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Hello, and welcome back. In this week, we are going to look at feed forward neural networks.

So, last week, we looked at linear regression. And we will continue with the discussions. And

to see the need for the motivation for neural networks, and then go on to describe the

operations in the feed forward neural network.
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So, we saw that linear regression, we modeled the output y, we denote the output of the

model as y hat. And we said , where W is the vector of weights and, or the𝑦
^

= 𝑤𝑇𝑥 = 𝑓(𝑥)

parameters of the model, and the X is the input. So, X is actually again a vector, so X has its

own components small, so X would be (X=x1, x2 …….. xn ) features. So, each one of them,

these are called features, it has n features.

And we had a bunch of these training vectors along with their output. So, for each of these

X's, capital X's there is a corresponding y, which was also given. And we use that to estimate

the parameters W, unknown parameters W, through gradient descent. This is what we saw last

week. But you will see that this function, this linear model, so basically, this f(x), as we call

it, is inadequate for a lot of the real-world data.

So, we are going to look at one example, which is basically the XOR gate or the exclusive

OR gate. So, very simple toy example, and we will see a lot of things learn from a lot of

things from there. So, why would I say that this function is not good for a lot of real-world

data, because a lot of real-world data has a lot more features.

And sometimes the relationship between, the correlation between the features, and the

outcome y or the output y is not known a lot of times. And also, the dimensionality of the

data is an issue. So, for instance, let us say we have a picture, we are trying to label that

picture as belonging to, let us say, a particular class. So, for instance, if you have a chest

X-ray, and you want to say if it is a normal or abnormal chest X-ray, so chest X-ray, a

digitized chest X-ray would be of the size 1000 1000.×



So, which gives rise to 106 features, like, so this is (x1, x2, xn up to x106) So, with something

like that having a linear model might not be a very suitable thing. And we will also see that

maybe the outcomes are not exactly linear. So, better model would be a nonlinear

combination of the input vector, so something like this, but we still have, this is still linear

because it is still , but instead of X, we have . This is some nonlinear combination of𝑤𝑇 ϕ(𝑥)

X's.

So, for instance, if you have x1, x2, so you will also have x1, x2, , and you know𝑥12 𝑥22

other combination, , so on and so forth. You can keep going like this. So, then, of𝑥12. 𝑥2

course, the problem is how do we estimate , so that we can do something like what I didϕ(𝑥)

here is to write down a lot of possible functions, and then use that to fit the model.

And another version is if you study the problem, so for instance, we are looking, we are

talking about chest X-ray. And we know now how to make . We now look at the pictureϕ(𝑥)

and identify some aspects or some properties of that image, let us say chest X-ray, it looks

very bright. We say okay, that is a feature. So, we extract these features, quote, unquote, these

“hand engineered features”, that would be the .ϕ(𝑥)

Or the size of the anomaly. So, that is the, that is what we will be looking at as far as chest

X-rays are concerned. So, we can either write this down like I did here, or we can handcraft

by observing your data and figuring out some functions, which will serve us features and has

a good linear relationship to the output or we can learn . So, this is where neuralϕ(𝑥)

networks come in, because they help you learn. So, neural networks here.

You can learn this by modeling f(x) using a certain structure. So, basically, it is a composition

of functions. We will see that later. So, by modeling this in a different way we can actually

learn these features and this is where real networks make a big difference in terms of, if you

compare it with other machine learning techniques.
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So, let us take a look at this XOR model, that learning XOR problem. So, XOR is an

exclusive OR, it is a logic gate. So, it usually has, it has two inputs, x1 and x2 in a

corresponding output. So, in the case of XOR, these are the only there are only four

combinations possible because x1 and x2 are either 0 and 1. So, this is the real toy example,

because there is no such thing as test data, what we are trying to do is just try to fit the

training data. So, now if you look at this (0,0) will give output 0.

(0,1) And (1,0) will outputs 1, and (1,1) will give you output 0, which is what is plotted here.

So, this horizontal axis is x1, and the vertical axis is x2. So, now we have these four points

plotted. So, now what are we trying to here? So, let us treat this like a classification problem.

So, the only way we could classify this is to find this curve, I am going to draw one hand



drawn curve. Let us say if you find this curve, let us say this is a curve, this region

encompassed by the equation of this curve.

If you find it, then we can say everything inside this region is 1, everything outside is 0. So, I

am going to wipe this out just for make this much more clear. On the other hand, if you see,

we cannot draw any line, there is no line possible or plain possible which can divide this into

two regions, one side is all ones, the other side is all zeros. It is not possible to draw a state.

In other words, if you are doing a model then this simply will not𝑦
^

= 𝑤
0

+ 𝑤
1
𝑥

1
+ 𝑤

2
𝑥

2

work. The reasons are here right there.

So, if you consider the x1 = 0, then the output y is increases as x2 increases, when x1 = 1, the

output y decreases as x2 increases. So, which is not possible to be that kind of behavior

cannot be captured with this, just this parameter w2 by tweaking one parameter. So, that

becomes a difficult problem to solve. So, the only way we can do that is to do that curve I

showed you. So, this kind of problem is not linearly separable, it is not linearly separable. So,

basically, we cannot do this model, and hope to fit this data. So, then what kind of things will

work? Let us look at that further.

(Refer Slide Time: 07:47)

So, if we look at the output of XOR, then we can actually rewrite it in this form,

, where we are actually treating it like numbers, like this is an algebraic𝑥
1

+ 𝑥
2

− 2𝑥
1
𝑥

2

formula. You can plug in (0,1) and see that it works. We also write it in this form .|𝑥
1

− 𝑥
2
|

You can see that both of these formulations are nonlinear in x in the features or nonlinear



features. And if we use this kind of function, then we can actually fit by using a linear model,

when I say linear model I am talking something like .𝑤𝑇 ϕ(𝑥)
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So, so, for instance, how do we do that? Let us let us look at this. So, what I mean is

, this model will fit y, because this is will fit y. So, the𝑦
^

= 𝑤
0

+ 𝑤
1
𝑥
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+ 𝑤

2
𝑥
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truth table will be able to guarantee for. We can estimate w’s, w0, w1, w2, w3 for some value.

We already know the value, w1 is this is 0, w1 is 1, w2 is 1, w3 is -2. So, this is what we are

seeing. So, using this model we can fit.

So, what we have, this is the case where we have where just turns out to𝑦
^

= 𝑤
𝑇
 ϕ(𝑥) ϕ(𝑥)

be this collection [x1, x2 and x1x2]. Now, once again we go back to the image example where

we have chest X-rays. So, let us just do a toy chest X-ray. Now, each of these individual

pixels in a chest X-ray or the xi’s, small xi’s. Now, in 1000 1000 image, digitized image you×

have 106 such pixels.

So, we have 106 pixels to begin with. And then not be able to construct imagine how many

we have the combinations we can do, how many xi xj and then we can also do xi xj xk, so on

and so forth. So, this is an explosion of features, if you do it this way, the explosion of

features. And that becomes very hard to manage both in terms of memory and computation.

So, in some cases where we know such expressions are possible, and we know that it is easy

to write down by hand, or maybe it is not, maybe it is only hundreds of features rather than

1000’s of features, or millions of features, this is probably a very good model to use. But it

will be nice if there is another way of doing this. The other way of doing this is to have more

layers of computations. And let us see what we mean by that just using this example.
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So, we will now look at what we mean by different layers of computations. So, you can

implement an XOR gate as in this form as (x1+x2) OR gate, (x1.x2) AND gate, and→ →

NOT gate you can think of. So, we are now computing two intermediate features,(𝑥1. 𝑥2‾ ) →

I am calling them h1 and h2, call this h1 and this is h2.

And when we compute these two intermediate features, we will see now upon computation of

these intermediate features, the problem becomes linearly separable. So, I will just draw that

in there and then so that you can see. And then we will also look at these computations in a

different way, like in the form of a network of computations with different layers of

computation, and then we will see why we call it intermediate computations, etc.

So, if we plot this image, we plot this, not the image I mean the graph of, in this case, this is

h1, this is h2. So, if you look these two points (0,1) and (1,0) for x1 and x2 respectively, has

now collapsed to (1,1). So, if h1 is 1 and h2 is 1, the output is 1. This is all I am going to

indicate with the solid dot. And if you look at the other options you have, for (0,0) you get 0.

I am going to put (0,0) here, I could have put it at the corner, but let us just put (0,0) here.

And if I have let us say, this is for h1 and h2, so (0,1) is also 0. So, I think I made a mistake,

sorry. Let me just wipe this out. I meant, so we are looking at h1 and h2. So, what I have

plotted here is (1,1) is 1, that is fine. And if you look at (0,1), it is also 0, so (0 1), 0 is one

type of output. And if you look at (1,0) that is also 0. So, now it is linearly separable, because

you can always draw this line.



Of course, there is a whole bunch of lines you can draw here. So, that is another issue there,

but we can have a line which will split this into two regions depending on the value of h1 and

h2 which will give you the correct answer. So, if your h1 is 1 and h2 is 1 it will fall

automatically in this line this side. If for all other values it will be there, thought that it is able

to do that, because by doing this intermediate computation, I have collapsed both (0,1) and

(1, 0) into the same numbers, (1,1) and (1,1).

So, these two got collapse to one point. So, then I cannot draw this line, let us split that. Of

course, now there is the problem is because you can draw like a bunch of lines which will do

that, but now the problem is linearly separable. Now, what do we mean by intermediate

computations? What do you mean by feed forward layers of computations? That is what we

will look at in the next.

(Refer Slide Time: 14:20)

So, now we will look at what I meant by an intermediate layer of calculations. So, we saw

that in the previous slide, where if we split it into a set of two different Boolean operations,

then we got the problem to become linearly separable in terms of the new variables we

calculated. We calculated these new variables h1, Boolean variables h1 and h2. So, I am just

going to illustrate that in terms of graphs so that now we can make then, we can go on to

make connections about how neural networks work.

Remember, all the operations I am showing here are actually Boolean operations not

algebraic operations. So, Boolean operations. So, let us look at x1 is an input, x2 is an input

and we connect these to another computation. We call that the h1 which is (x1+x2). Then we



do another connection to other computational unit where you compute h2 which is .(𝑥1. 𝑥2)‾

Of course, you can always take these two output from here and connect it to one more box

where we do h1 and h2 and that output is your .𝑦
^

So, this intermediate layer of computation is what enabled our problem to become linearly

separable, it became linearly separable in h1 and h2, these new features we call them new

computed features. So, the two ways we looked at one is to incorporate this non-linearity or

nonlinear combinations of your input features. So, we got the x1 x2, (x1.x2) or we did this

computation in two stages.

So, when you did that it actually made the problem a little bit more easier to solve. So,

because when you did this h1 and h2 we saw that the problem becomes linearly separable in h1
and h2. If we start with x1 and x2 compute h1 and h2, in h1 h2 space the problem was linearly

separable, here it is linearly separable.

(Refer Slide Time: 17:07)

So, now we will get to the point where we are actually talking about feed forward neural

networks. So, we looked at in the previous example, where I showed the XOR gate if we

have one additional layer of Boolean operations of computations then we can actually make

the problem linearly separable in terms of the outputs of the intermediate computations. So,

that is exactly what a feed forward neural network does.

That it does layers of computations and we will see what those layers mean. So, feed forward

neural networks or multi-layer perceptrons they are called MLP’s I think you must have come



across this acronym somewhere. They perform a sequence of computations on inputs and

eventually map to an output. Typically, we will only look at scalar outputs. So, it is, of

course, it is because it is a sequence of computations and there is no feedback it is called a

feed forward network.

And this is accomplished using the composition of different functions. And each function

defines a layer of computations. Of course, we will typically write it in this form, so, you will

have something like your input is (f(1)(x)) and then this will be input, the output of this (f(1)(x))

will be given to another function f(2). And the output of this f(2) can be given to another

function f(3), so on and so forth f(3)[f(2)(f(1)(x))]. So, this is actually a composition of functions.

So, this will be the input layer is called, the first layer will be called the input layer, the

second layer or the intermediate layers are called the hidden layer, so input, hidden. And the

outermost function you see there is your output layer. So, this is a composition that functions

that we apply, and each function is a layer. So, we will see how it is represented soon. But

this is typically how you interpret a neural network.

But of course, the computations you will do will be in sequence and it will be done on

discrete inputs. So, all computations are done on discrete inputs, even though I am saying x

here is teams, they are continuous variable, x is a discrete input, it is a vector of elements

typically. So, the inputs are always discrete, and the outputs of these functions also lead to

discrete variables, we will see how they come about shortly.
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So, to summarize, the innermost function is the input layer. The outermost is the output layer

which produces your output, which is whatever this might be, we will see what are the𝑦
^

different types of outputs possible. The intermediate layers are also called the hidden layers

or activations, we will see why they are called activations. So, each of these layers or we can

take them as a function they are parametrized by weights w.

And sometimes we use w’s or either was fine. And they are usually estimated like we didθ

for a linear regression they are actually also estimated using training data. The reason why we

called the neural networks is because they are inspired by neuroscience wherein the sequence

of computations where we go from one layer to the other starting from an input layer to an

output layer is how the neurons in the brain are connected.

So, it is inspired by that but there are no means a very good model of how the neurons work.

Also remember the so-called hidden layer even though I say it is a function, they are actually

vectors. So, we will see how that works out. And why they are vectors using a few examples.

(Refer Slide Time: 20:51)

So, for a one hidden layer feed forward network. The hidden layer is computed using the

function we will see what that function is. And the values of the hidden layer which is

basically another vector is used as input to the output layer, which eventually outputs only a

linear function of the h, of the hidden layer. And we treat that as the output and then we do all

sorts of training using that. Now, this kind of network is a composition of two functions.



So, let me illustrate that. So, what we saw especially for the XOR, exclusive OR function, in

terms of the OR gate and the NAND gate is basically a one layer you can think of like a

one-layer neural network, but we will see what these eventually translate to for in terms of

algebraic operation. So, let me just illustrate this a small example here.

(Refer Slide Time: 21:44)

So, for instance, your inputs are still x1 and x2. So, then you have these connections which go

to another computation, calculate h1 from there you have a set which goes to another

computation, we can use black actually just to be consistent. So, we will do h2. So, let us and

we can of course always write down the output, this is the one-layer network. So, then, take

this and we calculate .𝑦
^

Now, what is the relationship between x1, x2, h1, and h2? So, this is the hidden layer. And why

do we interpret this as a function we will see. So, the way to calculate this hidden layer in a

feed forward neural network is the following. We will first do just a linear combination, then

we will see why it does not work, and then we will go back, and we will include the

non-linearity and we will be able to understand.

Now, this red line, each of these red lines refer to a weight. So, I am going to write the

formula here. This , this is a vector. And this is . But this blue W andℎ1 = 𝑤𝑇𝑥 𝑤 ℎ2 = 𝑊𝑇𝑥

red are vectors. So, these are weights, each of them unique. One set of weights, which𝑤

multiply x1 and x2, in order to calculate h1, this blues are another unique set of weights, which

multiply x1 and x2 and to get h2.



So, then we can write h1, h2 as. So, you have a red, I am going to write this is a red column

and a blue column of it. So, it is a 2 2 matrix, this is a 2 1 vector, which gives you a 2 1.× × ×

So, that is why we have the input to every layer is a vector, output is also a vector, except for

the last layer, which typically has, well, sometimes it is a vector, but in the case of regression

it is going to be a scalar.

Now, what about this layer here? So, here too once again, I am going to multiply,

pre-multiply in this case h1, h2, and I have a w which is basically two weights. So, I am going

to have a couple of weights here, and that will give you my . So, we will call this so what I𝑦
^

will do is I am going to call this first layer matrix, this as W1, the second layer matrix here I

am going to call W2, or W1
T W2

T.

So, basically, your output . Now, if you think about it, it is still a linear𝑦
^

= 𝑊1𝑇. 𝑊2𝑇𝑋

model, still linear. Because W1 and W2, I can write it as another matrix, does not help. We are

still in the linear regime. So, typically, so, what happens in that in a neural network is you

would do a point wise non-linearity.

(Refer Slide Time: 25:52)

So, we will see what that is, immediately. I am not going to, let me just produce the figure,

but what I will do is. So, typically, what you will do you have this matrix W1
T your x’s, this

will give you a vector z, so this will give you z1, z2, it is the output if you just do that. And

you apply a pointwise nonlinear function to this. What would be a good, what the nonlinear

function we will see.



So, basically, this will go from W1
T.X z , then to z you will apply g(z), some function.→

Once again, I am kind of not indicating the bias term. So, because this is still W1
T.X is still

linear. So, we can always add a bias term. So, W1
T.X + C. We are using one bias term for all

the weights, that is your z. So, you would apply the non-linearity to the whole thing, so to

g(z), so which is nothing but g(W1
T.X + C).

Similarly, at the output layer, you would also do that from h1, h2 you might or might not want

to do the non-linearity depending on what you are trying to estimate. Output layer is still a

linear layer. Because you had, for instance, if you go back, so you had h1, h2. Let me add one

more here.

(Refer Slide Time: 27:38)



So, the last array output layer we had h1, h2. So, you can actually just have some W2
Th .→ 𝑦

^

You can apply your non-linearity g( ) eventually give you the . So, I will not call this . So,𝑦
^

𝑦
^

𝑦
^

for instance, let me call a different name. So, that is not confusing. So, this W2
Th , then→ 𝑧

^

you would apply this g( ) , can be done.𝑧
^

→ 𝑦
^

So, what is this is g function, it is like I said, you have to apply it point by point. So, for every

h, so h1, so you would calculate g(h1), g(h2). That is why you would do that in this case. So, in

the previous case, your output would come from every z1 and z2, we saw that. So, what would

be this idea of non-linearity, the one that is often used these days is called the ReLU. ReLU is

something, so if you have an input, in this case, I am just going to call this z for positive

values of z, it is just identical to z, 45-degree line, so I am going to use blue, so that green, so

that is easy.

For everything less than or equal to 0 you can 0. So, you basically it is a function which reads

max(0,z). So, this function, so, this is a non-linearity because it zeros out all negative values

and keeps only the positive values. So, this is one of the simplest nonlinearities used

apparently works really well for a lot of the problems that come about these days as

applications of neural networks.
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So, just to recap, the different layers in a feed forward neural network cannot be just

nonlinear layers, because then they can be combined into a one big linear model. The

non-linearity is required, so that the problem becomes linearly separable or we can get extract

features which make it linearly separable.

So, a linear combination followed by a pointwise non-linearity is what is typically used in the

hidden layers, sorry not lanes. So, by pointwise non-linearity, we mean non-linearity is

applied to every element of the hidden layer vector. The values that you get after applying the

non-linearity to the find transform that is z is also referred to as hidden activations.

(Refer Slide Time: 30:25)



Here is how we summarize the computations in a neural network. Let us say we are looking

at one hidden layer, how can we summarize its computations. So, we have an input X, I will

use blue, X is some vector. So, at the input layer, we are going to multiply this X with a

weight matrix. So, some WT.X is what we are going to use. The dimensions of W depend on

what kind of what the dimensionality of the output that you want.

So, this is a vector of dimension n. So, we will be multiplying it with the matrix, so this X has

dimensions n 1. So, we are multiplying with WT. So, WT should have dimension, let us say×

p n, so that your output will be of dimension p 1. So, this output again this is the hidden× ×

layer that we want. Hidden layer, the first step in the hidden layer, we call this z vector.

Of course, to each one of these elements here we will apply the non-linearity that is the

function, nonlinear function we saw as ReLU and that will eventually give you the hidden

layer activations. So, each of these will have, so we p rows and n columns. So, you would

take one row and multiply it here. So, an affine combinations of each time with different set

of weights will give you as many a hidden layer outputs.

So, then we will take this capital W, I am going to call this W1
T.X , so you will get this hidden

layer h. Of course, I have left out the, always leave out the bias term, feed free to add it as b

you usually have. So, in order to do that, you will actually have a one here and then the

leftmost column, you will have the W0, the biased term. But anyway, so, in this case let us say

WT.X +b.

Then once you get the z’s, z made z vector. You apply point wise non-linearity and which will

eventually give you your h. So, now, you will take h multiplied with the second layer of

weights plus C and you will produce (W2
T.h + C) . Now, in this case depending on the→ 𝑦

^

problem you can have different kinds of outputs.

So, once again the dimensions of W2 will depend on what kind of outputs you are looking for

in the sense, for instance, what is dimensionality of output. So, for instance, if you are doing

regression problem using a feed forward network, it is just one. So, then you can adjust the

output of size of W2 accordingly. You will have create as many weights. So, this tells you that

these weights, the number of weights that you have in every layer is the hyper parameter, so

is the number of hidden units.



So, each of these elements of the hidden vector that you calculate is a hidden unit. So, the

number of hidden units in a neural network is also a hyper parameter, something that you

have to decide based on the problem. And this number can be greater than or smaller than n.

So, hidden unit or your input unit layer has n units for n, it is a vector of length n then your

hidden unit can be either smaller than number of elements or higher number of elements, that

depends on the problem.

So, that is like a hyper parameter that we have to tune in order to solve this problem.

Similarly, depending on the size of your output, you will have as many, in this case, if you

want to think of it in terms how we did this, we will have as many rows in this W2 matrix as

there are outputs. So, this is the typical construction. And what we do not know is or the

weights.

So, just to understand problem, we do not know what W1 and W2 are, we would initialize

them randomly, and then estimate them using gradient descent, because we have for every 𝑦
^

we have the corresponding y and we can use formulate an appropriate loss function. So, for

feed forward neural network, there are two types of problems. One is the regression and in

the classification form.

So, for the regression problem, we will be outputting the target value y, we call this , and𝑦
^

then we can do a least squares loss. Now, the advantage behind this, if you look at the neural

network, you will see that, you can actually output whatever value you want. Now, output

whatever value you want, you just have to assign that meaning.

In my case I output y, which is , which I think, which I say that is the same as the target𝑦
^

value y for linear regression. But it could be some other parameter also from which I further

calculate . So, that those things are possible with the feed forward neural network.𝑦
^
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So, for classification problem, the output should be a probability value. So, if you are doing a

two-class classification, then the output should be the parameter of the Bernoulli distribution.

So, we still call it p, but I will call it let us say a in this case, or also is fine sometimes.ν µ

And what do we do, so because when we do W transpose, let us say W2
T.h , and we get→ 𝑦

^

one output, it is a scalar, and we do not know what to do with it.

So, the best way is to squash it. So, people usually use this sigmoid function, the

(W2
T.h + C). And this maps it the interval 0 to 1. What is this sigmoid function? Sigmoidσ

function, we will look at very briefly.
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The sigmoid function (x) = . So, all it does is it will map your values between 0σ 1
1+exp(−𝑥)

and, your input values between 0 and 1. So, if you want to plot it, it is basically looking

something like this. So, 0, so negative values, this is positive values, say this is z.

Intermediate the affine transform that is basically the W2
T.h + C z or W2

T.h + b z.→ →

This is the linear combination of your inputs or the input or any of the layers. So, now you

can z. If you plot this sigmoid, it will be something like for. So, this is at 0.5, at 0, if you 0,

you get 0.5. So, for negative values, you get output less than 0.5, for positive values you get

greater than 0.5. So, of course, you can tweak that by the slope and all that by adding some

fudge factor here, multiplying some fudge factor here, but we will not get that into that issue.

So, we will be for the output layer, we will do , this is what you would1

1+exp−(𝑊2 𝑇.ℎ + 𝐶 )

calculate. This is a sigmoid function that we will calculate. And this will, this is what we will

use to convert our output to a probability value between 0 and 1. So, this is the case for two

class classification. So, then, what do we do if we have.
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So, what we did for two class problem is we produce this output , which is nothing but the𝑦
^

probability = p(y = 1/X). So, this is for two class classification. So, for k classes. So, if for𝑦
^

k classes, we need this probability i = p(y = i/X) it belongs to the i-th class. Basically, this𝑦
^

is what we want to figure out, given your input vector. So, I am using small and large

interchangeably, I will just use X.



So, we need, so we need to produce as many outputs as there are. So, if you have k classes,

we are going to be evaluating these probabilities. So, how do we do that. So, we know that

from the hidden layer, we have so many hidden vectors, the size of the vector and the hidden

layer h, then we have weights, let us say we are doing three classes, just want to show what

we have to do.

We are doing three classes, let us say 1 2 3 4 5, we have five components in the hidden layer

vector, then let us see, if you want to do three different outcomes. We are looking at three

class classification problem. So, let us just do this red. So, this will give you 1. So, similarly,

we have, give you 2, and for the green. So, you have 3 and this again before we apply the

non-linearity you have z = [W2
T.h + b].

So, of course, the W transpose is composed of, if you look at it in terms of a matrix is

composed of these three colors. Here, the middle one, three rows. And I have not specified

the length of the h vector, so it is five, so you will have each of them will have five

components. So, that so this will give you three outputs, this is z and it is unnormalized.

So, then, we have to convert that into a probability. Because usually, the outcome is only one

of them. So, they are independent. So, if one, there is only one, if one of the classes is

probable, then the other two are not. So, in that case, then the probability should add up to 1.

And of course, they should all be in the range 0 to 1 and they should all add up to 1. So, in

this scenario, you will have this known as the softmax.
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So, if you write this z = W2
T.h + b then you are, convert that into a probability you will do

this softmax(z) = for every one of them. So, there are k classes, j = 1 to, let us say𝑒𝑥𝑝(𝑍𝑖)
Σ𝑒𝑥𝑝(𝑍𝑗)

capital k, exp(zj). zi where does that come from? So, if you have three classes, when you do

z = W2
T.h + b , you will have z1, z2, z3 here. So, then you will have.

So, just to illustrate for one, the probability associated with class one would be

. For class 2 you have to change it to 2, 3, so on. So, of course, you𝑒𝑥𝑝(𝑍1)
𝑒𝑥𝑝(𝑍1) + 𝑒𝑥𝑝(𝑍2) + 𝑒𝑥𝑝(𝑍3)

have to fix what each of these classes are, when you write the program, you say, first element

corresponds to class 1, second element corresponds to class 2, third element corresponds to

class 3.

So, that is output, and that is how we interpret the output. So, if you want probability for one

class, for two class problem, you use the sigmoid. And you interpret the output as the

Bernoulli parameter which indicate the probability yes or no. And if you have a multi class

problem, where of course, the choice is 1 of k outcomes, 1 of k classes, let us say one of 3

classes, in our case, which we looked at, then you calculate the softmax function using z,

using this formula right here, and treat those as the probability of the outcome.

So, so far, what you had looked at is the so-called forward pass through a fully connected

neural network. We also, not defined fully connected yet, but we will get there. So, what we

have done is taken a vector of inputs, so each input data point is a vector. And then we

multiplied it by a matrix of weights to get this linear transformation of the inputs.

And then that is also another vector, then we applied a nonlinearity, a point wise non-linearity

each one of them to get the so-called hidden layer, or activation, or hidden activations. We

can do that sequentially as many times as you want. Finally, we estimate an output, the output

can be either just a linear combination of the last hidden layer, which we call the output layer,

where we or the penultimate layer from which we estimate this , which can be a real number𝑦
^

if you are doing a regression problem.

Or it can be interpreted as apply a sigmoid function and convert it into a Bernoulli parameter.

If you are doing a two-class problem that is yes or no kind of problem, or use the softmax

function to convert that into a vector of probabilities, all of them adding up to 1 if you are

looking at a 1 of k classification. So, that is the idea behind the feed forward neural network.


