
Medical Image Analysis
Professor. Ganapathy Krishnamurthi
Department of Engineering Design

Indian Institute of Technology, Madras
Lecture 42

Example with XOR

(Refer Slide Time: 00:13)

So, let us see if we can solve the XOR function using a one-layer neural network. So, our

neural network, I am going to write it down as f(x) = f(2)(f(1)(x)), where this x is the inputs, x1,

x2, two Boolean variables, x1 and x2. And so, for each layer, so what is f1(x), we are going to

write f1(x) = W1
T.X + C, this is the input layer.

And f2(x), this is f1, I am sorry, let me just redo this, f1, and f2(x) = W2
T.h + b. So, this is our

neural network. So, we have first, first layer weights w1, second layer weights w2 which maps

to the output. So, we have, for a pair of inputs, we have exactly one output. So, y is the output

of the XOR gate given these two binary inputs. So, in between, we are going to also have the

non-linearity because, let me just go to another page, so we are going to rewrite this.

(Refer Slide Time: 02:01)

So, we have f1(x) = W1
T.X + C = z, and then we are going to this is your z and then your h is

g(z) = h and then your output = W2
T.h + b. This is the general form, that we will be using𝑦

^

for the truth table for XOR, exclusive OR function.

Now, if we do the computation this way, will it help? So, once again, we will just see, fix the

weights and do this. So, for the problem that we are going to do with our neural network will

look like the following. So, we have x1, let me use different color actually, x1, we have x2.

And we will have two hidden units.

But unlike what I showed you, when we are using the Boolean operations, and not surprising

great, so here we have two hidden units. From there we have output, which is your y. This is

the flow and the other way of looking at it is the following. Let us go to slide.

(Refer Slide Time: 03:52)

So, here we have your x as input. So, then we have your matrix w1 to get your hidden vector

h from which you have other matrix w2 to get you to your output y, of course, implicit in that

is that there is a non-linearity sitting inside. So, the non-linearity is implicit. So, this is

another way of writing the same neural network. So, if we use the non-linearity as ReLU, we

can do that. And if you fix the weights maybe we see what kind of results we get.

So, I leave it to you to do the computations. So, let us see, let us write our neural network

down in terms of function. So, it is f(x ; w1,c,w2,b) now the parameters are w1, c, w2 and b.

And we are using non-linearity which is the ReLU, which is max(0,x) we know that. So, what

we have is f(x ; w1,c,w2,b) = W2
T.max{ 0 , W1

T.X + C }.

This is the hidden unit, this is h, after you apply the non-linearity, this is a non-linearity, this

is the ReLU. So, this max(0 , x) is basically the ReLU plus the biased for the output and b.

So, this is what, this is our neural network basically. So, we can actually write down the

solution.

(Refer Slide Time: 06:08)

So, the computations I leave it to you that will be the questions in the homework. So,

apparently, we can fix W (1, 1, 1, 1) and c (0 , -1) and w (1,-2) and b 0. So, you→ → → →

can, like I said you can fix the bias. So, in this case, for the same layer you have set of biases

and we usually use one bias for every layer. So, now, you can walk through each one of the

outputs.

So, it turns out that instead of carrying (xw)T.x , you can just do the xw also. So, what is X?

So, if you write that down, X is, you have the input, x1,x2 (0 0 0 1 1 0 1 1), this is your X.→

So, you can now do and either, this is again how we write your inputs, so, you can either do

wTx or just do xw, add the bias vector and then get the results. So, let me just write to the

results.

(Refer Slide Time: 07:25)

So, then if you do that XW for the first layer, you will get XW (0 -1 1 0 1 0 2 1), again you→

should do the computations. So, to finish computing the value of h, we have to now on this

we apply ReLU on this. So, if you apply ReLU pointwise, which is what we discussed. So,

you will get (0 0 1 0 1 0 2 1). Then, we finish by multiplying with a weight vector w2. So, we

can, again I leave it to you to apply w2, then you can get the result as (0 1 1 0).

So, with this arbitrary choice of weights, you are able to get this. So, you actually do the

matrix multiplication, see whether you get the w's in correct order, whether we can do wTx or

xw what should be the dimensions, etc. By actually working out this by hand. So, again, this

exactly what happens here is, if you look at the intermediate outputs, you will be able to see

that the h, this is your h.

After you apply the ReLU, this is your h space. So, you can see that two (0 1) and (1 0) again

have been mapped into one value. That is what has happened. And so, then it is easier to see,

which is what I showed you when we use the Boolean operations when we split, we express

the XOR gate as a function of two other gates to have an intermediate layer of Boolean

calculations. And this is pretty much what happened there too.

So, in your input these two rows corresponding to (0 1) and (1 0). And if you do, once you do

the xw that it got mapped into the same. After we added the bisector they got mapped to the

same point once again. So, that is what helps the calculation. So, when we are going to do

things like what if you do not have the non-linearity. And for instance, what if you did not do

ReLu what happens, so on so forth, all that all those calculations you can do.

So, this just to walk you through the exact sequence of computations, you can also do similar

computations for, you can make up a dummy data set where you can work with hand and

actually do the forward problem. So, so far what we have only looked at this input multiply

by weight matrix, apply non-linearity, get an output, so on and so forth till you get to the

output and we looked at different kinds of output.

(Refer Slide Time: 10:32)

We looked at, so for instance, we looked output, real output , we had a binary classification𝑦
^

where we interpreted this as a Bernoulli parameter. And then, we have 1 of k classification

and this came up to be a softmax. We will do the softmax output. So, now we have these

outputs. We still have to create this loss function or cost function. We looked at mean squared

error when we did the linear regression problem, but for these classification problems of the

loss function will be slightly different.

So, even in the case of neural network, if you are going to do regression problems, and in this

case, you can still do ()2 as your loss. That is going to be okay. On the other hand, if𝑦 − 𝑦
^

you are going to be doing either binary classification or 1 of k classification, you will end up

doing this log loss, negative log loss. And this we can sometimes, if you have multiple

classes, you can call it binary or even for two class problems you sometimes it is referred to

as also can call it binary cross entropy, some version of that is what you use.

So, we will look at the different loss functions in the next class and how they behave, and

generally talk about backpropagation algorithm, which helps you update the parameters of

the network. So, remember, when we looked at linear regression, we did gradient descent,

where we managed to update the parameters, the w's in the linear regression model using

gradient descent.

So, similarly, for neural networks, we should be able to do it, but then slightly more

complicated, because of the different layers of computation. And in that case, how do we

actually calculate the delta dynamics. So, we have to update the weights in every iteration.

And how do we do that, what enables us to do that is the calculating the delta w's, the

back-propagation algorithm helps us do that.

And the gradient of descent is the basically the learning algorithm. So, it we can calculate the

gradient of the loss function, but how we propagate it to all the weights that change in the

weights, the back-propagation algorithm. So, we will get a brief look at these issues in the

next week of classes, and also following that will immediately run into a convolutional neural

networks for image analysis and 3d image analysis and so on so forth. Thank you.

