so that your output has N feature maps. So, then in this particular formulation, where×

you do depthwise convolution filters, what you would do is, since you know that there are M

feature maps in your input.

So, you will define M filter kernels, but these are your standard size 3 3, let us say DK is 3,×

you get only 3 3. And then when you operate on them, each of these M feature maps you×

will get M output feature maps corresponding to each one of them. And of course, you will

stack them all up and you do this so-called 1 1 convolution.×

So, 1 1 convolution is basically the same operations as we saw with the 3 3, except that you× ×

just have a vector, that is all. So, because it is of size 1 M. So, you will operate that across×

the image, across the channels. But of course, you can define N such 1 1 filters and you get×

n outputs.

So, what we are trying to do is we are trying to operate mix the information or take nonlinear

combinations of the pixel, voxel values in plane using these regular convolutions. And then

across channels you want to take nonlinear combination using this 1 1 convolutions. So, do×

not get flustered by this 1 1 convolution because the same as 3 3, except that your filter× ×

size is 1, that is it, you have a vector. So, if you have M channels to work with then your filter

size is 1 1 M. The computations remained the same.× ×


