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Hello, welcome back. So this video we are going to look at the nonrigid matching or

registration algorithm called the demons registration by the lotto, or the author's name is

Thirion is a very popular algorithm. It is been around for some time, and people still use it for

nonrigid registration primarily because of ease of implementation.

And also, it is fairly quick algorithm, especially if you are trying to do 3d nonrigid

registration of medical images. So, we will actually look at, how the deformations are

computed first. And then we go back to why we this is called the demon's registrational

algorithm.



(Refer Slide Time: 00:57)

So, in this paper under section 4.4, this is actually report, you are going to look at something

called the optical flow based on which, the deformations or see individual pixel deformation

fields are computed. So if you consider an image I.

And, and you say there are objects in the image at different locations x, y, z, and you also take

this as a function of time, this is an optical flow, basically, you are trying to look at moving

frames, that is, in a video, we are trying to talk track objects in a video etc, this optical flow is

very useful.

So, the assumption is that the brightness of the object does not change between frames when I

say brightness of the object, I mean, the pixel values comprising the object or the values of

the pixels comprising the object does not change between frames. So, if that is true, then i is a

constant, this is a constant for a particular image and we can say that . So this is what𝑑𝑖
𝑑𝑡 = 0

is meant by, this condition here, one second right there.

consideration of intensity of points under motion, so, if I, if we are looking at video frame as

an object is moving in the video frame, and then the pixels, which comprise the object, they

do not change too much in intensity. And of course, the assumption is also that the motion

between two successive frames are not large. So in our case, there is there are only two

frames, basically the moving image and the fixed image, that is what we are going to look at

until we will see how we can use this paradigm to arrive at a expression for the displacement

field.



Now, this because i is a function of (x,y,z), certainly we can use chain rule to arrive𝑑𝑖
𝑑𝑡 = 0

at the following expression. So, which is it is given here, we use this, you understand

expression. So, this , we will translate to I using the chain rule in this form.𝑑𝑖
𝑑𝑡 = 0

So, what is this , is the if you discretize it, then we are just basically comparing the∂𝑖
∂𝑡  ∂𝑖

∂𝑡

image intensity across two different frames, or in this case, image intensity difference

between f and g, where f is the fixed image and g is the moving image. So, then we can write

= f - g. And then, of course, when there is a minus sign, we get to g - f.− ∂𝑖
∂𝑡

The left hand side of this equation, it can be written as v. , or we can see that very easily let∇𝑓

me just, if you are not sure, let me just write it down so that you understand where this comes

from. So, this left hand side can be written as [ ][ ]. So, this is basically∂𝑖
∂𝑥

∂𝑖
∂𝑦

∂𝑖
∂𝑧

∂𝑥
∂𝑡

∂𝑦
∂𝑡

∂𝑧
∂𝑡

something of it as a dot products. That is what is written on though this is your , and this is𝑣
→

your [ ] is a 3 dimensional gradient vector. So, this gradient of f.∂𝑖
∂𝑥

∂𝑖
∂𝑦

∂𝑖
∂𝑧

In this case, now I am using i, but then I know in the context that we are looking at f and g

where f is, one frame and g is the other frame. This is just nothing but with respect to the

fixed dimension . So, that is where you get this = g - f. It is actually ,∇𝑓 𝑣. ∇𝑓 − ∂𝑖
∂𝑡 = 𝑔−𝑓

∂𝑡

and we set that equal to 1. So that is not explicitly shown here, because in order for the units

to match on both since your v is the velocity, so the one way to understand this equation is

that if you have, let us say we consider like a one dimensional a row of pixels, that is your

image.

And if you have a slight motion of that row of pixels, and if you are taking the if you are

looking at the difference between after the motion, if you are going to look at the difference

between the pixel intensities, before and after motion, then you can say that this difference in

intensity is equal to the speed at which the frame moves, multiplied by the rate at which the

pixel values are changing.

So for a very small enough deformation, that is true, so then we can write it in this form. That

is the explanation for this equation. So this is your optical flow equation, or this has a

problem because it is determined. Because if you see v has three components. And in many

cases, let us say if you are looking at 2d images, we have two components, but only one



equation. Because we are actually trying to estimate v, because, in this case, we are looking at

fixed frame and moving frame. And we are assuming that, 1, so v is basically , that∂𝑡 = 𝑑𝑥
𝑑𝑡

is what we see here.

And we can just, we can always replace v with the displacement vector rather than the rather

than use v. So, this v is what we are trying to estimate and so, it is not the equations is not

number of equations is not enough. So, what this in this paper, what they did was or the

author did was, he chose a regularization if you can call it or a constraint I should say on v, he

just said that the author said that v is let me just add this.

(Refer Slide Time: 06:56)

So, . So, the way I understand it, at least is that or some . If you assume𝑣 ∝  ∇𝑓 𝑣 = α . ∇𝑓

this, then you can plug this back in the equation, we saw were in = g - f, if you𝑣. ∇𝑓

substitute this, then you get the value of to be substitute for instead of v substitute ( ).α α . ∇𝑓

So, .α = 𝑔−𝑓

|∇𝑓|2

And then you put this, together , you can always get so, this is what we got.α 𝑣 = (𝑔−𝑓).∇𝑓

|∇𝑓|2

There are some problems with this equation, because it is it can be it can blow up because

delta gradient of f is very small, you can get very large errors.

So, there is some kind of some form of a normalization or in this case, some you can call

regularization of this expression, wherein instead of just using this, you have an additional



term, so, you rewrite it as we rewrite it as . So, , sometimes it is small, it is(𝑔−𝑓).∇𝑓

|∇𝑓|2+(𝑔−𝑓)2 ∇𝑓

offset by this number, which, in this case, it is very small, you still have this to, regularize the

denominator so that it does not become too small and blow up. So this is the update. So this is

v.

So if we have, so you can for each component of v, you can get this expression, we have a

displacement field, of course, in the context of registration, v is basically proportional to your

displacement small d, because we are looking at let us say a unit time interval, and we

assume and then, so, instead of calling this velocity, we call this a displacement field. So, this

is estimated.

On top of this, there is also a constraint to be, but not it is constrained, regularization to be

done. So, why do we need this regularization? So, if you think of a grid? And if you are

looking at the displacement vector, displacement vectors. So, think of it. There is no I mean,

displacement vector can be in any direction. You are not constraining it at all. So this

becomes this. So this is a very hard problem to solve either infinity of there is so many ways

that you can displace your image and try to match the match it with the moving image the

fixed image. So, there has to be some form of regularization.

So, in the original optical flow equation that you saw earlier, people used in Han Shan flow,

people use some form of variational techniques to impose that regularization, by imposing

smoothness constraints on the delivery on the velocity field. So, but in this case, they did a

very simple regularization by doing a Gaussian, Gaussian smoothing.

So, what does Gaussian smoothing do? All you do is you replace, if you take if based on this

formula, you get an estimate for the for all the pixels in this grid. So, you replace for very

crudely speaking, you replace the center value with the weighted average of the

neighborhood. So, since this is a vector, so you can have average by average by component.

So, you place every component with the average of the corresponding component in the

neighborhood using a Gaussian weighting rather than uniform weighting use a Gaussian

weighting, we saw that that is a Gaussian filter.

So, that is how it works. So the width of the filter sigma is a hyper parameter that would

control to how much, you can call this a rigidity constraint. So, now you are kind of

smoothing it so that, It is kind of uniform in a certain, it does not change very rapidly in a

certain neighborhood, you get the same kind of displacement, and or smaller distances.



So, also note that, we are using the, we are trying to approximate v with using the direction of

and the magnitude of the , you might ask, why do you why would we want to do that.∇𝑓 ∇𝑓

So, one way of understanding is, is that, we want to move in the direction where there is more

heterogeneity, where there is greatest change in the image.

So in the fixed said, image, tells you the direction of greatest changes, heterogeneous∇𝑓

regions, that is where we want them, we want to move in those directions, because wherever

good enough is very small, it means it is a very flat region, and you really do not have any

information there. So, that is, that is one thing that helps if you move in a direction of .∇𝑓

Another thing is, if you look at images, so for instance, if you look at boundaries of organ. So

let us go to another slide.
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So let us go to let us say we have a kidney, let us say something like this, if you look at its

boundary or body of any organ for that matter. So this you can interpret as a ISO contour, ISO

contour, or regions, or lines have similar intensity or same intensity. So, if you take a

gradient, the gradient is always perpendicular to the direction of the ISO contours.

If you take any image or , if this is the image, then the gradient is always perpendicular to∇𝑓

ISO contour. And this is good, because, it is very hard, but near impossible to, to figure out

motions along regions, along the lines where intensity does not change.

So let us say we are perfectly just to give an example of why that is the case, where you

cannot determine anything along regions where there is no change in intensity, or = 0,∇𝑓



basically, that is too great of f would be 0 along the along the contour along the edges. So, if

you have any kind of displacement along the edges anyway, it is going to be impossible to

figure out.

So, you can think of an example like if you have a disk. And it is of uniform color here, let us

say this is all blue if it is and if it is spinning, let us say it is it is rotating you do not know. If

it is a very solid same same color, only then there are variations in the intensity on the face of

this disc, only then can you see it spinning, otherwise, it is impossible for the spin.

So similarly, it is the same case if you have, no variations along the case of contours basically

along the edges you might not know or where or the = 0, you cannot estimate any∇𝑓

displacement. So, then you only look in directions which are perpendicular twice or contours

or along the direction of the gradient. That makes more sense. So that is why you put your

is one explanation you can think of.𝑣 ∝  ∇𝑓

The author in this paper gives some geometric explanations, but I have given you this you

can also read the paper to understand the geometry explanation. So, this is the overall idea.

So, there are there is a first step is you estimate the without the displacement field, and then

you regularize it by smoothing with a Gaussian filter.

The regularization is an essential step otherwise, because, the problem is impossible, you

have so many directions in which you can move and, unless you constrain it, you cannot

solve it. It will blow up very quickly your solutions. So, and in the in the paper, the authors

suggest multiple variants of the formula that we saw, to estimate the displacements. So, it is

all given there. So please go look at that, but this is the one I showed you was the standard

one.

So, that is usually done, so that is to rewrite it, you would estimate this as , so this(𝑔−𝑓).∇𝑓

|∇𝑓|2+(𝑔−𝑓)2

is proportional, something that you would do for the displacement field. So this, is a very

simple and efficient technique, this followed by Gaussian smoothing. That is the two steps for

the algorithm.

So here, this is an iterative algorithm. So what you would do is you would first start with an

identity transformation, when you do not do anything, you start with the fixed and the

moving image, use this formula to estimate let us say, T1 transformation 1, this

transformation is nothing but a bunch of displacement fields for your image here, you would



consider all the pixels in the image so which means that you would estimate at d for every

pixel. So, d for every pixel in the image, p refers to the position of every pixel.

So remember, we always do registration in physical coordinates, so p represents the physical

coordinates of the pixels in the moving image. So you estimate for every pixel in the moving

image, a corresponding v of p. And while you can do either way, so there is a inverse

transform also, so it is up to you.

So, you have a displacement field that you figured out for every pixel. And you smooth it,

you smooth it with the Gaussian and after smoothing, and you apply it to the moving image,

and then come back to this step. So, it is like, and once you do that, every time and every time

you want to update the transformations, so, initially the identity transformation, now, you

have to update that identity transformation with this.

So, then you have a new transformation after this, once again, you deform the image and then

perform this step, whatever you are seeing here, followed by Gaussian smoothing, and then

you go ahead and update the deformation field or the transformation. So, you keep doing that

till a fixed number of iterations and then install.

So, this is the typical algorithm for the demons registration, very simple technique,

computationally and so very popular and lot of analysis has been done now, this is equivalent

to minimizing a certain type of loss function, if you want to do gradient descent on a loss

function or estimate the d. Or there are papers which talk about how you can interpret it that

way, but from the point of view of optical flow techniques this is the easiest interpretation.

So, the author calls it demons. Now, we will see why he calls the demons, shortly.


