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Hello and welcome back. So, in this video we are going look at some of the metrics that has that

are optimized in order to estimate the parameters of the transformation correct. So, in the last

video, we saw a few simple transformations that are typically applied. So, for instance

translations and then rotations, we also have looked at the affine transform, which had, N N×

matrix along with the translation.

So, the elements of that matrix are typically the parameters of the transformation matrix that is,

are the parameters that we typically estimate so, for the rotation matrix, we had the sin cosθ θ

matrix, so, that is a parameter then this Tx, Ty is a translations that we estimate and for affineθ

transform we had an A matrix for instance, which had n n parameters.×

So, in this case it will be 2 2 or 4 parameters or aij. So, there will be 4 parameters. So, these×

parameters have to be estimated based on optimizing a metric. And there are several metrics that

are used. But we are going to look at image intensity based metrics typically that are often used,

especially in the context of rigid body registration.



So, the first one we are going to look at is the mean squares metric. You can also call it the least

squares metric wherein the formula is given here, let me just simplify the rotation S, refers to the

metric of course, we are treating is a function of p which are nothing but the parameters of the

transformation that we are trying to estimate. F is the fixed image M is the moving image T is the

transformation itself.

So, we will see how it comes into the picture. So, the general if we have total number of N

pixels, once again, this is some abuse of notation, because we are using capital N, in the previous

lecture where we looked at N refers to the dimensions of the image. But here, in this case, we are

only N refers to the number of pixels in the image.

So, or all the pixels, we are going to look at the least squares difference between the fixed image

and the transformed moving image. So, every pixel in so we are mapping every pixel in xi, with

this transform T, and estimating the moving image at those points and see after estimation,

whether, the images match.

But here actually, I have skipped a step in the sense that the interpolation step, I have not done

that, maybe we will go back in we will look at this interpolation step in the maybe in a later slide

later lecture, so not later slide. So, here, what happens is once you do the transformation on xi,

with this T, it will give you a physical coordinate space.

But physical coordinate will not exactly map to a pixel index, so there will be some error there.

And so, you will have to do an interpolation to estimate your the pixel intensity values at T(xi , p)

after the transformation. So, up to this part is where interpolation comes in typically we use

linear or binary interpolation.

So we would not get into the details, but we can talk about it later in a later lecture. So, this is the

just to clarify the notation is the there is a spelling mistake here, it is the ithpixel, in the image, x

of i is the ith pixel, not the 9th pixel N capital is the total number of pixels. So, you from this

formula, how are you going to estimate so we are going to have to minimize this loss function,

which means this loss in order to estimate the parameters p of the transform.
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So, if you do that, so for instance, of here, again, there is some error here, it is actually is∂𝑆
∂𝑝

given by this formula. So, I will clarify the formula here. So, you have the , this is not correct.∂𝑆

Sorry about the error. So, this is actually your . It is given by this expression.∂𝑆
∂𝑝

So, it is actually the difference between the intensities pixel intensities of the fixed on the moving

image after transformation. There is the , this is nothing but the gradient numerical gradient∂𝑀

∂𝑥'

we saw which evaluated of the moving image and this is the Jacobian of the transformation. So,

how do we get here?

So, we will just look at one we will just see how this works out when one second. So, we will

write this down this the least squares loss function for 1 pixel. So, this Si is basically for 1 pixel

will be Si = [F(xi) - M(xi’)]2 this is xi’ writing is nothing but this transform coordinate.

So, now, if I do = 2[F(xi) - M(xi’)] . i does not come out well most of the time. So, this
∂𝑆
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is the formula. So, now, if we look at the plus so prime is a function of P
∂𝑀(𝑥

𝑖
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∂𝑝 → ∂𝑀
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𝑖
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because we have seen this here times delta xi prime delta P this is your gradient this is the

Jacobian of the transformation. Now, we look at when we say gradient what do we mean there

will be typically be so many components, so, let us say 2 dimensional image, you will have delta

M by delta x delta M by delta y.



And what about the Jacobian, Jacobian will have 2 rows and as many columns as there are

parameters. So, let us say we are considering 2 parameters P1 and P2, so or, let us say 3

parameters. So, you will get and you have similar thing for y. So, I will just let me
∂𝑥 '
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2
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3
 

just write this out and rewrite another side so erase this.

So, this is the gradient so, let us just for the gradient for the Jacobian you will have in this case

and it is to 2D. So, you have . Similarly, . So, you have so, then you
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what you do is you take dot product with each, this will be dot product with each column.

So, we will end up with a 3 vector 3 components each corresponding to the gradient of S with

respect to, so these will correspond to . So, then what you do with this? So, you
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would then do gradient descent step. So, that step let me just quickly add.

So, if just to recap what we did there you will get this matrices let me rewrite this so, that you

can so, you will have the moving image gradients then, you have a the Jacobian of the

transformation then you have and you multiplying row column so,
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you will have 3 we will end up with 3 which would correspond to .
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So, then you would do the gradient descent step which is basically Pi Pi - . So, you would← λ
∂𝑆

∂𝑝
𝑖

do the gradient descent to estimate the parameters. So, we will see that this is the recurring case

for all the other things that are the other loss functions or metrics that we will use.
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So, the other metric which is basically dependent on the intensity is the normalized cross

correlation. So, once again this minus sign is used to make it a minimization problem typically,

you want to maximize the correlation between the going and the fixed image after you do the

transformation.

But, if you want to make the minimization or gradient descent does you put the minus sign in

front the maximum value of this particular expression so, basically you are multiplying them

pixel by pixel after transformation and then you are normalizing it with their squares in respect to

squares.



One of the things you would do not shown here is you would subtract the mean so, you would

actually F(xi) - will be done M(xi) - will be done. So, which and are nothing but the𝐹‾ 𝑀‾ 𝑀‾ 𝐹‾

mean of the images. This particular technique makes this metric immune to arbitrary, DC shifts

in the images, you can multiply every pixel value by some arbitrary constant or add any arbitrary

constant the pixel value and robust to that.

So, once again, you can go through and do the calculation or like I said, this is an∂𝑆 ∂𝑝

important step because once you figure out all you have to do is Pi Pi - , this is the
∂𝑆

∂𝑝 ← λ
∂𝑆

∂𝑝
𝑖

gradient descent step. So, once you take this step, then you once again evaluate this metric

calculate how much you have to move.

You also have to parameterize this this hyper parameter you have to adjust based on theλ λ

problem. So, it is normalized cross correlation is also used both the least squares metric and

normalized cross correlation, very good to use if you are looking at same time. So, for instance,

if you are going to do CT to CT, or MRI to MRI, or basically you are trying to align images from

the same imaging modality to CT MRI.

And in fact, intra subject is even better. So, that is a very good these two are very good metrics to

use when you are trying to do this kind of alignment. Now, the problem starts when you are

trying to CT to MRI, CT to pet MR to pet or CT to ultrasound, MR to ultrasound, they are the

pixel intensities are or what intensities are completely different. And these metrics might not

work as you might expect. So, in that case, what you do so that is when you have this particular

metric called mutual information.
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The mutual information is defined in terms of entropy of an image. So, what is the definition of

entropy is given here, let us say you have two images, in this case A and B, the entropy of each

of these images are given by these formulas. Of course, this is in the continuous domain for the,

for a discrete domain, like in an image, this converges to a summation over the pixel values.

Or the various bins in an image. So, how do we estimate this probability density function, this PA
and PB are the probability density functions of an image. So, these are typically estimated using

the histogram. Very simple ways to construct a name for a histogram there, of course, there are

some kernel based methods.



You would do to actually estimate this, make it into a continuous function, but histogram is a

pretty good way of doing it. So, what this mutual information that we want to maximize mutual

information and how does this work? So, you might ask, what is the idea behind maximizing

mutual information is the question that we are trying, we will try to understand here.

So, what we are assuming is that, let us say we have this case, where these two images we

assume are independent. Assume that both these images are independent. So, then, let us just go

before we go here, so let us assume that these two images are independence in the joint

probability of these two images.

The joint property of these two images given that they are independent, have nothing to do with

each other is basically, or that they are not correlated at all, is that it is the product of the

individual probability distributions. So, if the images are not correlated, or the this here if you

say more specifically I should say the images are independent of each other, you cannot predict

anything about one image using another image correct.

So, you have fixed on moving image and assume that you can predict nothing about the moving

image using the fixed image, then you have the joint probability of those two images, pixel

values of those two images is given by the product of the individual probabilities here, these are

the probability density functions corresponding to the pixel intensity values.

So, what is the probability of a certain pixel having a value 100 that is what this shows? So, this

A and B's are nothing but pixel intensity values. So, we are treating them like random variables.

So, the joint so, if you, look at the, what I can call the joint entropy? And the joint entropy H(B)

in this H(A,B) is given by the sum of them.

Now, let us assume that in the case that they are not independent there are they are not

independent, they are not independent, then we can easily write this down, we can write this in

this form with there is an extra term that comes in which excluded. So, H(A,B) < H(A) + H(B).

Now, what we want to do is look at this difference.

This difference with this is this mutual this is what we call mutual information. And we want to

maximize this difference. So, because what we want you to be able to do following registration is

that, we should be able to say something about the moving image based on the fixed image.



That is what we ideally wanted that would, that would suggest a very good registration. So, then

the idea is to for to make this difference bigger. So, we want to be as far away from

independence as possible. That is the goal. So, then we want to individually maximize the

centerpiece while minimizing the centerpiece.

So, this the joint, so we are to minimize this joint entropy while maximizing the individual

interface. So, from the point of view of, understanding what the image entropy means. So, if you

consider, let us say, it is a distribution of pixels, which are, I am going to just draw a very simple

picture here.

We have, let us say, 10 pixel levels, a 10 pixel levels, I will draw 10 of them, but then even some

n pixel levels, and all of them have the same probability. So, this is, let us say, the problem, the

axis this is the intensity, this is a random variable, and its corresponding probability. So, I am just

putting one arrow there just to see they are all the same.

So, this has very high entropy. Because it is very difficult for you to predict, if you point to a

particular pixel, you cannot predict its value with a great conference, because it is all pixel values

are equally probable. On the other hand, let us consider a pixel distribution, which looks like this

very sharply peak.

Once again, this is the pixel intensity bins, the probability you see that, we can with some degree

of certainty predict the pixel value, this has low entropy. So, we actually want to increase the

entropy of these individual images that are being registered, especially in the region of overlap,

because this high entropy means that you have a very heterogeneous region in the image region.

That is what this high entropy translates to a low entropy translates to a very uniform smooth

region. So, we want to be overlapping in both the cases the region of overlap, for both A and B

are fixed and moving image should correspond to regions of high entropy, which means they

have some structure there. That is the one we want to be matching.

On the other hand, when you consider the joint probability distribution, joint probability

distribution, meaning, what is the probability that certain a pair of pixel intensities co occur, the

co-occurrence of pixel intensities, that is what we typically would mean by joint by this joint

entropy and sorry the joint distribution of these pixel values.



And you want them to be sharply peaked for maximum alignment, correct. So, if we are if they

are aligned properly, then you have you will see that the 2-D histogram so we are looking at a

2-D histogram will be a very sharp histogram. So, what do I mean by a sharp histogram? Let me

just draw this quickly.

So, if you have the joint histogram, which means that you are looking at probability of

co-occurrence of pixel intensities. So, here, when you say PA(a), we are just looking at a

particular pixel value A and its probability of occurrence, you just count the number of times it

means intensity occurs.

Or the other ways of also doing this, if we have a range of a continuous range of intensity values,

but we would not get into those details. But as far as the joint histogram concern, you have, let us

say, two axis, it is a 2-D histogram. So, you are looking at, let us say, in this case, intensity along

of A intensity values from A, intensity values from B.

Here, and then you are looking at a histogram of these pairs of values occurring, and we count

the number of times a pair of values occur together divided by the total number of pixels. Now,

in that case, you want a sharply peaked histogram, when I say sharply peaked histogram. So, if

you look at this, in 2-D, they have two sets, two axis, corresponding intensities from each of the

images.

So, you it would lie the, the high probability regions should be here. So, it is a sharply peak,

because this is the high probability region, everywhere else it will be very sparse in the sense will

be close to 0 here. So, you can think of we have to think of it the 3-D where the this shaded

portion is basically pricing out of the plane of the screen.

So, this requires, this implies, very bright, very large values of probability. And, in other regions,

it is very low values of probability correct. So, this is what I mean by sharply peaked histogram

in 2 dimensions, so will be a thin line, but which vary, the probability here in this region is very

high probability outside decisions is very low.

And if the images are not properly aligned, then you will have that this this becomes slightly

worse, in a sense, you will have a much, much larger region with, higher probabilities or in this

case, the probability spread all over the place, like a uniform probability it like look that way.



So, this is the, this situation this particular situation I am talking about this blue band is similar to

what I have shown here, for one image. And this other situation where I have shown this red

region where your most a lot of pics co-occurrence of these pixel intensities is equally probable

that corresponds to a poor alignment, this has been observed empirically also.

So, for optimizing this I(A,B), you would expect H(A) and H(B) to be high and H(A,B) to be

much lower. So, this concludes our look at different metrics used for image registration,

especially rigid station, when we are looking at, just rigid body transformations, rotations

translations, maybe some affine transforms.

We are looking at cases where we are doing interest subject registration, for the same patient

with the same measuring modalities, wherein, we can use normalized cross correlation or just

sum of squares, least squares. In this case, if you have different imaging modalities, then you can

use the mutual information as a metric for image registration. Thank you.


