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Hello everyone. Welcome to the MATLAB tutorial of Medical Image Analysis course by

Professor Ganapati Krishnamurti. In today's tutorial, we will demonstrate 3 active contour

based segmentation techniques discussed by the professor in the lecture videos. These

techniques are active snakes, geodesic active contours and Chan-Vese segmentation. Please,

carefully go through the lecture before this tutorial. Because we will focus only on the

numerical method aspects and not on the theory. So, we start with snakes.

As professor discussed, the energy functional to be minimized for snakes consists of 2 parts,

a external energy or data term and b internal energy or regularization term. The expression

for the 2 terms are shown on your screen. Please, note that C here represents the

parameterized equation of snake. For example, the parameterized equation of a circle is

shown on the right hand side. C vector is equal to and this is parameterized𝑥 * (𝑠), 𝑦 * (𝑠)

by s. Here, the parameter s varies between 0 to 1.
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To find the optimum c, we have to solve Euler-Lagrange equation involving second order

terms. Here is the formula for it. The value of j and f here, in our case would be this.
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So, on plugging these expressions, we get Euler-Lagrange equation as shown here. Now, to

find the snake evolution equation that is step 3, we convert this problem into a pseudo

transient problem by introducing an unsteady term.
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So, here is the unsteady term that we have introduced and now we get the following equation,

following unsteady equation. So, when we do it, we get the following equation.
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Here, alpha and beta are the 2 parameters that determine the elastic and bending properties of

snake and here these parameters are function of f. But we assume that these are constants. So,

here one approximation comes into the, our first approximation comes into picture and these

equations get reduced to this one. So, here alpha is alpha, beta is beta. Now, this is the main

snake evolution equation and you can see it consists of 4 terms.

So, now, we will discuss its numerical solution. Before that please, note that we are using

to represent snake coordinates and they are different from Cartesian coordinates x,(𝑥 *, 𝑦 *)

y. For example, here you can see the gradient in the fourth term, here, is taken with respect to

snake coordinates and not Cartesian coordinates.
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Now, when it comes to discretization, we will show discretization only for one component

but the second component will also be same, will be similar. So, for example, we start with

the unsteady term. So, the unsteady term is approximated with the help of backward

difference formula, which you can see here. , , here it is t, it is . For simplification,𝑥
𝑠

𝑗

𝑥
𝑠

𝑗

𝑡 − 1

in shorthand, we can write as . So, at t minus at upon . So, this is the𝑥
𝑠

𝑗

𝑥
𝑗

𝑥
𝑗

𝑥
𝑗

𝑡 − 1 ∆𝑡

backward difference approximation of unsteady term. The second and also you have to note

that, okay.
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Now, we come to the second and fourth derivatives, these 2 terms. The second and the fourth

directives are calculated using central difference at present time. You see we could have

calculated these derivatives at t minus 1 as well but we are calculating it at present time t. So,

this is common. When we solve a partial differential equation using fully implicit methods

then what we do? We calculate spatial derivatives at present time. So, it looks like, this is

implicit kind of thing.
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Now, we come to the last term. Although, the second and fourth terms were computed at

present time like we do in implicit method, the fourth term is computed at past time like in

explicit method that is at t is equal to . So, because the fourth term is calculated at past𝑡 − 1

time and the other terms are calculated at present time, so, that is why it is called

semi-implicit method. Now, I explained the discretization of this term.
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So, given an image I as a function of x and y, grad I can be found using Cartesian coordinates

and its magnitude, negative of its magnitude gives external energy. Next, we take gradient of

this energy and find its component along the snakes. Along the snakes is important, so, we

are trying to find its derivative, its gradient with respect to . So, the explicit term is here.𝑥*𝑡−1

So, this is how we do it. So, this is a central difference only.
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Similarly, we do for y. So, when we substitute these values, we get a pentadiagonal matrix

structure with coefficients as shown here. , , , where the value of a𝑏 𝑎 + 4𝑏 1 + 2𝑎 + 6𝑏

and b is , . So, in matrix form, it reads:α∆𝑡/∆𝑠2 β∆𝑡/𝑠4

𝑀𝑥*𝑡 =  𝑥𝑡−1 +  ∆𝑡∂𝐸
𝑒𝑥𝑡

/∂𝑥 * |𝑡 − 1

Here M is the cyclic pentadiagonal matrix and we have to efficiently calculate its inverse to

update the position of snake points.
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For example, you can see here. Given and this , they can find by this𝑥*𝑡−1 ∂𝐸/∂𝑥 * 𝑥*𝑡

expression. But this involves calculation of . So, because it is a pentadiagonal system,𝑀−1

this we can use LU factorization to calculate its inverse efficiently.
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So, in the lecture, this matrix M is same as . So, this is just a change of notation but it𝑎 + γ𝐼

is the same as that. So, now, this is the basic snake algorithm that you will find at various

places online. There are many advanced versions of snakes but we are not going to discuss

them here.
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In fact, in the MATLAB code that we will give to you, the code has some additional forces as

well. For example, balloon forces as well as the gradient vector field forces. So, there are

many functions written for that purpose. Now, we will show you some basic MATLAB, some

MATLAB snippets to show that the basic structure taught in the class is present in the

advanced code, in the advanced code as well.

For example, here, is the code for calculating external forces that is gradient of image. Note

that here, so, we can simply use gradient function in MATLAB and we can calculate energy

sqrt means a square root. So, note that here . We got fx, fy with the help of gradient[𝑓
𝑥
, 𝑓

𝑦
]

and this fx, fy that we have got, it will be interpolated along the snake curves later.

For example, here, we have fx, fy, later we will use like we have to interpolate this fx and fy

along xs and ys. These are the snake coordinates, you remember. Because we had this ∂/∂𝑥 *

term. So, we have to do that.
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Also, this is the code for pentadiagonal structure and yeah and this is the snake evolution

equation. So, thing is there are many implementations of snakes that are available online. Our

objective is just to tell you that you will find the basic steps that you learned in the class, that

you will find them sitting even in the advanced codes. You will have some additional forces,

your functional may be different but these basic steps you will find there also.

So, when you look at a code, do not worry about it. Because it may have some additional

terms, no problem. But the basic structure will be there. You will be able to see a better

diagonal system. You will be like seeing people calculate some external forces. Now, what is

the external force?



This depends on their energy functional but it will be there. So, you will use some gradient,

etcetera, so, not a problem. So, even if you have one code, one MATLAB code, you can like

modify it to suit your purpose. So, now, we will show you an example of snakes in action.
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So, for example, I run this code. So, this code is not written by me, this is written by Mr.

Kroon. It is available in MATLAB central. So, here you can see, this is the initial contour and

you can see, now this initial contour is moving and slowly it is trying to fit this object, the

boundaries of this object. So, that is how these contours move. Here, you can you can also

see the external energy and here is external force field. So, because it is little bit slow but you

have already seen that you have an initial contour that is deforming in such a way that it fits

the boundary.
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So, it actually looks like this. So, here you can see, the top left figure shows the boundaries to

be captured and the initial contour. The right left force, the right left figure shows you the

magnitude of gradient of the image. Note that gradient is high near the edge and this edge

looks little bit diffused because it is convolved with the, it is convolved with a Gaussian filter.

Now, in the bottom, left you see the image forces, image force vectors. So, they are small but

you can magnify it. Maybe I will show you.
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So, if you will magnify. So, they are not very clear but you can see, you have image force

vectors that actually pull the contour towards the edge and their value is very high near the



edge. As you move away from the edge, their length becomes very very less and after

sometimes it becomes zero. For example, here it is all zero, here it is very less, near that, it is

little bit longer.
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Also, the bottom, this, the bottom right figure shows the final position of the snake and as

you can see the snake has fitted the object reasonably well, hopefully got it. So, you can see

here. Now, that is complete. So, initially it was like this. Now, it has come to this position. So,

what we have seen is that the snake has fitted the object reasonably well. So, we encourage

you to play with various images, various initializations. Initialization means a different initial

contouring position. And you can also play with parameters alpha, beta.
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And there are some guidelines for the choice of alpha and beta. So, typically a high value of

alpha is used when like your image has a deceptive image gradients and the low value of beta

is used for sharp edges. So, this completes snakes, our first active contour model.

(Refer Slide Time: 16:30)

So, after this, we come to the next model, which is a Geodesic Active Contours. So, in

snakes, we were explicitly involved like evolving the position of snake curve like snake

points, snake coordinates by tracking position of its points. We had some points initially and

we were tracking its position. So, in this approach we use level sets. So, in level set

formulation what we do?



Instead of like moving the tracker points or contour points explicitly, we evolve the surface,

phi, we evolved surface phi instead of like evolving the curve C. Earlier we were evolving the

curve, curve C. But here in level formulation, we want to evolve a surface phi. Now, the

position of C is calculated implicitly, not directly. So, how do we calculate it? So, C is

basically a set of points for which the value of phi is zero or the set of points with zero height.

So, for details, I suggest you to revisit the lecture video by the professor. So, and now, I will

be little fast. So, like in the case of snake, we will define an energy functional that attracts the

contours of zero height that is C towards the edges. So, how do we do it? Given an image I, a

simple edge indicator function is shown on your screen, it is small g. We can use this function

to determine the energy functional and then solve the Euler Lagrange equation to arrive at the

gradient descent equation.
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So, this is our energy functional. Now, it is written in terms of phi not in terms of C. So, it is

here. Here, delta is the smooth Dirac delta function. So, I have added timestamps also. So,

please, please, go to these timestamps to understand more about the theory. I am just trying to

explain you the mathematical formulation.
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So, this is what we do. So, we have this kind of driver force the as edge attractor. This is our

energy functional and when we solve Euler-Lagrange equation, we get this level set evolution

equation.
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So, in the MATLAB code shared with you, the idea is same but the functional has some

additional terms. Like in the case of snake, that code had some additional forces baloon

forces and gradient vector field forces, so, here also it has some additional functional terms.

Some additional terms in the function. But do not worry about it. So, I will show you that

even though it looks complicated, the basic things that we have just saw, that we have just

seen are sitting there.



So, here are some snapshots for your reference. So, for example, our initial phi, initial level

set is suppose a binary function. So, if you have to represent this, you have to write like this.

In MATLAB, you can write a binary step function in this way. So, its value is either minus 2

or plus 2.
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Then the edge indicator that we have seen they have also used the same edge indicator. So,

this is how we write energy indicator in MATLAB. Also, here, please, go to this almost at 25

minutes. Sir has explained that this is a smooth Dirac delta function. So, for smooth Dirac

delta function, sir has written 1 upon pi into epsilon upon epsilon square plus something. It

was written like this. But here, they have used some different formulation.
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So, they are using this, this function to smooth it. You can use sir’s formula also. No problem.

(Refer Slide Time: 21:17)



Then the level set evolution equation is, it has some additional terms. This, this alpha, this

mu. So, you can see this is the equation. So, you can like maybe put lambda equal to zero or

you can simply turn off some of the forces and you will get a simpler model also and you can

check whether it is performing well or not. So, this is the like the MATLAB code. Now, we

show you a sample implementation of this code. So, let me show you.
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This is very very slow. So, you see, hope it will take some time. So, you see the initial level

set function was this, minus 2 plus 2 the binary step function and as after some time, after

some iteration because we are solving that unsteady equation, the shape of this initial level set

function changes and finally, it becomes like this.

And if you see, this is the zero point, so, when the height is zero, the contour at that point is

the curve C. So, if you see, the contour actually coincides with the boundaries of these 2

objects that we wanted to capture. And this is something that we cannot do easily with

snakes. So, you can see, here we are not evolving the contour directly.

Actually, we are evolving this phi function. So, from this binary, this binary step function to

this function. This is evolved in such a way that the contours come close to the edges. This.



So, there are various versions of level set methods available online. You can check, check

them. You can play with them. But our objective was to show the basic idea.
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So, now, I come to the last part, the last model. It is called Chan-Vese model. So, this is also a

level set based active contour model but the difference is in the value of functional. So, here

instead of using an edge attractor, the functional used is a, it is called a Mumford-Shah

function and it contains 3 terms . So, here, if F is a image, small f and u is its𝐹
𝐴

, 𝐹
𝐵

, 𝐹
𝐶

piecewise smooth approximation and C is an evolving curve in gamma, some computational

domain.



Then, and also omega by C, omega over C represents domain inside C. So, with this notation,

the formula of a Mumford-Shah functional looks like this. So, what it does is the first term 𝐹
𝐴

, it penalizes, so, if you have a long length, if the length of the contour is long, it you will

penalize. So, its objective is to keep C smooth and compact. The third term , it penalizes𝐹
𝐶

for edges within segmented region.

So, for example, you have segmented some region with the help of a contour C. So, within

that region, if you have a lot of gradients, if you have a lot of gradients that means there are

some edges. So, it penalizes if you have too many edges in the region. So, the objective is to

avoid too many edges in the region bounded by the C.

Now, the second term Fb, it looks like mean square error. So, it penalizes, if the piece by the

approximation is very different from the original image. So, this is the main feature of this

function like lambda times f minus u square, the term. So, sir has explained this in 3𝐹
𝐵

minutes in the lecture video. So, I will just take the same example.
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So, here you can see, here you just look at this figure, this expression, here f minus u. So,

here u, what we have taken for u is, here, u is simply the average of image intensity in the

segmented region. So, for example, here we have C, this white curve. So, within that we have

, outside it is . So, whatever is average within that is .Ω
1

Ω
2

Ω
1

µ
1

And then we are calculating . So, considering all possible options, you can see that the𝑓 − µ
1

value of this energy function will drop to 0 only when the curve fits the actual boundary. So,

in this case you can see, the first will be greater than 0, will be close to 0. Because𝐹
1
, 𝐹

1
 𝐹

2

in , everything is smooth. In this case, , because most of the area is black, so, is𝐹
2

𝐹
1

𝐹
1

almost zero. But outside we have black and this gray. So, will be greater than zero.𝐹
2

Here in this case you see, there is black and white in both region, also, also. So, that isΩ
1

Ω
2

why it is also greater than 0. So, it will be fitting well only when we have this type of

structure and this is what we want to do. So, if you consider all possible cases in the position

of curve, the fitting term is minimized only in the case when the curve is on the boundary of

the object. So, this explains this functional.

So, just like in the last 2 approaches, once we have a functional but this functional is written

in terms of C and we want to use level set formulation. So, we need to find a way to write this

functional in the form of phi.
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So, in the level set formulation, given constraints on C, the energy functional in terms of phi

can be written as follows. Here, H, H is heavi-side function. So, because it is not

differentiable, its smooth version should be used. So, please, refer to this timestamp in the

lecture to know what smooth version should we use.
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So, once we have this functional in terms of phi, we can again use the same Euler-Lagrange

equation and find the, this gradient decent equation. So, this is what we get. is equal to∂ϕ/∂𝑡 

this Dirac delta times this function. So, this is again, because we want to use smooth

functions, so, this Dirac delta function is smooth with the help of this function.

1
π

ϵ

ϵ2+ϕ2

So, now, I will take, now, because this formulation is shown to you, in the MATLAB snippet,

we will show you the mean square loss term. This term that we were explaining for so long.

How this is implemented in the Chan-Vese segmentation.
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So, this code is by Shawn Lankton and it is available in MATLAB. It is available in

MATLAB central. So, in this snippet you can see like with the help of level set we can first

find the interior points then exterior points and then we are calculating the mean of that, mean

of these points, u and v. So, this is basically and in our expression here, the thing thisµ
1

µ
2

.µ
1,

µ
2

So, we are calculating in MATLAB like this. And then this formula, the force from image

information, you see, I minus u square plus I minus v square. So, this is same as this, f minus

u. So, you can see, it also like, it has some other terms also get curvature etcetera. So, that I

do not know.

So, but it has some more terms also. But like in the previous examples, we can see that

whatever we have learned in this course is actually sitting in the advanced code also. And you

can like play with parameters, you can modify the code like simplify the code for your

purpose also or you can even make like add your own terms and see if the results improve or

not. So, you can play with this code. But the main thing is whatever we are learning here is

actually deployed in these models.
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So, here is an example, an example of a Chan-Vese implementation segmentation. So, you

have an initial image of this aircraft. You initialize it with this. So, this is your initial level set

and then after some iterations you get this. So, I will show you. So, if you run this, you see,

this is an input image. Yes, this is your initial level set and after some time, you can see, it is

able to like capture the boundaries of this aircraft, yeah. So, thanks everyone.


