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Hello, and welcome back. Today's class we will talk about calculus of variations, which is a

fundamental topic, which is necessary to understand partial differential equations based

techniques for image segmentation. So, this is the calculus of variations is what gives rise to

many of these techniques. We will have a brief look at this method just to understand where it

comes from, and the fundamental Euler-Lagrange equation.
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So, we will look at the historical origin of the calculus of variation. So, in the early 1600s

John Bernoulli, one of the mathematicians in Europe, renowned mathematician in Europe at

that time, posed the so called Brachistochrone problem. So, the problem statement is given

below, I will just read that out. So, given points A and B in a vertical plane, find the path A

and B down which a movable point M must by virtue of its weight, proceed from A to B in

the shortest possible time.

So, basically, it is a point mass, mass m, small m, and it is going to travel in the vertical

plane, we look at the images in the next slide, from A to B starting point is A, ending point is

B. And you have to find the, the idea is to find the path of that particle B, we will take it as

bead on a string. So find the path of the particle or a point and it is of course it is moving by

virtue of it. So, it means that the only external force is the gravitational force, it is acting

downwards.

And the idea is to optimize for the time. So you have to find out the shortest possible time,

the path which gives you the shortest possible time. So, this is like an optimization problem,

except that the solution is not just one number, or a coordinate, but rather an entire path or a

curve or a function. So, we will look at the details of this problem in the next few slides.
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So, here is the slightly more detailed overview of the problem. So, you consider the particle

M of mass m. So, the small m is the mass (poor notation, sorry about that), but the

gravitational field of strength g, so, this is the acceleration due to gravity, g and it moves

along the curve, the curve is parameterized by x. So y is a curve, is the equation of the𝑦(𝑥)

curve between two points A and B. And of course, it is in a vertical plane.

And the time of descent of the particle is given by , so is basically if the particle𝑑𝑠/𝑣 𝑑𝑠/𝑣

travels along the curved path by an infinitesimal length ds is called the arc length and the

time it takes is given by , v is the speed of the point mass or the particle and ds is the𝑑𝑠/𝑣

length along the curve. So, it takes a curved path for the general path is the curved path.

So, if it travels a distance ds around that curved path then the time taken by it ds over v where

v is the speed. L is the length of the curve and v is the speed of the particle. And you can also

denote the total time taken if you think of it as t that will be total capital t will be the total

time taken. So, this is the problem statement.

So we are trying to optimize for time. So we have to find the path that gives the shortest time.

So if you looked at optimization problems before, for instance, in neural networks, we are

looking for parameters that provide the smallest loss function. In a lot of cases in

optimization, we have some form of cost function and usually try the estimate parameters in

an optimization problem so that the cost function or loss function is small.

Here the loss function, if you want to think of it is the time, time taken. Time taken should be

just as minimum as it can get. And what parameter are we trying to estimate here, we are not



trying to determine a parameter rather, we are trying to determine a entire curve or a function.

So, these are the kind of problems that is concerned in the field of, that you are concerned

with in the field of calculus of variations.
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So, we have slightly more detail look, because I have not shown you any pictures so far just

talking about these things. So without any loss of generality, we can say this is the vertical

plane and think of this as the y axis and this will be x. So, and you are, you are trying to get

from A to B in the shortest possible time. So, what is the path? What is the curve that will

take you from path or curve that will take you from A to B.

And this M here, this is the point mass you are talking about g is the acceleration due to

gravity. So, we are trying to estimate this equation of this path and we will call this . 𝑦(𝑥)

Now, how do you go about doing this? So, if you do it intuitively, then, you would

immediately say, let us do the shortest path, the shortest path is the straight line between A



and B, that is what is given here, this is the straight line. So, if you look at it, this is the

straight line.

So ideally, you would think of the shortest path straight line path would give you the least

time. But also think about the other way, if you let the particle drop a bit vertically quite a bit,

then it will gain speed because it is motion under gravity it will gain speed. So, you are not

giving it any extra or whatever, just dropping it. So, it will gain speed and so then if you think

about it, in which case, the time still can be reduced because you have higher speed.

But the problem with this approach is that if you let it drop so that it gain speed is that, you

have a longer path. So, if you want to increase its speed or velocity, you need to get a slightly

longer path, but it will be very high speed, so then you have a good chance of getting

reaching that quickly from A to B quickly.

On the other hand, if you are just choosing the shortest length, then maybe velocity is not that

great. And typically, is like that. And so, then you might not, even though the time must

might be reduced, because the path is shorter. But they are still not very clear. So, there are

two things at tension here, longer path, high speed, shorter path, low speed.

So we do not know which is better. Now you have to find a compromise between these two.

So, many of the problems, we will talk about segmentation problems, we will talk about, this

kind of tension will be there between two different quantities that we are trying to minimize.

And those situations is where, calculus of variation comes in handy. It provides you a

systematic way to arrive at correct solutions.

So in this case, what you are trying to figure out is the equation of this curve. So

mathematically, the form, the problem is formulated as follows:

𝑇 =  1
2𝑔 𝑎

𝑏

∫ (1+𝑦'2)
𝑦

𝑎
−𝑦 𝑑𝑥

So, we want to minimize the total time taken, which is what this integral gives you and we

saw that can be returned as and that in turn can be written as . So what is ,𝑑𝑡 𝑑𝑠/𝑣 1

1+𝑦'2
𝑦' 𝑦'

is nothing but is , I will just write it out here.𝑦' 𝑑𝑦/𝑑𝑥

This is a very common derivation, you can actually Google this and you will find it

everywhere, Wikipedia pages for it. So, I am not going to go into detail but eventually, you



have to do a few substitutions basically, for the velocity also, because the v, you can get by

conservation of energy. So if is the, maybe I will have to zoom in a bit. So, is the𝑦
𝑎

𝑦
𝑎

position of the starting point so, this is the starting point coordinate of the starting point . If𝑦
𝑎

it drops a distance y, then it gains some kinetic energy.

So initial energy is purely potential. So, using conservation of energy, you can evaluate an

expression for v from this equation above, and then substitute back in the integral. So that

will give you this integral expression for the time, a definite integral expression for the time,

which is , an integral a to b and whatever is in respect of this of course this on the1
2𝑔

numerator, this is . Just keep that in mind. Maybe I will zoom in a little bit, just to make𝑦'2

sure.

So, this is the integral that we want to optimize. So, you want to find the minimum time, so

this integral is what is referred to as the functional. So, this is a function. So, functional takes

as input a function, in this case, a curve and returns a scalar value. So, in this case, it is the

total time taken, and we want to minimize the functional to arrive at an optimum path, which

is basically y we want to figure out . That is what we need. So we will, we will revisit𝑦(𝑥)

this once you finish derivation. If you want to minimize time, which is basically this is the

functional then you have to find a path y. So it is entire function.
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So, the general goal here is to maximize or minimize definite integrals of this form. So, if you

note, it is a definite integral a to b and f here, the integrand is a function of y, , which is𝑦'



and x. This J of y itself is referred to as a functional. So, like I said earlier, a function𝑑𝑦/𝑑𝑥

takes an argument. For instance, if it is a 1D function, defined on the real line, let us say,

takes as x an input on the real line, and returns a value which is typically another scalar on the

real line.

Typically, a scalar, while a functional in this case takes as input a function, the input to this

function is y, y is a function, it is a curve, but it is still a function and returns a scalar value.

So, when you optimize functions what it does, it provides the location of the optimum. So let

us say f of x is x squared, let us say you are optimizing something like x square. Location of

the optimum is x star equal to 0.

That is where the function, takes its lowest value. So, in this case, when you optimize𝑓(𝑥)

this function, what you are trying to do is to estimate y the function itself, so you want to

estimate a function, which will optimize this function. Now there are some other aspects like

this is actually defined in infinite dimensional space, because if you look at this typical

function optimization, let us say 1 D, f of x equals x squared.

Now x is just in 1 dimension, but when you consider you are trying to estimate for an entire

function, then the problem is defined in infinite dimensional space. Here, again, infinite

dimensionality comes from how you represent the function and in what basis you represent

the function. So for instance, if you use Fourier basis, or you are using Fourier series of

Fourier transform, there are infinite number of terms. So consequently, you are in an infinite

dimensional space, making the problem a lot harder.
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So just to reiterate, so let us consider this picture here and I will tell you what are we are

trying to explain here. So let us assume that the solution to the problem we studied. So that

solution here is the x and y, solution we wanted. So the solution curve, which is basically the

curve that you want, estimate from A to B, put A here and B there. So, B here, and let us say

the black curve is the correct solution. The curve that gives you the shortest time of travel

from A to B.

So that is the black curve. I have to use color that I have not used here, so I will stick with

black, so black curve is the correct solution, that is the one. So we all know that when you

work with minimization functions, etcetera, let us say we have some, we are not talking about

a different topic. So let us say we have this function and this is defined on the real line.𝑓(𝑥)

So x is probably minus infinity to infinity, take on all values on the real line.



And is a scalar valued function output is also a scalar. So, it returns to scalar. So let us𝑓(𝑥)

say is the point at which attains a minimum, we will just talk about minimum. So𝑥 * 𝑓(𝑥)

is the x, is x at which becomes minimum. So, if you look at any perturbation𝑥 * 𝑥 * 𝑓(𝑥)

around , so if you look at, let us say, , and also you can do , small𝑥 * 𝑥 *−  ∆𝑥 𝑓(𝑥 *+ ∆𝑥)

perturbation.

So if you look at this, then you see that for all these values, when you move to the left a bit or

to the right a bit, since is the minimum. Well, there are other assumptions here, I am𝑥 *

assuming that there is only one minimum for , the global minimum or no local𝑓(𝑥)

minimum, etcetera.

We have made all the necessary assumptions. But then still, we are only looking at the

neighborhood of a minimum. So, and if you move either to the left or𝑥 *−  ∆𝑥 𝑥 *+ ∆𝑥

right, then in that case, for all if you , and , and everything in𝑓(𝑥) 𝑓(𝑥 *− ∆𝑥) 𝑓(𝑥 *+ ∆𝑥)

between except for will be greater than the value at . So, all value of𝑥 * 𝑓(𝑥 *)

, so this is true.𝑓(𝑥) >= 𝑓(𝑥 *)

If your is the minimum, you show the minimum value of , and it is at , then if you𝑥 * 𝑓(𝑥) 𝑥 *

perturb a bit perturb the value of x around , then all values of will be higher than𝑥 * 𝑓(𝑥)

that, will be greater. So, it is very simple if you let us say, if you draw, let me wipe this out

and draw so it is easier. Very simple function like this parabolic function. So if this is your

minimum there, if you move to the right or to the left, the function value increases. That is

what I am trying to say.

So, similarly, but then this is in the real axis, of course, you can also consider it in multiple

dimensions x, y z or x1 x2 up to xn. And the argument remains the same. If you perturb it a

little bit around where it attains its optimum value in this cases it is minimum value, the x

values, the coordinate values, then the function value will increase. So how do you do similar

perturbations in, when you are trying to estimate function?

So, if this is our correct optimal function, this black curve is our . This is the path𝑦ℎ𝑎𝑡(𝑥)

that gives you the shortest time in our problem we are studied. But in general, for any such

definite integral, we saw, let us say this is the function that gives you the least value of the

functional, then how do you perturb this, so you perturb this by adding a test function, h of x,

that is how you do, here you added , you are adding .∆𝑥 ℎ(𝑥)



And it is of course satisfy the boundary conditions here, because boundary conditions is that,

in our case the particle or the point mass starts at A and ends up and B. So, the boundary

condition is satisfied. So, which means . So, they are at the ends of theℎ(𝑎) = ℎ(𝑏) =  0

path, your boundary conditions on it and this is true for any other problems, they will always

be a boundary condition, and you have to meet them and this is one way to meet it.

So is a think of as a small perturbation to , which is the correct or theℎ(𝑥) ℎ(𝑥) 𝑦ℎ𝑎𝑡(𝑥)

correct curve that we are seeking. This is how we perturb it. Because it is like you said it is, it

is an infinite basis for infinite dimensional space, the only way you can perturb is by𝑦(𝑥)

adding another test function to it.

So this is, of course, this is the important point that you have to understand, in the calculus of

variations, and how do you perturb this function. We are not done yet. So, we will have to

look at what will further calculations are required in order to arrive at the so called

Euler-Lagrange equation.
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So we seek the I call it the extremum of so but you have to pass this in your mind𝐽(𝑦)

saying, we seek to find some y such that attains a minimum value or you can also say𝐽(𝑦)

maximum value, but always change the sign and do that. And there are boundary conditions

to be met such that and , these are typically given. So you𝑦(𝑎) =  𝑦
𝑎

𝑦(𝑏) =  𝑦
𝑏

understand that.



And the integrand is some function, which is a function of x, y of x and y prime of x.

Sometimes you can also have higher derivative, so , we will see that this actually𝑦''(𝑥)

happens in some of the image processing problems. So, we will see about that when we get

there, so we seek the extremum of that is what I call it extremum. Once again this𝐽(𝑦)

optimization literature has different definition etcetera. So, I am just being very informal, so

do not hold me to this. So, I assume that we are just trying to find out y such that is𝐽(𝑦)

minimal, this functional is minimum.
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So, like we said, we have to perturb it around the optimal solution. So, which is basically we

assume that is that function for which attains minimum value. So, we then try to𝑦ℎ𝑎𝑡 𝐽(𝑦)

perturb it, that is what we do. This is again, a familiar trick. However, when you also try to

take derivatives, then you do something like that. So, we have as infinitesimal decimal

change in the arguments, and then we try to see how the function changes.

Similarly, that is what we are trying to do here except that we have to parameterize carefully.

So we saw that, we are trying to, in the previous slide, we tried to do . That is much𝑦ℎ𝑎𝑡 + ℎ

harder to do, actually. Because what do we eventually want? We want to have estimate this,

you want to estimate. So that is what you would do, if you want to find out the maxima or

minima of let us say, an arbitrary function, I am using f, here all the while, but you feel free to

put something g or if you want h also.

So if you write it as , and set it to 0, this will give you a maxima or minima and you𝑑𝑓/𝑑𝑥

would look at the sign of the second derivative like and you will also examine the sign of

and that will give you whether it is a maxima or minima. But either case this is the𝑑2𝑓/𝑑𝑥2

first step, you have to set this to 0.

And the way you do that, now, if you want to start on principle and you will perturb , left𝑓(𝑥)

hand side is , etcetera. So we want to write and this is hard to compute𝑓(𝑥 *+ ∆𝑥) 𝑑𝐽/𝑑𝑦

using just this kind of trick. But then we have to perturb everything by h and then . Andℎ'



then you have to say h is small. So, because when you do f right, this kind of derivative, you

will do by , something of this.𝑓(𝑥 *+ ∆𝑥) − 𝑓(𝑥)

I do not want to write too much around here just to give an idea. So, you will do

. That is how we estimate the first derivative. So, this is the limit(𝑓(𝑥 *+ ∆𝑥) − 𝑓(𝑥))/∆𝑥

of and 0, that gives you . So that is the idea. So, but then to do that, here, you have∆𝑥 𝑑𝑓/𝑑𝑥

to do something or we have to reparameterize so that it is a lot easier to do.

So what you do is instead of h, you write , so that is what we have here, this𝑦(𝑥 + ϵη(𝑥))

term so h epsilon eta of x. So can be any function, because we assume that it is typicallyη(𝑥) 

well behaved that it does not have some nasty discontinuities. But generally, is anyη

function, is any function and is a very small number with is a very small incrementη(𝑥) ϵ ϵ

that you add on.

So this way, you can perturb around y hat, you can perturb around y hat and see how this

changes. So now, J is no strictly a function epsilon. Why is that? Because y hat is fixed, we

know assume that y hat is the correct curve that we are seeking. And the curve for which J of

y is minimum, or is the smallest value can take and we perturb it with , we𝐽(𝑦ℎ𝑎𝑡) 𝐽(𝑦) ϵη

fix also, we say it is a test function.η

It can be any function without loss of generality, we can say it can be any function andη

which of course, like I said, it has desirable well behaved function, we do not want some

pathological function, something that goes into infinity and all that we do not take, we just

say, it is a function, which well behave as the derivatives first and secondary derivatives exist.

And then so then we can just use that to perturb. So now that is also fixed, so the only thing

that we are changing is , so that we are actually searching in the neighborhood of y hat, justϵ

making sure that for any such value of epsilon, your function takes, J is the functional takes

higher values than at .𝐽(𝑦ℎ𝑎𝑡)

So then we have calculated what is known as the first variation. But before we do that, define

what the total variation is? Total variation is given by this expression, .∆𝐽 =  𝐽(ϵ) −  𝐽(0)

So, what is , just put epsilon equal to 0 with just the functional, which is estimated at𝐽(0)

and and So now we can write the total variation in this form, I have𝑦ℎ𝑎𝑡 𝑦ℎ𝑎𝑡(𝑥) 𝑦ℎ𝑎𝑡'(𝑥)

just substituted for J of epsilon here, and J of 0 here.



Now that the second step is of course, bring them under the same integral, make them one

integral under the same integral. And if you look at this, we can just then now you do your

usual tricks like you can do a Taylor series expansion of , y hat of x plus epsilon eta y hat𝑓(𝑥)

prime of x plus epsilon eta prime. So, you can think of as a function of several variables,𝑓(𝑥)

and you do a Taylor series expansion. So, and then once you do that, you will see that this

term will cancel out and what is remaining, this what we will refer to as the you can call it the

first variation.
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The left hand side also, the total variation can also be expanded in Taylor series and once

again, the J of 0 will then get subtracted out, because that is what we are expanding around,

around J of 0. And once we do that, then we get this term which is known as the first

variation. First variation, which is nothing but at evaluated value epsilon equal to 0𝑑𝐽/𝑑ϵ

and it will turn out that it is this expression on the right.

And in order for the minimum to occur at y hat, we should get done so that should be 0, it∆𝐽

is not too hard to see because you see the , the expression for is an odd function of . So,∆ ∆𝐽 ϵ

if we change the sign of then what happens is automatically changes the sign here, . See,ϵ ∆𝐽

, this is the minimum, is the minimum.∆𝐽 =  𝐽(ϵ) −  𝐽(0) 𝐽(0)

Any other perturbation should only increase the value of J. So, but if I change the sign of

epsilon, you can show that this will become a positive number and if I change the sign of

epsilon will change the sign of the value of . So, that means that you can get higher orδ𝐽

lower values. So that is not correct. So, then you have the set . So we can show thatδ𝐽 =  0



, that is okay make a theorem you can prove. And once you set that to 0, then theδ𝐽 =  0

next step.
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So a necessary condition for the functional to have a relative minimum or maximum at y𝐽(𝑦)

equal to y hat is that the first variation vanish. This is like a theorem. I am not going to prove

it, but I just gave you like a kind of hand waving argument because which is called the firstδ𝐽

variation is an odd function of . So by changing the sign of , we can make it lower thanϵ ϵ

, which is not true because corresponds to y hat and that is we know that when we𝐽(0) 𝐽(0)

have assumed that they were defined in this that it is the value at the correct or the optimal

solution of y.

So then, by changing the sign of epsilon, we can make the total variation, positive or

negative. So, to prevent that, the only way that can be prevented is by making . So,δ𝐽 =  0

the theorem once again, is for the necessary condition for the functional to have a relative

minimum or maximum at is that the first variation of vanish, that is𝑦 =  𝑦ℎ𝑎𝑡 𝐽(𝑦)  δ𝐽 =  0

for , and for all admissible variation .𝑦 =  𝑦ℎ𝑎𝑡 η(𝑥)
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So once this is done, then we can go here and look at what happens if we set this to 0. Again,

it is other way of looking at it is that you are setting the first derivative to 0. Easier way to

look at and set that to 0. And once you set that to 0, one other thing that we have to do is we

have to simplify this expression.

So, this f of y prime once again, sorry, if I have not mentioned this earlier, f of y, f

underscore, f subscript y is nothing but and f subscript y prime is . So we∆𝑓/∆𝑦 ∆𝑓/∆𝑦ℎ𝑎𝑡

assume that, so we can do integration by parts, so we take the second expression, we can do

integration by parts, and use the boundary condition, to eventually come at this expression.

Now, all you do is focus on the term in the brackets, it turns out that we can prove, in order

for the integral to be 0. For any data x, this term should go to 0, the term that I have put in red

bracket should go to 0. That is another theory. See we did integration by part for the

and if you have y integrated, we will have a derivative with respect to y w prime 𝑑𝑓(𝑦')/𝑑𝑦'

when f is a function of y w prime also, then I will have another term, we will have to do

integration by parts twice.
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So the coefficient of f x should vanish for all choices of eta satisfying boundary conditionsη

leading to the Euler Lagrange equation. So, these are the Euler-Lagrange equation for any

choice of eta. So now, this equations are partial differential equations and this is what used to

actually estimate y, see, that is a function of both y and . And in this case, because we𝑦'

started out with the f strictly as a function of x, y and .𝑦'

Sometimes it is also a function of y double prime, which is d squared by dx square, in which

case there will be an additional term with a change in sign. So, we will look at that in another

slide. But that is one of the things that you have to remember, it can also be a function of

higher derivatives. And for that and what happens is that in order to solve that if I go back to

previous, and so there will be one more term here, we will look at that later.
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This one here as I was talking about if and where f is a function of also here, then𝐽(𝑦) 𝑦''

you will end up with an equation like this. Of course, the sign will be flip, not that the sign is

flipped, that is because you will do integration by parts twice and there will be a minus sign,

extra minus sign which will make this positive. So, this is the Euler-Lagrange equation and

this what is the driver for all the methods that rely on all the PDE based methods and that rely

on Calculus of variations.

So we will look at something called Snakes Active Contours that is one of the earliest

techniques that was derived using the Euler-Lagrange equations. And then subsequently other

techniques also came about and they used something called other technique called level sets

to make computation simpler and more efficient. So, we will look at that in the subsequent

videos, so that we will stop here.


