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Deformations: Application to Breast MR Images
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Abstract—In this paper we present a new approach for the
nonrigid registration of contrast-enhanced breast MRI. A hierar-
chical transformation model of the motion of the breast has been
developed. The global motion of the breast is modeled by an
affine transformation while the local breast motion is deseribed
by a free-form deformation (FFD) based on B-splines. Normalized
mutual information is used as a voxel-based similarity measure
which is insensitive to intensity changes as a result of the contrast
enhancement. Registration is achieved by minimizing a cost
function, which represents a combination of the cost associated
with the smoothness of the transformation and the cost associated
With the image similarity. The algorithm has been applied to
the fully automated registration of three-dimensional (3-D) breast
MRI in volunteers and patients. In particular, we have compared
the results of the proposed nonrigid registration algorithm to
those obtained using rigid and affine registration techniques. The
results clearly indicate that the nonrigid registration algorithm is
much better able to recover the motion and deformation of the
breast than rigid or affine registration algorithms.

L. INTRODUCTION

ARCINOMA of the breast is the most common ma-
lignant disease in women in the westem world. 9.5%
of women will develop the disease in the United Kingdom
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1. INTRODUCTION
ARCINOMA of the breast is the most common ma-
lignant diseasc in women in the western world. 9.5%
of women will develop the disease in the United Kingdom
[1). The major goals of breast cancer diagnosis are carly
nancy and its differentiation from other

detection of mali
breast disease. Currently, the detection and diagnosis of breast

ray mammography. For further
i I

cancer primarily relies on )

f of ¢ or clinical
ultrasonography, transcutancous biopsy, and MRI are used
Although X-ray mammography has the advantage of high
sensitivity, almost approaching 100%, in fatty breast tissue,
high resolution up to 50 ym, and low cost, it has a number
of disadvantages, such as low sensitivity in dense glandular
breast tissue, low specificity, and poor signal-to-noise ratio.
Furthermore, the projective nature of the images and the
exposure {0 radiation limit its applicability, espe ally for
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young premenopausal women with a genetic predisposition
fo develop breast cancer.

This has led to the investigation of alteative imaging
modalities, such as MRI, for the detection and diagnosis
of breast cancer [2]. Even though MRI mammography has
disadvantages, such as a low spatial resolution of around
I mm and the need for contrast
advantage:

gents, it has a number of
including the tomographic, and therefore three-
dimensional (3-D) nature, of the images. This allows the
application of MRI mammography to breasts with dense tissue,
postoperative scarring, and silicon implants. Furthermore, the
lack of radiation makes it applicable to young premenopausal
women. Typically, the detection of breast cancer in MRI
requires the injection of a contrast agent such as Gadolinium
DTPA. It is known that the contrast agent uptake curves of
malignant disease differ from benign discase and this property
n be used to identify cancerous lesions [3]. To quantify the
rate of uptake, a 3-D MRI scan is acquired prior to the injection
of contrast media, followed by a dynamic sequence of 3-D
MRI seans. The rate of uptake can be estimated from the
difference between pre- and postcontrast images. Any motion
of the patient between scans, or even normal respiratory and
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can be used to identify cancerous lesions [3]. To quantify the
rate of uptake, a 3-D MRI scan is acquired prior to the injection
of contrast media, followed by a dynamic sequence of 3-D
MRI scans. The rate of uptake can be estimated from the
difference between pre- and postcontrast images. Any motion

piratory and

of the patient between scans, or even normal re:
cardiac motion, complicates the estimation of the rate of uptake
st agent by the breast tissue.

To facilitate the analysis of pre- and postcontrast enhanced
MRI, Zuo et al. [4] proposed a registration algorithm which
minimizes the ratio of variance between images. However,
their algorithm is based on the assumption that the breast is
only undergoing rigid motion, Kumar et al. [S] proposed a
nonrigid registration technique which uses an optical-flow type
algorithm, but is based on the assumption that the intensities
in the pre- and postcontrast enhanced images remain constant.
A similar approach has been suggested by Fischer ef al. [6].
To overcome the problems caused by nonuniform intensity
change, Hayton et al. [7] developed a pharmacokinetic model,
which is combined with an optical-flow registration algorithm
This algorithm has been applied fo the registration of two-
dimensional (2-D) breast MRI, but relics on the assumption
that the change of intensities can be sufficiently explained by
ays the case.

the pharmacokinetic model, which s not alw

Any registration algorithm for the motion correction of
contrast-cnhanced breast MRI must take into account that
the breast tissue deforms in a nonrigid fashion and that
the image intensity and contrast will change, due to the
uptake of the contrast agent. In recent years, many voxel-
based similarity measures have shown promi
multimodality image registration (for a detailed overview see

ng results for
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Hello and welcome back. So, in this video, we are going to look at this paper which talks
about free-form deformations. Once again, displacement fields correspond to every pixel in
the image. And it is non digital station, of course, and its application to breast MR images.

So, why do we need this in this context of this application, basically, these breast MR images,



these are 3d images of the breast taken for diagnosing and identifying breast cancer. So, the

way they do it is for contrast enhanced MR.

So, basically, you inject the contrast agents and wherever there is a contrast agent there is
increase in the density. But it turns out that the rate at which this contrast agent is taken up in
the disease area, there is a tumor with different so it would be nice to plot this as a function of
time that is you inject the contrast agent and you sequentially image the same location in the

breast and look at where the contrast agent is accumulating.

Now, in order to do that, there are some issues, any motion of the patient between the scans
or even, a normal respiratory like he says in the paper, if you just even talk about, there is pre
and post contrast images, that is you acquire some images, which you do before you inject the
contrast this can be some separate imaging session, I would like to think they are the same
imaging session of course, there is patient movement between scans and there is also normal

respiratory and cardiac motion.

So, which means that, if you are in this, this causes some problems because you cannot align
the images as the contrast accumulates in the tissue and you are still imaging. So, this
algorithm basically arises in that context. So, how do we register successive images 3d
images of the breast taken, in over time and it has to be non rigid registration, because most
organs are deformable. So, here we are trying to do this, this paper from this group talks
about how we can use a certain form of regularization, that is smoothing using B-splines in
order to reliably estimate free-form deformations. So, let us go into the paper. So, it has it

comes in two steps.
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tion algorithm are compared with those of rigid and affine
registration algorithms. These results demonstrate that rigid
and affine transformation models often are not sufficient to
model the motion of the breast adequately. Finally, Section IV
summarizes the results and discusses current and future work

in this area.

II. IMAGE REGISTRATION

The goal of image registration in contrast-enhanced breast
MRI is to relate any point in the postcontrast enhanced
sequence to the precontrast enhanced reference image, ie.,
to find the optimal transformation T (2, y, z) = (', o/, 2')
which maps any point in the dynamic image sequence
Iz, y. z,t) at time ¢ into its corresponding point in the
reference image 1(z’, o/, 2/, to), taken at time fo. In general,
the motion of the breast is nonrigid so that rigid or affine
the motion

transformations alone are not sufficient for
correction of breast MRI. Therefore, we develop a combined
transformation T which consists of a global transformation
and a local transformation

+ Tiocat (@, 3, 2). (1

Ttobat(; y: 2

To define a spline-based FFD, we denote the dom
image volume as @ = {(z, 5, 2)[0 <z < X, 0
0 <2< Z}. Let @ denote a ny X ny X n, mesh
points ¢; ;& with uniform spacing &. Then, the FF
written as the 3-D tensor product of the familiar
B-splines

Thocal(2: 3, 7)

3 3 3
=)%Y Bilw)Bu(v)Bulw)pist s
1=0 m=0 n=0
where i = [a/n.] = 1, j = |y/ny] = L k= |
w=ajne—|z/n.), v =y/ny—y/n,), w=z/n,
and where B represents the [th basis function of th
(221, (23]

In contrast to thin-plate splines [25] or elastic-bo
[26], B-splines are locally controlled, which mé
computationally efficient even for a large number
points. In particular, the basis functions of cubic
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of transformations are affine transformations, which have six
additional degrees of freedom, describing scaling and shearing.
In 3-D, an affine transformation can be written as

B, 012 i3 [a 014
aobal(@. 4, 2) = | By ban O3 y |+ |0 )
HH ”53 (I‘).') ”:H

where the coefficients © parameterize the 12 degrees of
frecdom of the transformation. In a similar fashion, the global
motion model can be extended to higher order global transfor-
mations, such as trilinear or quadratic transformations [21].

B. Local Motion Model

The affine transformation captures only the global motion
of the breast. An additional transformation is required, which
models the local deformation of the breast. The nature of the
local deformation of the breast can vary significantly across
patients and with age. Therefore, it is difficult to describe the
local deformation via parameterized transformations. Instead,
we have chosen an FFD model, based on B-splines [22], [23],
which is a powerful tool for modeling 3-D deformable objects
and has been previously applied to the tracking and motion
analysis in cardiac images [24]. The basic idea of FFD’s is
to deform an object by manipulating an underlying mesh of

patients and with age. Therefore, it is difficult to describe the
local deformation via parameterized transformations. Instead,
we have chosen an FFD model, based on B-splines [22], [23],
which is a powerful tool for modeling 3-D deformable objects
and has been previously applied to the tracking and motion
analysis in cardiac images [24]. The basic idea of FFD's is
to deform an object by manipulating an underlying mesh of
control points. The resulting deformation controls the shape
of the 3-D object and produces a smooth and C* continuous
transformation.

To define a spline-based FFD, we denote the domain of the
image volume as Q = {(z, 5, 2) |02 < X, 0<y <Y,
0 <z < Z}. Let @ denote a n, x ny x n. mesh of control
points ¢; ; r with uniform spacing 6. Then, the FFD can be
written as the 3-D tensor product of the familiar 1-D cubic
B-splincs

Bi(u) B (0) Bu(w)bigt, j4m k4n (3)
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and where B; represents the /th basis function of the B-spline
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10 acrorm an objeel by manipulating, an underlying mesh of
control points. The-resulting deformation contro]s the shape
of the 3-D object and produces a smooth and C? continuous
transformation.

To define a spline-based FFD, we denote the domain of the
image volume as Q7= {(z,7,2)[0< 2 < X, 0< y < Y,
0 <2< Z}. Let #denote a n X n, X n. mesh of control
points ¢ ; i with miform spacing 8. Then, the FFD can be
written as the 3-B-fensor product of the familiar 1-D cubic
B-splines

Thocar(, y, 2)
3 3
Z Z (W) B (0) Ba(w)ist,jgm, kn (3)

0n
where i = |a/n,] - 1, j = [l//u | =1 k=[z/n.] -1,
w=2fn.—|z/ng),v= =y/ny—y/ny), w=z/n. - lz/n.]
and \»hm By represents the lth basis function of the B-spline
[22], [23]

rresponding point in the

cen at time . In general, Bofw) =(1-w’/6

id so that rigid or affine By(u) = (3u® — 6u® + 4) /6
fficient for the motion Bo(u) = (~3u® + 3u* +3u 4+ 1) /6
, we develop a combined By(u) =*/6.

" a global transformation
In contrast to thin-plate splines [25] or elastic-body splines
[26]. B-splines are locallv contralled which malac tham

One is that it models the registration as a combination of two registrations. One is the global
and local registration. See this global registration is nothing but your rigid body registration
just rotations and translations. So this is a combined transformation, they are estimating one
about their estimating independently. So what is the transformation that is basically the global
transformation is your familiar, it is an affine transform model. So this is an affine transform.

So it is what they are estimating.

So, this affine transform model is what they split but this is the estimating independently of
the according to at least this paper you can just do this first. But in order to get to, very
accurate registration, you also need local deformations, the local deformation is where you

try to do the non rigid registration.

So, here like we like in the demons algorithm, the local deformations or estimated pixel wise,
it is a small difference, instead of looking at the displacement field of every estimate in the
displacement field of every pixel, which is typically done in demons here they do it for a set
of control points, these control points are then or then basically used by the B-splines these
are mainly used by the B-splines control points, and then they are used to extract or

interpolate deformations to the rest of the pixels.

So, the basic idea is you deform the object as it states here by manipulating and underlying
mesh of control points. So this so instead of so the control points are where the deformation
are estimated. And then B-splines curves are used to interpolate it everywhere. So, we did
something similar for demons, we did we did do a Gaussian smoothing, so they do not do that

instead, this regularization or the, the constraint is obtained using the B-splines.



So here is what the model looks like, I will show the models, the local deformation is given
by the following formula here. It is basically using cubic B-splines. How does it work? So,

we have a set of control points mesh or a mesh of control points and x and y and z.

And, if they are, if this actually represents cl)i]_ , Tepresents the deformation at those control

points, control points or uniformly spaced. And of course, you have this grid of control
points, you can control the size of this grid, either make them coarse or finer, if you do very
coarse grids, you get, global deformations and if you are making very fine, then you have

very local deformation.

And in order to regularize this, and you are using B-splines, because then we produce a very
smooth and differentiable transformation. So, how does this work? So if you look at for any,

so if you have determined the deformations at the control points, q)l,j . then at any pointxy z

this formula tells you this formula tells you the corresponding deformation. So, how does this
work? So, all it does is if you have let me just explain this first and then you can show it in

the picture. So, if all it does is it takes a point x, and it calculates the nearest control point.

So, basically what is happening here, if you see this, this is calculating the nearest control
indices of the nearest control point this is in 3d. So, we have x y z coordinates, so, you
calculate the indices of the nearest control points. And you also look at the distance of this x
y z from the nearest control points both in x y and z directions, this summation here tells you

the number of neighbors has taken into account. So,1=0to 3, m=0to3,n=0to 3.

So, we are looking at a large number of neighbors for a particular point x y z this many

neighbors. So, because if you see your sum a summing over
g ) y y g ¢i+l,j+m,k+n

. So, this summation
tells you the number of neighbors, so, you can have any number depending on how accurate

you want it or how smooth you want it.

Now, this part for the cubic place by a B-spline, this is the typical number use. So, this will
translate to about 4xX4x4 about 64 control points or use to estimate the deformation at one
point. So, you can have these control. So, now, the control point like I said, very coarse are
very fine, but they can be significantly lesser than the number of voxels in your pixels in your

image. So, that is the advantage. That is one advantage.

Second is that you are since you are using this cubic baselines, you get a very smooth

deformation field because you are using the cubes B-splines for the interpolation and it is also



differentiable. So, what are these functions B, , B, , B, , Bs, they tell you the weighting of
each of these control points based on the distance u. In this case u along x maybe v along y
and z along, and w along z distance, distance, distance from the control points, that is what

this if you look at this line of the paper that tells you how they calculate the distances.

So, for every point, you locate the nearest set of control points, in this case, there are about 64
in 3d, and you calculate the distance of these control points from, from the point of interest.
And you use that to calculate the weighting for each of these control points and then
subsequently estimate the value the value of the deformation field at that point. So this is the

algorithm in a nutshell.

So, generally, it is of course, you can see that it is complicated to code and we also see what
kind of loss function is being used. But the first step is you evaluate a global transformation
which is your affine transformation. Once you have done that, then you estimate the local

transformation using B-splines, B-splines interpolation.

So we have a mesh of points where you estimate the deformation and from using that mesh,
you interpolate everywhere else using the B-splines. So, those control point estimates will be
will be used to weight the value of deformation at different locations,. And, of course, you
need the B-splines, cubic B-splines to actually do the weighting. So that is the overall idea of

as far as the as far as using the cubic B-splines are concerned.

(Refer Slide Time: 10:22)




So, on top of this there is actually a smoothness penalty which is imposed on the
transformation correct. So, for the basically for the 3d penalty for the spline based
transformations cannot be smooth, you have the similar smoothness constraints which are
written here in integral form basically the second derivative, square of the second derivative,
for us for the transformation. So, this is again this is just to make sure that you have smooth

transformation.

And, of course, this is only applied to the nonrigid transformation and for the affine
transformation, the revelation term is zero. So, this is the regularization term, the one we see
here, basically, the smoothness constraint using the second derivative of the transformation is

basically the smoothness constraint. And it is only applied for the non digital station point.

The loss function on the smoothness constraint, the loss function is your mutual information.
So, if you if you remember, the demons you are mostly there, it will work for images that are
from the same modality. But once again, the problem here that you are trying to handle is that
we have injected contrast. So, the intensity will change. So, it is best to use something like

this in this case the mutual information.

So, this is the mutual information criteria is the loss function for the optimization procedure
consists of has to consist of in this case, two terms is to minimize the loss function and for
that, why it is negative and the smoothness constraint and the smoothness constraint these are
the two terms. So, the smoothness allows for those smoothness terms we minimized and the
last confirmed negative of the mutual information has to be minimized. So, this is the total
loss function because the lambda is another hyper parameter, which trades off between

alignment and smoothness.

(Refer Slide Time: 12:44)
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calculate the optimal affine transformation parameters © by maximising eq. (7)
initialize the control points ¢. s
repeat
calculate the gradient vector of the cost function in eq. (8) with respect to the non-rigid transformation parameters
@ =
. 90(0,9Y)
e S0l
0Pt
\ -
while [|VC|| > ¢ do ‘

recalculate the control points & = & + ;i ¥¢

recaleulate the gradient vector V(
increase the control point resolution by calculating new control points #1+! from @',
increase the image resolution.

until finest level of resolution is reached.

Fig.

The nonrigid registration algorithm,

smoothness of the transformation. For the purpose of this as well as the correlation coefficient (CC)
paper, we have determined the value of A experimentally and —, ., = -
found that a value of A = 0.01 provides a good compromise L(N”) — H{t))(TU) - TUH)
between the two competing terms of the cost function, We N e
1(to) = I(to)? (1) - T(I(1)))?
have also observed that the intrinsic smoothness properties of v L( (to) = 1(to)) Z(T(l\ ) = T((t)))
B-aplnm mean that the choice of A is not critical for low fjere I(to), 1(t) denote the average intensities of the im
resolutions of the control point mesh. The regularization term  pefore and after motion and the mmation includes all vo
a 2 S 2
within the overlap of both images. In these i the ¢
and the CC provide an indirect measure of the ragictra

CC=

is more important for high resolutions of the control point
mesh. The reason for this is the fact that the ability of the FFD

So, the algorithm procedures follows as given here. The first the affine transformation
parameters are obtained by maximizing the mutual information. So, we saw that once you

estimated the affine parameters, first you have to apply that.

Then you initialize the control points, so initialize the control point, we need to estimate some
rough estimate we can also be added to the transformer you can also assign some reasonable
estimates of the deformation field. And you do this like this particular procedure that is
outlined here following this class, this is for multiple resolution, so then you calculate the
gradient vector of the loss function the loss function we are talking about here is equation 8
please look up the paper that equation is nothing but your smoothest imposed on the

free-form deformation plus the mutual information.

So, then once you have that, once you calculate that loss function, you calculate the gradient
of the loss function with respect to the nonrigid transformation parameters which are nothing

but the deformations that you estimate at the control points of the mesh.

So, there is a threshold on the norm of the gradient of C, as long as it is greater than this
threshold or that it is it does not go beyond the below a certain value, you do gradient descent
this is gradient descent, you do this gradient descent and then after you and then of course,
after you calculate your estimate this, you apply the deformation and then you recalculate the

gradient vector so on and so forth.

And of course, once you have converged with for a particular resolution, you can move to a

higher resolution of grid points and also the higher resolution of the image and then repeat the



whole process. So this is the typical procedure for the nonrigid registration using the

B-splines.

The authors have got excellent results for as we look at this demonstration of this letter class
which we write for just the summary of the algorithm is what we have been trying to give
you. So, for this process is like I said iterative process equaling to gradient descent, but we
used it for this registration process for aligning breast tissue before pre and post contrast
enhancement before and after injection of contrast in order to identify, breast lesions much

more accurate.

So far, this week we have looked at two algorithm the demons registration algorithm as well
as the algorithm for estimating this free-form deformation using B-splines regularization.
These two are typical algorithms used this way very highly cited algorithms seemed very
effective, shown to be effective in many applications, but still they still wide open lot of
progress being made. People are also using deep learning to assess these kinds of
deformation. So we will see that when we get to the part where we use deep learning for

image analysis, that is all for this week. Thank you.



