Medical Image Analysis
Professor Ganapathy Krishnamurthi
Department of Engineering Design
Indian Institute of Technology Madras

Lecture 20

Demons Part 2

(Refer Slide Time: 00:14)

Deformadle mod

-
\ - Seene
o

" Line of attractors

Figure 1: Deformable model with attractors x x0

3.2 Demons

sbict boundary points, as in the case of aitractors, but also

e
h ation (inside-ontside) of the contour for cach poiat, both for the xr
delormable model and for the scene. Those assumptions ar2 easly flfledin &9

the case of medical i 5
| where the gradient defines the normal to th

This time, it is the scene object contour which is sampled

number of points, with the associated orientation, as presented in f
We will see later that alternatively we can sample the whole
grid of poins, instead of sampling a single contour emon is
associated o each of those contour points, in a s
demons”.

Fach demon acts locally, to push the d
tection of the scene contour, but the
nature (inside or outside) of the current estimate of the model at that poiat.

similar to Maxwell's

mable model in the normal di-

on of the push depends on the

Hey, so, welcome back. So, we are to try and understand why this is called the demons
algorithm. So, the idea behind that is that, for medical images, we usually have these edges of
these organs or anatomies or features of interest. And these are actually ISO contours and we

saw that I showed that in the previous video.

Now, if we have these contours, then on the boundaries of these contours, we can position the
so called demons like shown here, it just points on the contour. So, in this case, there are two
contours one is in the author calls it the scene rather is the deformable model, the scene is

basically the fixed image and the deformable the model is the moving image.

So, we denote them by f and g are respectively. So, the idea is, we can sample the entire
image, we have the pixels in a picture, in a medical image, we can look at all the pixels or we
can just look at the edges, edges are easily obtained by edge detection, and we can choose
points on the edges, you can do, we can find the edge and do points on the edge or we have a

segmentation we already know where the edges are.



So, then we position these points, we have these grid points to call the control points or the
demons points, so why are they called demons because there is a very similar concept, one
systematic concept, the demons concept was introduced in physics, the idea is if you have
like a sort of semi permeable membrane, so for instance, something like, like a membrane
here, and then you have different types of molecules, A and B, circles and process, and then
there are these demons sitting here, because it is semi permeable, you can go in this direction,

which tries to separate out, just the A from the B.

So basically on one side, you have the A's the other side, it only gets the B's too. So after a
period of time, you will have one set of the permeable membrane, you have all these x's, the
other side, you have these o’s. And it turns out that this is a violation of the second law of

thermodynamics.

So but then it turns out that that is, that is, that is addressed by considering that the demon
needs to can consume energy to solve this, we got to study this, from here to there
corresponds to a decrease in entropy, which simply cannot happen. So, the idea of this
demons is exactly what he uses here. So, he calls these points on the contours of objects of
interest as demons and they serve the purpose of them over the demon that is basically to

decide, to push objects inside an object or we will see that in the next slide.

(Refer Slide Time: 03:17)

1f the point is inside the model, the push is inward, and if the point is outside,

Ho s ¢ d

the push is outward.

Demons pushing inside /

Deformable model

L+ Scene

" b Y

v

Demons pushing outside

Tigure 2: Deformable model with demons

Intuitively, this tends to push the content of the model inside the object
shape, and reject the background of the model image outside the shape. In
other words, this tends to sort inside and outside points of the model, with
respect to the scene object inferface, in the same way that Maxwell's demons
sort two types of molecules of a mixed gas with respect to a semi-permeable
membrane.

Figure 3 presents three iterations of a standard atfractor-based method
(uper line) and of the demon-based meshod (lower line) applied to the rigid
matching of tw disks. For the attractor case, forces originate from the model
boundary (the moving disk), and are directed toward the closest point of the fix
Jick For the demon case. forces originate from the scene boundary (the static

So, if you look at this picture, this this corresponds to what the demons algorithm does. So,
the scene here is nothing but the fixed image f and this is the moving image g. So, we have

the corresponding points. So, you have these dark spots here, which correspond to your



demon points. And then of course, we assume that is when you start out at the first iteration,

there is some degree of overlap.

So, if you look at this, all the points in the scene or the pixels that are inside the model image
or the moving image contours, they tend to push inside while those which are outside the

model tend to push outside.

So this is kind of like trying to squeeze your moving image into the fixed image. So it and the
demons decide which points to squeeze in and which points to squeeze out. So that is what
that is why it is called the demons algorithm. Because these control points or the demon
points as you can call them, decides I know how to which what piece of the model comes in

and what piece in the model stays out.

(Refer Slide Time: 04:42)

Figure 4 are three other iterations, and shows that the behaviors of the
two methods become similar (in that particular case) when coming close to
the final solution.

R
N ‘1} -
& Qi
} i *;\\\\ ‘n“ N k7
LW\ 1 Y
N E S
- k- -
i
v L /, &
i/ i, il
\\?<<\ A S
3 % e -
= ~ 3 o
-7 ;}7714«*\(\ K T
Figure 3: Three iterations of the attractor-hased method (upper line) and of

the demon-based method (lower line).

losely related to the shapes of
. Let J (resp. g) be the (30)
imag ction in the scene (resp. model). We associate a

demon to each voxel P of the scene image where the gradient norm |¥ ] is net
null: in that case, an iso-surface comes through that voxel P, whose implicit
arnal v p

ation de £ = FP\ and whoea nrionted narmal is ¥ £/ P\ The deman in |




\\u‘u

&
e P
¥

S

Riaa

, 3 L, 3 -
e e e

&

sty
\“"’I/, r
- i

it

3 - L
- S - 4

Figure 4: Another set of iterations of the attractor-based method (upper line)
and of the demon-based method (lower line).

~VJ(P)if f(P) > g(P) (see figure 5). Hence a whole 3D grid of demons acts
o deform the model.

4 A simple implementation of a demon-based
deformable model

¢ algorithn to perform the non-rigid matching,
an archetype for demon-based methods, We
sin the basic scheme, which are:

We present now an iter

which can be consid
suggest also several opene

So the f has provided some fixed examples of since if you look at this example here and this
basically the second row, you have all these spikes basically show you are more than one
second. These spikes basically show here, these ones, they show your gradient pointed along
which basically, it is pulling out to it, except in the region of overlap here with this region

overlap here, where it is where it is actually dragging the other disc inside.

So, we are trying to match these two discs. So, this is the moving disc, here the moving disc
and this is the fixing disc. The fixed disc initially all the gradients are pointing out in the
regions which are overlapped basically that is the fixed image is inside the moving image you

try to push the drag the moving image inside.

So, you see the first few iterations were in the, if you can call this as the moving image kind
of diffuses into the fixed image. So, you can do that and of course, depending on the
orientation of the gradient say how do you decide where to how to push, when you should

push in when you push out depends on the orientation of the gradient.

So, for instance, how do we decide the demon in p, pushes the model image according to
gradient of Vf, if f(P) < g(P) and you see here, let me let us see this example. So it is
completely done. So here it is been completely moved in. And as the author states, according

to Vf,if f(P) > g(P).

(Refer Slide Time: 06:42)



J\ N YU ) anu avuiung W Sy LU ) 2 i)

o the expression of the demon force

Those slots can be filled with many different functions, which gives more
flexibility to our algorithm. For each slot, we also indicate the specific choice
that we have made for the implementation used in our current experin
which was made to increase speed: when millions of voxels are to be proc
algorithms must generally be simple to be reasonably efficient, and/or casily
parallelizable.

ts,

4.1 An iterative algorithm

We present here the case of a (3D) regular grid deformable model, We start
from two (3D) images to be matched: the scene image f and the model image
g.

At each iteration i of the process, g; is the image g, deformed by the current
transform 7;. We start with an initial transform 7j = identity, and we look for
the transform

» which makes g, most similar to f, n being the final iteration
Each iteration 1 is decomposed as follows:

¢ 1. For each demon P in f, compute the pushing force of the demon
according to the local shape of g; at P, which is g at P, = 7."}(P) and
the local shape of f at P.

RR n"2547

But there is another figure which actually tells you that one says this right here. So, the model
g is pushed by the demon according to a Vf again, here f and g are these intensity contours,
you can think of any dimension f(P) < g(P) then you have pushing to the right in according to
this picture, and according to -Vf , f(P) > g(P).

So, this is the simple to that can be done. And we saw this one implementation is what we
saw earlier in terms of the horns and flow, where we then made the constraint on v to v along

the proportional the gradient of f. And x p there are expression of the update scheme.

So, the idea so, he also describes how this is actually to be implemented. So, here is the
explanation for the iterative algorithm. So, at each iteration, I of this process of we saw,

where we each iteration we are to estimate the velocity v.



So, g is the, in this case g is the moving image which he calls the model and f is the scene
image which is basically the fixed image and g;, g subscripts i or nothing but the image g
defined by the current transform T;. So, i iteration index. So, we start with adding to the
transform and we look for a transform Tn such that gn which is after the application of
transform T into g, g, is the image we get. So, that gn is most similar to f. The n being the
number of iterations so, it is hyper parameter mystics. So, each iteration I is decomposed as

false.

So, for each demon in P in f'is in this case, in many of cases, demon P is basically at the point
P and it basically all the pixels in the image, are the most relevant pixels in the image
sometimes there is a lot of black space around the image air, you can crop that out in both the
moving and fixing image and you can just use whatever is remaining. So, most of the pixels

in f.

So, for all for all the control points or what I call control points demon P in f, compute the
pushing force of the demon, according to the local shape g; at P. So, because how do you do,
how do we know what is the gi because initially, the transformation is identity. So, you start
off with a rough image. So you just have a, look at the corresponding you assume they are in

correspondence and then you just work with that.

Otherwise, you have to calculate the inverse T T inverse of P. So for every pixel in f, this very
similar to what we saw for rigid body, so very every pixel in f, you come you figure out the
corresponding location in g and you use that to calculate the force. Therefore, in our case, we
actually do not do the force. We actually directly compute the velocity. If you lose the horns
and flow, you just calculate v. And we approximately say that since delta T is 1, we just used

that as a displacement.



