
Medical Image Analysis
Professor Ganapathy Krishnamurthi
Department of Engineering Design

Indian Institute of Technology, Madras
Lecture 40

Linear Regression Demo
(Refer Slide Time: 00:15)









Hi, everyone, I am Krishna Khalori, PA of the Ganapathy Krishnamurty Sir. In all

artificial intelligence related problems, in all artificial intelligence related problems, be it

either ML problem or a DL problem, like machine learning problem or deep learning

problems, to solve any kind of problem, fundamental thing that is necessary is data. Once

we have data, using this particular data, we are going to train a particular model, train a

model, using this particular data we are going to train a model.

Once the, that model is trained, we will you use some new data to feed as input to the

trained model. So, it will predict some output. The main goal is we should train this



particular model in such a way that whenever new data comes, it should predict in a

desired way. This is the whole idea of this entire training model. What sort of data that is

available in digital domain?

First thing is, images you can expect, second thing is videos, you can expect, third thing

is like CSV or Excel files, mostly the numerical values or tabular datas will be stored in

CSV or Excel files, videos, similarly, we can have text data. Let us assume that these are

the four sorts of data. One more thing is more or less like speech kind of data, speech data

or we can say one dimensional data. These are the several ways in which datas are

available in digital domain.

So, whenever you want to feed the machine learning model or deep learning model data,

data should be sent in a particular format to both machine learning and deep learning

problems or deep learning models irrespective of the data, irrespective of the data, like

images, video, speech data, one-dimensional text data or CSV, Excel files, all these data

should be converted into NumPy Array, NumPy Array. This is the fundamental thing one

should be noted while dealing with machine learning and deep learning problems.

Summary is, irrespective of the data, we should convert that kind of a data into NumPy

Array format. Suppose if you take as ML problem, machine learning problem, NumPy

Array can be directly fed into the machine learning models, whereas into the deep

learning models, we should convert this again, convert this NumPy Arrays into tensors

before feeding the data into deep learning models. This is the usual way. So, one should

be familiar with NumPy Array, NumPy Array like, there is in Python.

Now, coming to second thing, in order that, to load files like CSV files or Excel files, we

need pandas. Pandas library, where, in this pandas library we are going to feed the CSV

files as data frames, data frames. Once you convert this CSV files or Excel files into data

frames, further it will be easy for us to handle the data to do our data analysis, analysis.

So, to work, just I am explaining whatever are libraries that are very much important to

start off working with either machine learning problems or deep learning problems.

Fundamental thing that is necessary is NumPy Array, second thing is pandas library, third

thing is Matplotlib, Matplotlib. While dealing with the data, you always try to visualize



the data, like suppose if I have Excel sheet data I just want to see a column of data as a

graph. I can use that particular column of data and I can use this Matplotlib for the

visualization of the particular column however that data has been distributed. To get some

visual picture, we go for Matplotlib library.

One more library that is also, mostly people use, that is like Seaborn, s-e-a-b-o-r-n. So,

one should be familiar with both, Matplotlib and Seaborn is an added advantage. So, if

you know Matplotlib alone, that is also fine.

Next thing is machine learning models, machine learning models. To get familiarized

with the machine learning models, or how to use this particular machine learning models,

one should be familiar with scikit-learn library, one should be familiar with scikit-learn

library. Irrespective of the data, whatever you have data, you should convert that

particular data into NumPy Arrays. After converting into NumPy Array, we should use

the data directly into the scikit-learn library.

Now, coming back to deep learning models, and after that to train your, to train the

models of deep learning models, we just have to be familiarized with the either PyTorch

library provided by Facebook or TensorFlow library, TensorFlow library. So, make sure

that get familiarized with either PyTorch library or TensorFlow library. Before feeding

data into this particular PyTorch or TensorFlow libraries, our PyTorch or TensorFlow

models, first, we convert the data into NumPy Arrays, NumPy Arrays.

After converting into NumPy Array, we should convert that into basic tensor format.

These deep learning models expect data in terms of tensor format. This is the whole idea.

The summary is to start off your work in machine learning problems or with the deep

learning problems you should be familiar with these kind of libraries.

First and foremost, first and foremost is for NumPy library, second thing is pandas

library, third thing is Matplotlib library, fourth thing is machine learning models related,

that is scikit-learn level library, next thing is deep learning models related models that is

PyTorch library or TensorFlow library. TensorFlow library is provided by Google,

PyTorch library provided by Facebook, that is it.



So, to get your hands on using Python to solve any kind of AI related problems, you

should be aware of this stuff. Once we obtained the data, the usual procedure to solve any

ML problem is to please split this data into training data. Second thing is validation data,

third thing is test data. Suppose if you have some 1,000 data points, you can divide either

it like 70 percent is for train, 20 percent is for validation, and third one is test data.

But why, that is the question? Suppose, I have used this, instead of using this validation

data in between, what I can do is directly, I can use 70 percent is for training and the

whole 30 percent is for testing. Mostly, ML problems suffer from overfitting problems,

problems, that is, the matrix, let us assume that the matrix is loss value, or error value.

That particular loss value is less for trained data.

After training, we are going to get very less error or loss value for the trained data,

whereas if you test the, that, if you use the test data on this trained model, you will get

loss value as high, loss value as high for the test data. This is nothing but overfitting

problem. So, our goal is to always try to maintain the balance of both trained data and test

data, loss values of both trained data and tested data should be more or less same. That is

how we should design the models or train the models.

So, what happens, suppose this, on this particular test data, model is not giving less value

just like for the training, just as training error. That means, again, you have to train the

model. So, suppose second time also I have done and I have used the test data, same thing

happened. Again, third time again, I have trained. Now, I used my test data, again

happened that we are not reaching the error value or loss value more or less same to

trained data.

So, while training the model itself, instead of after training and doing up, instead of doing

the validation after the entire compression of training, we, we came up with validation

part. We came up with validation part while the model is training. So, as the, instead of,

for, from those 30 percentage, we are converting into 20 percentage into 10 percentage.

This 20 indicates validation, this one indicates test.

So, when the model is training, validation loss is not improving or I mean validation loss

is not decreasing. Again, the model will train in such a way that validation loss also



should be low. So, the advantage is here. While the, while training the model itself, we

are just testing whether that particular model is performing well or not. So, once this

entire training is done, only once we can use the test data whether this model is

performing well or not. That is the basic idea behind using validation data set.

The summary is, validation data will help you to better, to train the model in a better way

while that, while doing the training itself. So, the usual procedure is either you can split

the entire data into a 70 percentage, 20 percentage or 10 percentage or 80, 10 percentage

or 10 percentage. This is how you should use this one. Next thing is cross validation, one

should be familiar with.

Cross validation is nothing but, since I am using validation, assume that I am training my

model like this. Suppose this is my trained data, enter trained data. One iteration is done.

In the second iteration, I will use this part for validation and remaining part for training.

Here, I am using this part for, suppose this entire data is like, whole data which we are

going to train. While training I am assuming that in the first iteration, all these points, I

am taking as trained, and these points for validation.

Let us assume that I am doing this cross validation like 5 times. In the second iteration,

what I do, instead of doing, taking these same points as validation I am taking some other

points and remaining as again, they act as training points only. Similarly, in the third

iteration, we can choose these points as validation part, remaining as training points.

Likewise, I will do for all the five iterations. This is nothing but cross validation concept.

To do all these tasks, to automate all these tasks, whatever we have, something like cross

validation, and all the implementing of this model, everything, we should be familiar with

the libraries. That is it. There is nothing else.



(Refer Slide Time: 15:10)















Now coming to ML problem settings. Most of the times, you can see that either

classification problems are regression problems mostly.

Suppose if you observe this breast cancer data set which Sir has discussed in the video

also. Here, this is how the data set will be given. Like we have some x1, x2, x3, like that

some features we will have, and this one is called targets. These are called features, these

are nothing but targets. This is how the data has been provided.

Suppose, in terms of classification, the output values, like target variables are given as

depending on the number of classes. Suppose I have some n number of classes. So, I will

give the digits from 0 to (n-1), that is the usual criteria. Even you can give some distinct

numbers also, that is up to you, but mostly this is how the people will give in problem

setting with respect to classification.

Now, coming to the regression problems, we will given, we will be given same like, that

CSV file where we have x features. These are nothing but the features and these are

nothing but the targets. Regression means continuous. Here, if you observe the outputs

here, you can see they are all continuous values, like 2.5, 3.5 or so many other kind of

any real number.

So, in summary, in, see, most of the times we are dealing with the regression problems,

we will be given data in terms of either CSV files or Excel sheets where you will be



given the, suppose we have n number of data points, for all the n number of data points,

we have some m features, and correspondingly, we will have target variable also. This is

how the data has been given.

Just here I have discussed like this, where features and targets are given. Our task is to,

using this particular data like suppose you have some m data points, m data points you

have, I have to prepare a particular model or train a model by using this kind of data set.

That is my task. Here, especially the linear regression problems, where we will be given

data like this, and we have to generate a function like this.

Like 0 + 1 where suppose, assume that for all the data points, we have only two𝑦
^
= β β 𝑥

dimensionals, only, the data is having only one dimension, like, suppose I have only x,

well x has only one column. My target anyway, it has only one column. Suppose, you

have only one feature, one feature or in terms of, you can say unique variable or unique

variable, unique variable you have.

At the point of time, we will go for univariate linear regression, where you will try to

generate this function 0 + 1 using this particular loss function, we are going to𝑦
^
= β β 𝑥

estimate the 0 and 1. This will be taken care by the library, what I have mentioned as aβ β

scikit-learn library, it will take care of to estimating this stuff.

After fitting the model, we, in theoretical part, we say that we will estimate 0 and 1.β β

Once we know the 0 and 1 values, for any new kind of data point comes, suppose xβ β

value, new value comes, like XNEW, now, I will substitute here. out 0+ 1 NEW I will𝑌
^

= β β 𝑋

give, 0, I already know from the model, 1, I know already from the model, and I willβ β

substitute this new value and I will predict this particular Yout. This is how the criteria

goes.

In summary, suppose you have only one variable in terms of independent variables or in

terms of features, we can say, where y is nothing but the target, at the time, we call it as

univariate linear regression. There, we are assuming just this particular function, 0+ 1 .β β 𝑥

It will take care of. So, we are saying that the training is going on. But while the training

is going on, we should be in a position to evaluate, while the training itself is going on.



Like, we need some metric, while the training is going on, we have to see some metric.

So, if you are able to find that, that metric is good enough, that means, the training is

going well. Like that, in linear regression problems, we have three matrix. Most of the

times people will use these three matrix only. Like R2 value, it is given by here, this kind

of a formula, where yi is nothing but the original target, targets or the data that is given.

Like do not put data when it comes to i. This is nothing but the predicted value. This is𝑦
^

nothing but the original target value, this is nothing but the predicted value. Next, i is𝑦‾

nothing but mean of all the target values, mean of all target values. This is one sort of a

matrix. We expect this value to be 0 to 1, 0 to 1 in general, and I need a value of 1.

Suppose, after fitting the model, if you are getting 1 value, that means we have developed

a very good number, that is very good. Next thing is mean square value. This is the

matrix, similarly, you can always, you can also say that it is mean absolute error. These

are the three metrics, we can see, in designing a linear regression problem.

Till now, I have discussed only matrix related to linear regression, at the same time I have

discussed only with respect to univariate linear regression only. That means independent

variables are features, we have only one, targets we have. Now, coming to multivariate

regression. It is just another extension of this univariate regression.

Instead of only one 0 and 1, we are extending these coefficients. Now, suppose in case Iβ β

have x1, x2, x3, x4, likewise I have xn, like n features I have, for every data point I have

n features, n data points, n features, we just have to build this particular line. Usually,

since it is not a two dimensional plane, that is why we call this one as a hyper plane, not a

line, hyper plane we call.

Here we, instead of estimating just 0 and 1, we are extending our task and we areβ β

estimating remaining things also. I have already told you that is the basic difference

between multivariate linear regression and univariate regression. That is, univariate

regression, you will have only one variable as features, whereas in multivariate

regression, you will have several variables or several features.



Now coming to Python implementation, here, I am going to use the scikit-learn library

only. So, most of the times, whatever the task you do with respect to machine learning,

you must be focusing about NumPy, pandas, matplotlib and scikit-learn. I request

everyone to please be familiar with these four libraries. Suppose if you are dealing with

deep learning you should be familiar with also TensorFlow and PyTorch.

People who are in academic domain or research domain, most of the people I request you

guys to please go with the TensorFlow. Whenever a new research paper comes, people

are releasing their code mostly in terms of PyTorch. So, you will have an added

advantage. So, I request those who are in academic and research domain, please go with

the PyTorch. Even TensorFlow is fine, but I request you to go with the PyTorch because

it is helpful for you.

I have already discussed this overfitting problems. To deal the overfitting problem, I have

already told you, we use the validation data set, validation data set while the training is

going on, where we will tune the, all the hyper parameters according to this validation

data set. It is the key, or we can say this is the center. Hyper parameter tuning is done

with the validation data. Like here, I have already explained this graph.

Suppose the white color indicates, white indicates that training error or loss, error or loss,

whereas the green color indicates this validation loss. We have to train our model and

save our particular model exactly at this point. This is our region of interest, or we can

say where we have training error and testing error, the, the difference or the gap between

training error and validation error should be minimum. The difference between, or the

gap between them is minimum. This is what we need.

We can even say this point is nothing but low bias and low variance. This is the, our

interest, point of interest. This is nothing but the entire theoretical part, I just have

discussed. In general, to deal these overfitting problems as I told you, validation data set

we will use to tune the hyper parameters, but how, how, which kind of hyper parameters,

we will discuss.

(Refer Slide Time: 25:00)



Usually, to deal this overfitting problem, we are going to have two other linear

regressions, like lasso regression and regular regression, sorry, ridge regression, where

both the terms will involve regularization term, regularization term. Even this one also

indicates regularization term. This is not that difficult. Just for the sake of understanding,

assume that using these ridge regression, lasso regression, we can deal the linear

regression problems without getting affected by overfitting, that is the summary point.

Now, coming to what this ridge regression and lasso regression. You can go through

them, it is not that difficult, theoretical part. By the implementation, I will explain how



exactly to use this stuff. This particular, apart from the loss function which we have

designed for simple linear regression, we will have some term or we can even say someλ

term. According to your comfort, you can use any term.α

We can have weight square or otherwise you can say just weight itself. So, theoretically

this much is not that much necessary while implementing the things. For the sake of

understanding I am just intimating you that you guys just have to learn what is meant by

ridge regression and how to use this one, what is this lasso regression and how to use this

one.

In the implementation part, I am going to show you two examples, one with respect to the

medical data, one is related to medical data, data that is available in medical domain, that

means some, with respect to hospital data, hospital data. And the second thing is

something like housing price data set, housing price data set. Both are given in CSV

format only, comma separated values, we call CSV format. Or we can even go for Excel

format also or Google Sheets, Google Sheets. These are the usual things you can found.

Two problems, I will explain. In the medical domain, medical data related problem, I will

just discuss only the simple linear regression or multivariate linear regression, where it

does not involve any kind of cross validation or any sort of overfitting. I do not discuss

all this stuff. I will just let you know how to apply this entire training data, whatever that

has been given to you. After fitting that particular, after fitting the particular model, I will

just give the test data to that particular model and I will generate the output. That is first

example.

I am not going to discuss anything related to overfitting and all that issues in this

particular data set. Now, coming to house pricing data set, I will discuss that stuff where

it involves even overfitting problem. And it will even discuss the cross validation stuff,

using cross validation, we are going to hyper, tune the hyper parameter as sigma, sorry, ,λ

you can even call , the term that is belonging to regularization.α



(Refer Slide Time: 28:37)

Now, coming to the implementation part. I have just shared this entire documents or the

folder, entire folder I have given to you. Just upload this particular folder onto the Google

Drive. After uploading the particular folder to the Google Drive, you will get to see these

three things, where you can see that this is nothing but the hospital data set, where you

can see.

(Refer Slide Time: 29:10)



Once you click on that one, you will get to see this kind of a data, where it indicates

number of access in a particular month, at the same time like bed days means how many

beds are occupied in a single month.

Similarly, length of the, length indicates how many hours a particular patient has been

stayed, has stayed in that particular hospital. So, if the number of beds are taken are

being, taken more that means hospital is functioning those many number of hours. I mean

increase in this number will indicate more the number of operating hours. Similarly, as

the number of beds are occupied in a particular single month is very high, that means

hours also will be more.

Similarly, as the stay of a particular patient is more, that means his, operating hours of the

hospital also should be more. So, all these three variables can be treated as an

independent variable, and hours here, which will be called as a target variable.

(Refer Slide Time: 30:06)



Now, coming to implementation part. This is a collab notebook, sorry, jupiter notebook,

that I am opening in Google Collab.



(Refer Slide Time: 30:21)





If you observe clearly, here we are just noting down the hospital number of hours, just

open this Google collab notebook after doing that one, just connect, shift enter so that

particular, connect to the Google drive, it will ask you. Suppose it is mine. We are

mounted at this particular drive, just refresh this one.

(Refer Slide Time: 31:21)





























There you can see the entire trip where the folder name is NPTEL Linear Regression

Book, NPTEL underscore linear underscore. From here, I just have to first import all

these libraries where from the scalar, I am importing the linear regression model,

Matplotlib for visualization, and this pandas will be for data frame analysis, Seaborn is

also like more or less like a plotting library only.

Here, I have read the data. If you observe, I am just taking the shape of this particular file

df.head, it will generate the first five points. The shape of this entire data frame is 17 4,×



that means 17 rows and 4 columns. The last, Column 4 hours indicates the target variable.

These first three variables indicate the independent variables or features.

Next, is just I am finding out how exactly this hours is related to hours, similarly, bed

days is a correlation with this particular independent, each individual variable with the

hours, I am just checking out. Here, I have imported the train test split, where as I have

told you, I am just here splitting the data into training and testing only. There is no part of

validation here in this particular problem.

After splitting, you can see the length of the train is 11, because I have used 30% is for

training, sorry, 70% training and 30% is for testing, you can see here. This is nothing but

the test data. Just, I am taking all these first three columns of into the x variables and last

column into the y variable, x_train, y_train, just check out the shape.

Because I am dealing with the x_train, these are the things you have to focus. Similarly, I

am just separating out the extract in x_test and y_test. This is nothing but the shape (6,3).

They are just correlation plots, how exactly x beds are related to hours, similarly, how

exactly bed days is, all this data is related to particular month only. You can observe that,

most of the times they are linearly correlated, I mean closely correlated, high correlation.

Instead of generating this individual diagrams like this, here there is a command where

you can generate all the things like this. It takes some time, just wait. This, in terms of

values correlation, values correlation coefficient, correlation coefficient, basically, it

indicates how exactly two variables are related to each other.

Now, coming back to importing this particular linear regression model. I am just writing

down here, this is the main important thing, linear regression has been imported using

this function. From a scalar library dot linear models, import linear regression. That linear

related regression object, I am using right now, where you can see like this.

Once this is done, once the object is taken, lm.fit, this is the function we will have,

x_train gamma, y_train, and I will obtain the R2 value for this one. x_train, y_train, x_test

gamma, y_test. They are all mostly closely related to each other. We can say that one

from these two values.



Here, I am just doing the prediction errors, what is the y_prediction and y_test. This is

just basically using several things, I have just extended this task, like I have mentioned

earlier, mean square error can be calculated as a metric, even mean absolute error can be

calculated as a metric and R2 scores can also be used as a metric.

Here, this is the, main thing is, here, you have to focus, once the object is taken, just fit

the model and obtain the score. Here, we are just obtaining the score for original trained

data and test, trained data. Similarly, I am focusing now on x_test and y_test. If you

observe here, both value, training value is more, even R2, sorry, R2 score of the test data is

also more.

That means more or less, they are equal. So, we can say that model is good only. But here

in this particular problem, you have used only 17 points. When we discuss next problem,

you will get to know very well. These are just, you need not bother about all the

remaining things. I am just extending the task like, I am just predicting the values here.

Here, I have taken directly R2 score value, here, I am just taking the enter, of, if I give

you x_test as an input, this is how the values are. y trained predict, also I have taken here.

This is our test data, this is after fitting the model, I am just predicting the x trained

values also. These are nothing but y predict value, y_test value, you can see here, the

original value is 628 comma, my out is testing, test data, this is how the value is.

16939 means 1854, here. Like, 10, so last one if you take, 1611, here is 1489. This will,

at least more or less close to the original values. This is good enough. This is like, mean

square error, mean absolute error and R2 score, I am just directly importing these

functions instead of using this particular formula like lm.score, which I have used here.

This is another way of doing this thing. This is just an extension, no need to bother.

Till now we have done, what I have done is just I have taken the data and I have splitted

the data into x_train and y_train. Similarly, x_test and y_test. After doing that, and I have

fitted the model, after fitting the model, I have found out the R2 score value, after finding

out this R2 score value.



And even I have experimented with the mean square well, mean square error value and

mean absolute error value also, but does not make any sense, not necessary to use so

many things. You can take a single metric and you can comment on. Here, mean absolute

error and mean square error should always be small, we will expect, whereas R2 square

value will remain in 0 to 1, but we expect the value to be 1, near to 1. I have just extended

that one.

In most of the cases, in general, the data set, having several variables, suppose in this case

we have x-rays, bed days and length. If you observe the data, like this here, see, all these

data points, lengthwise, these are very small, actually, compared to the remaining

variables. To let the model, not to get confused too much, we will bring all the columns to

here following a particular distribution, like normal distribution.

So, we will bring the, all the columns of the features to follow a particular normal

distribution. Normal distribution is nothing but standard deviation is having plus or minus

1, where this particular mean value should be 0. To even, to do that one, we have directly

somehow, some libraries, from the library we can import that one even, see here.

Standardize, like . This is actually, this is the formula we will use, generally, for𝑥−𝑥‾
σ

standardization of data.

Like suppose x, I have . In other words, we can say, , or .𝑋𝑖−𝑋𝑖‾
σ 𝑋𝑖 = 𝑋𝑖−𝑋𝑖‾

σ 𝑋𝑖 = 𝑋𝑖−µ
σ

This is how we will have. Even to do this one, we have something like a standard scalar

function is there. Similarly, min max scalar is there. Standard, scalar will have minus 1 to

plus 1. We will bring the data to this value, whereas here, min max scalar, we will we will

convert each and every column variable to values between 0 to 1. This is how we will do.

For that one, here I have just done the manual implementation, like . See here, all𝑥−𝑥‾
σ

the values will range between minus 1 to plus 1 only, even this one. No, sorry, value isσ

plus 1, standard deviation, like standard normal distribution in the sense, like this one.

Oh sorry, I am sorry, suppose if this is how the data, this is 0, you will have up to plus

sigma, minus sigma plus 2 sigma, minus 2 sigma, like this data will distribute. I am sorry,



I just told minus 1 to plus 1, that is not the case. We can say that mean is 0 and sigma

deviation is 1. That is the case. That is good.

Just manual implementation, they have done. Now coming back to, let us check.

Standardization has been done. What we are doing here is without standardization, we

have done, similarly, with standardization, we are doing here. Since the, here, the data

points which we are using is very less data points like 17 rows and only 4 columns but if

you, the data set is more, the data point is more, you can see that particular difference.

Always this, normalization will always help to converge the faster, converge the model

first, and at the same time, very well. Just, we have done the earlier things only, just, I am

doing r2 square is not different, because I just did not run this particular program, I think.

From r2, where it is, see, here, I did not run this one. That is why problem occurred.

Standardization has been done for the training test data, training data.

Always remember, while doing this normalization, while doing this normalization,

whatever, suppose I am doing the normalization for x_data, like trained data, we will

compute mean and standard deviation for each and every variable, and I will explain as

mu by sigma. I will do like this. Now, comes to test data .𝑋𝑖−µ
σ

Use the and of what we got, now when it comes to standardization, when comes toµ σ

standardization, standardization, suppose I am doing the standardization for x_train data,

we will use like . This and are computed from the training data only, data.𝑋𝑖−µ
σ µ σ

Assume that I am dealing, I am talking about the standardization for a particular variable

like . This is a variable where number of data points I have is i is equal to 1 to m,𝑋𝑖 𝑋𝑖

and among these number of data points, like 1 to m data points, I am just focusing on

particular variable of particular feature only.

Now, I have to standardize this data, like this formula, I will use, like . is nothing𝑋𝑖−µ
σ µ

but i where is nothing but the standard deviation, how we compute normally. This is𝑥‾ σ

how we will do the standardization for the particular variable in the training, while

standardizing the training data.



Now, it comes to test data standardization, where we will have only the same variable, I

am talking about, like , use the same mean and standard deviation that I have used,𝑋𝑖−µ
σ

are calculated for the training data. That is the basic difference. Please keep this point in

mind.

Whenever we are doing standardization, while doing the standardization, when we are

dealing with the training data to compute the standardization, we will use this formula

like . Similarly, for the test standardization, we will use the same and . That𝑋𝑖−𝑋𝑖‾
σ µ σ

means, we are not going to compute the new mean and sigma for this test data. Please

keep that point in mind.

Even here, there are some functions like standard scalar or min max scalar, these

functions are available directly even while doing these things, you just have to be careful

how to use them.

After doing normalization, again I have run the code. This is how the values are. If you

observe clearly, there is no much difference, because in general the difference you can

see, but here I have used the basic, very less number of data points and very less number

of, that is where this problem is happening. So, in total, just I have just predicted the y

actual data and predicting that like very y_test and y_predicted, just computed here,

something like this, y_test and y test-train scatter plot for these, the plots I have done,

scatter plot, you can observe. That is not that difficult.

Here, I have used another min max standardization. I have just, after doing this entire

thing, you can even see the, those coefficient values also, you can see, like this, using this

function, like lm.intercept, something like this. Just go with this code, you will easily

understand what exactly is going on.

In total, as a summary, I can say that you should have to be familiar with NumPy library,

pandas library, matplotlib library, Scikit-learn library for machine learning and the deep

learning for PyTorch and TensorFlow. That is it.



(Refer Slide Time: 46:54)

This is the new example which I told you earlier, that which it involves both overfitting

problem and even here we will use this cross validation for the hyper parameter tuning. In

this, for the hyper parameter tuning, mostly here, we are using, apart from just take that

linear regression function, we are going to use something, two more functions like ridge

regression and lasso regression.

Theoretical part is, according to your convenience you can browse for it, it is not that

necessary, but coming, let me show you the implementation. I have already given you



this particular entire data set or this particular folder. I have given you. Just upload this

particular folder to your drive, and just to open this linear ridge, lasso regression iPython

notebook.

(Refer Slide Time: 47:46)

Once you double click over this one, you will get here. If you observe, here, our first job

is to just mount your drive. Let me check once this drive is being mounted.



(Refer Slide Time: 48:17)

The data set which we are using here is, just let me click on this, the data set which we

are using here is from Kaggle dataset, where you can call this one as Melbourne Housing

Market. And for doing this tutorial, I have taken help from Codebasics channels, that is,

in YouTube.

(Refer Slide Time: 48:38)



c-o-d-e s-i-c-s, YouTube channel is there. I am referring his videos actually. This is just

for implementation part. If you have time and if you want to explore more algorithms,

you can go and check that. I have taken reference from there.

(Refer Slide Time: 48:59)



Now let me explain, this is the data set, just click here, this particular data. This is for

namesake, I am just explaining but in the folder, I have already downloaded data from

both the points, from Kaggle. Click here data, if you go down, you can see both these

files. Just click this download button, enter download button here, you can download all

the files, data



.(Refer Slide Time: 49:27)

This is how the data has been given, like Suburb and Address, Rooms, Type, Price,

Method, SellerG.

(Refer Slide Time: 49:37)





If you want you can further explore here. Each and every detail has been given, what

exactly each data point, each column will describe. Method, Type, SellerG, Date sold, all

the, each and every variable, particular description has been given.

(Refer Slide Time: 49:56)



















After mounting the trained, I am just importing numPy, pandas, matplotlib and Seaburn

libraries here. Just refresh here, after mounting your train. See, I am taking the path from

Melbourne linear regression data. Melbourne, see here, from this folder, I am taking my

data set, and the CSV file, which I am taking is from that particular full dot CSV, just to

go to that particular file, wherever the particular file is there, Google Sheets, this one, not

this one.

See here, just to go to this particular file and click here. You can see the copy path. After

updating this particular copy path, just paste here. That is how you will give the data. Just



let me do path. So, my data set has been taken into your pandas data frame. Like

pd.read_CSV.

Now, coming back to exploratory data analysis. I am just checking out the shape, like we,

that means, I have 34,857 rows and 21 features, I have, not features, even along with the

last variable, like price, we are talking about here, this one, this particular column is our

target variable, remaining all the columns are features.

That means among those 21 variables, we just have to focus on only 20 variables, all the

independent variables are features, and only one is target variable. Just, I am printing

down what are the head files, like first five or four rows, I am checking out. This is the

basic function people use.

And now, just check it. And this dataset.nunique is for checking out what each individual,

suppose if you take the rooms, rooms you can see 12, that means, 12 unique numbers are

there. Like, threes are, some, 3 is one number, unique number, 2 is one unique number.

Likewise, we will have some 12 unique room numbers, rooms.

So, this 21 column, instead of taking all these 21 columns, I just have focused on these

columns. So, let me check out from the data frame, I am just filtering out only these two,

these number of columns, like 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, total 15 columns

I am using, just let me check the shape here.

See here, I have only 34,857 rows and 15 columns. Earlier, the column number is 21,

now the column number is 15. Now, check this function. What it indicates is, maybe in

the given data set, you will be having some blanks, not filling any data, where people

usually call them as nan values.

You have to deal in the data pre-processing stage or exploratory data analysis stage, you

have to focus more on those details. This particular blank value can be replaced with

zeros or even with the mean value of the remaining values whichever present to that

particular variable or in another sense, you can just eliminate that particular row, even

that is also accepted.



Because while feeding the deep, machine learning models, those models cannot accept

the data that is having these nan values. So, please keep this point in your mind. So,

dataset.isna.sum. Now, come to see here, for proper account, property count, distance,

property count, we have three nan values, distance, one, and bedroom bathroom.

For all these four columns, I am just focusing to fill those columns with the zeros. I mean

wherever those blank values are there, nan values are there, you just replace all those

values with the zeros. See here. Suppose, if you go observe property count, you can see

here, three blanks are there. Now here see, zero it became.

Similarly, take the distance, distance has only one. That even that 1 also becomes 0. Now,

bathroom, car deck. See the car, 8728, car value now becomes 0. That means there is no

blank values. What exactly blank values, I will show you. See here. Suppose, if you

observe the price, there is no value here, there is no value here, there is no value here.

All these blanks see here, bedroom too, in this particular sheet, no value, no value, no

value, no value, no value, no value. No value does not mean a zero value. Now, coming

back to landsize and building area. See here, only these two are left, now landsize and

building area. For those columns, I am just replacing with the mean values of the

remaining values.

Take the land size, wherever those blanks are there, I am just filling those values with the

mean of the remaining values, that are given in the particular land size variable. Just let

me run this one. Now, let me run this one, some value. See here, only region name and

council areas are left. Still, I have to record something for them. I am using just dropping

out, the, those columns. So, those complete rows which are having same.

See here, now this function indicates, in the entire data set, whatever you have, like

suppose, suppose you have a entire Excel sheet, you see, further now, whatever data I

have prepared now, for all the, entire data wherever you see, you cannot find these kind

of blanks anywhere in this particular data set, which I am going to fit to the model. So,

keep that point in mind.



Here, I have all, used all the strategies like to fill the nan value, value, or a blank value or

a blank in the data frame. I just, for a few columns, I have filled with zero values, for a

few columns, I have filled with the mean value, for few rows, for few columns, wherever

the nan are present, I just have removed that entire row, removed that entire row.

You can go for this one. Suppose those number of blanks are very less. Then only you

can go for this one, because with very high efforts, we are collecting the data. So, the

entire deep learning, machine learning algorithms, they are very much interested, they are

very much trained well, if you have very good data. So, you do not try to lose even a

single data point. So, always try to use every data point whichever you have. But for the

explanation sake, this is how we can do several pre-processing tasks. I hope everybody

got it.

Now coming back to, observe the shape here. 27,244 rows. Earlier, the row numbers are

like 34,857. Because at the end, we have pricing area, pricing column, where it has 7,610

blanks. I have removed all those rows, whichever does not contain price. Now, coming

back to, usually if you observe in the columns, like the suburb, you can see, usually deep

learning models, or machine learning models, they can understand only, in numbers only.

But here, you can see there are strings or categorical variable. I have to convert all these

categorical variables into one hot encoder, one hot encoded variables. To do that one hot

encoding, just go and browse, what exactly one hot encoding means. To do that one hot

encoding, you will have a function, something like dummies in pandas, that will help you

to remove that categorical variable into convert this, converting, converting whatever

variables into one hard encoded variables.

Just run this command so that everything will be easier. See here, I have already told you

price is nothing but my point of interest, I mean this target variable. I am just separating

out x variables and, sorry, x_data and y_data, I mean features and target, or input

variables and output variable. Now coming to extract the shape. See here, 744, observe

carefully.

Earlier, the shape is 27, earlier the shape is actually (27244,15). Observe here, after

running this one here, and that is why this problem occurred, earlier we have (27244,15).



After using the dummy function, we got 745. So, keep that in mind. I mean those 15

features has been now converted into one hot encoded 745. That is what this value,

dataset. shape.

This one, 744, because we have separated out the price variable 2,744. As usually, now

we have separated all the input variables and output variables. Now coming back to

sklearn.model_selection import train test split, train_x,test_x, you can you usually know

just x variable and y variable given, and see here, 0.3 is the, that means we are just

converting the entire train data into, 70% of training data into trained data and 30% into

test data.

Observe the shapes, this is how. x_train, x_test, y_train y_test. Now, we just first

implement the simple linear regression model to import that, just import this linear

regression, linear regression filter, train_x , train_y. After this one, obtain the regression

score or another r2 score. This is the turn test data coming back to, see here. This is, in

this particular problem you can observe that after training this particular model, when I

am checking out my test data values on this one, the score for the test that I got is 0.138

or 13 percentage.

Whereas the, in train for the train data, I have training error that particular score is 68

percent or 0.68. That means, you can see a huge difference between 68 and 13

percentage. That means training, here, r score indicates more or less accuracy. That

means in terms of loss we can say that training error is less but the test error is more, that

is why we call as overfitting problem.



(Refer Slide Time: 1:02:05)



So, to deal this particular problem, we go for lasso regression or ridge regression. If you

observe the lasso regression, see here, lasso, is equal to 50, maximum iteration is likeα

100, tol is nothing but the tolerance level, 0.1. This is just functions only. You just have to

learn how to pass this train x and train y into this one. is equal to 50 indicates here thatα

regularization parameter.

Suppose, let me train this model using lasso regression. See here, here also, I am not

using any cross validation here. I am just using this values, like regulation parameterα

only, I have used. I did not use any validation data here. Now, coming back to regression

score, see here, on test data we have 0.6636, whereas on train data, we have 0.68. You

can see, very minute difference is there. That means that particular overfitting problem

has been dealt by the lasso regression. This is the basic difference, one should know.

To improve this model further, I have used with the cross validation, but it is taking more

time to run the program. Once I explain this ridge regression and ridge cross validation,

later you can observe this course. At the end, please try this one so that there is no

complication.



(Refer Slide Time: 1:03:18)



Now, coming back to ridge regression. Here also, this function, import this ridge

regression function, is equal to 50, max_iterations is equal to 100, tolerance level isα

equal to 0.1. That is it. Let me run this one.

Next, lasso underscore regression dot fit of train_x , train_y. Let me check the regression

score here. Here, this particular score, here that particular score indicates the r2 score

only, or R2 square value. See here, 0.66, 0.68, very minute difference is there, not much.

Earlier, if you observe the simple linear regression, 13 percentage and 68 percentage, see

how much difference is there. So, that is how you can dealt.



(Refer Slide Time: 1:04:21)





Till now, we did not use, to tune this hyper parameters, we did not use any cross

validation, sorry, validation data till now here. Now, if you observe this ridge regression

with the cross validation data, till now, I have dealt whatever I told you, simple linear

regression and ridge regression and lasso regression, all are with, all are with only,

without validation data.

Now ridge regression, we are dealing with the validation data. The score or the metric, I

am observing here is negative mean squared error, observe here. This is not a r2 score

value, please keep that point in mind. Now let me run this on ridge regression. Just learn

how to use whichever algorithms, well, that is more than enough. See, it is taking some

time. See, here, I am trying different values, 1, 2, 3, 4, 5, 6, 7, 8, like this, from 10 toα

the power of minus 50 into 100.

Still, it is going. Our ultimate thing is to train error and test error or train whatever metric

you are going to use, those metrics should be almost close to each other for the training

and testing. Then only we can say that they are going to do as a, okay, here, I am

observing the negative mean squared error, please keep that in mind, not R2 value. Now, I

am printing down the best parameters and matrix.

See here, for the CV is equal to 5, I have used that means I am dividing the entire thing

into some cross validation of 5. Here is, that is the parameter. That means instead of using

the entire train data, whatever I have given as a 70% data, among the data, few points will



be act as a validation data also here, please keep that in mind. That is where the cross

validation part will come.

Now, use the regression score on this one, and regression score on this one. These are

negative mean squared error only, not the, that one. See, observe both the values, you can

see that both are almost close to each other, like 12 and 13. Maybe the value is large. That

is how we will tackle the regression problems whenever there is any overfitting problem,

we encounter with the either ridge regression or lasso regression.

You just observe, with, by removing these comments, whatever I have sent into that

particular folder, data, just print this one, these two things also. GridSearchCV indicates

that cross validation part only. Please go through this one. This is the end of the tutorial.

Thank you so much.


