
Cellular Biophysics
Doctor Chaitanya Athale.

Department of Biology
Indian Institute of Science Education and Research, Pune

Lecture 02
Python Programming

(Refer Slide Time: 00:16)

I had, in the previous module, talked a little bit about a very brief introduction to Python. And

for those who have not been programming before, I would not worry too much, because in

this principle of learn as you go, LAGO, like I like to call it, easy as a play game, we are

going to pick up concepts as we go along.

In other words, so long as you can run very basic lines of code, the rest we are going to pick

up on the way, and that is part of what I want you to learn. Now, many of you are more

advanced programmers, and for those of you can easily skip this video a little ahead if you

like. The conclusion of this part however is an assignment, so if you already know

everything, clearly do the assignment, and you are done. So, what is the assignment?



(Refer Slide Time: 01:08)

That is indeed an introduction to Python as a tutorial, to go over some basic concepts, writing

some basic code, and being able to manipulate loops, file input output, and graphing. Your

actual assignment is to complete the plotting of a histogram of the whole proteome data set of

E.coli. I will demonstrate this for only 9 proteins, and you need to modify my files which I

am going to provide to you to plot it for the whole proteome.

Usually, in a live class I actually go over each of your code and explain to you what the

problem is, but once you submit the code, and if it runs, then I will give you feedback if there

are any issues, and if it does not run, then obviously we will be discussing the answer in

class. So, with all that in mind let us get back straight to it because coding is much more fun

than talking about coding.



(Refer Slide Time: 02:05)

So, the way I run Python on my machine is through Jupyter notebook. In order to get this, I

went to my command line interface where I typed anaconda navigator and that triggered a

navigator window, and what it does is amazingly enough it opens a browser window, and this

is what you see here.

This code again as I said is being shared with you, so that should hopefully not be an issue.

What you need to notice here is that, I hope you see some nicely formatted text here, but if I

click on it, it is called mark down. So this is a browser, Firefox is what I use. Markdown is

nothing but text, highlighted text.



There is a syntax to, it a so-called second level heading is marked by double hash signs, and

BIO315 Cellular Biophysics, it highlight, auto highlights the text, and now I have written

some explanation about what I hope this exercise is going to show you, that is to demonstrate

basic aspects of python programming, introduce you to plotting, and basic arithmetic, and

then characterize the protein database entries.

So, we have to start somewhere, let us start with the simplest. Just aside, so far, these were

markdowns, this is now code. So this you see over here in this window that the cell, in other

words Jupyter divides the code flow into cells contains some elements, they can be either

code, markdown, raw NB convert or headings.

And we are only going to be concerned with code and markdown, if you are interested, please

go back and look what raw NB convert and headings means. As I said in my introduction,

Python has extensive documentation and that is what makes learning as you go so much

easier. I know some of you on your phones, so this might be a little bit harder but there is no

rush.

So, in order for me to convert this marked out this raw ugly looking text into nice beautiful

formatted text, all I need to do is press run. So now, it ran just this cell, so the code is divided

into cells and those cells are independently run, they can also be connected. So, if I run 1 cell

and then had some information in which I want the next cell to run, then obviously run them

either together in sequence at least.

So, let us look at the first cell here. I set a is equal to b is equal to 4, b is equal to 10, and use

a magnificent giant computer as a simple calculator, and of course I get the answer of a times

b, this asterisk sign indicates multiplication, hence 40. All good. So now I move on.

(Refer Slide Time: 05:00)



I am going to just sort of discuss a little bit of printing, what else can you print? And this is

you know print hello world is the first line that Kernighan and Ritchie put into their textbook

on C. And so Welcome to BIO315 is my message to you, hello world, just for fun, and suffice

to say, these are single quotation marks, these are double quotation marks, both of them work.

(Refer Slide Time: 05:32)

I talked about this in class, why do we bother writing a computer program for biological

problems? The idea is of course clear. Simplify, what is a labour intensive, time consuming,

error prone, subjective task, make it more automated universal, improve confidence, data

collection, analysis, representation is easier.

And I talked about how you can do analysis, and in silico experiments. So, I am going to go

ahead a little bit faster. What you can do with the code is actually automated plotting, and



scripting, script for regression analysis, perform statistical analysis, modelling, simulator data

or hypothesis.



(Refer Slide Time: 06:03)

Indeed, while we can use it as a trivial calculator of adding numbers, and taking some

outputs, we can do a bit more. So, as you see the sums over here are fine, and I can even do

the same thing with strings, in other words, words or alphabets that are strung together to

create words and even sentences, if I want.

(Refer Slide Time: 06:31)



So, indeed this is important at this point to bring up the fact that the data types that we are

interested in are number, string, tuple, list, and dictionary, and number types of numeric types

are plain integers int, Boolean, long integers, float point numbers, complex numbers.

Booleans that are some type of in zeros and ones.

I would really urge you if you want to learn more about the numerical support provided by

Python to refer to the Python documents on numeric types. so, you can also of course do

division, so addition, multiplication, subtraction, division.

(Refer Slide Time: 07:07)

Now, the question is depending on the version of Python you are running and Google collab

for coding, does have the latest Python 3, but if you had a local version of Python 2 point

something, you will output a more complex data type even when simple integers are input,



meaning to say, that if I now instead of 12 by 5, put 13 by 5, and run it, yes, indeed I need to

change it here.

So instead of 125, if I put 121 here, so what you are seeing here is a truncation to the integer

output, so this answer is not quite right. And we need to somehow find a way to get hold of it,

and I leave this to you, and we will discuss it on our discussion session. What must you do to

get the full decimal numbers or the so-called float values beyond the integer, if you give a

so-called not fully divisible number? Strings on the other end, are concatenated symbols and

this is an example over here of hello world.

(Refer Slide Time: 09:19)

Indeed, strings have also positions, and as I said in my overview, it is always 0, 1, 2, 3, 4, 5,

6, and then 7, 8, 9, 10, 11, 12. So, if I say a from the 7th element, that is base 0 onwards to the

last element signified by this semicolon sign, will give you just the second part world. If I

now modify this to say from 2 onwards for instance, you should see in fact 0, 1, 2 onwards,

low, the lower. So, you can play around with this. Please use it.

Indeed lists, which is kind of what we want to use for initially at least storing some of our

data is a nice simple structure that kind of looks like an array but it is not an array, because it

is one-dimensional whereas arrays can be n-dimensional, and as this variable states, if I put in

some numbers 11, 21, 7, 23, 26, 1, 0, 1, 2, 3, 4, 5, that is 6 in length, and if I print it, I will

actually get the numbers again. And type is the data type it is, and this actually tells me from

the code that it is actually list.



(Refer Slide Time: 10:23)

List elements can of course be individually accessed. I can call the length of the list, this is

the command length list or length of that list in brackets, I can invoke certain elements of that

value, the zeroth value for instance, the first in that sense. I can even call other values of it, so

let us say I want to find out the last value. Will this work?

So let us see. My last value remember is 1. So, if the length is 7, the last value throws an

error. This, remember, is because of our base 0 rule. Now, suddenly my last value is correct.

You can also use the so-called negative index, which is, so what do you think the negative

index will give you?

So if you look here of the value at x of minus 1 is 1, in other words it is the last value, minus

2 is the last but 1 value which is 26, and so on and so forth. Try it out yourself and you will

find out. In that sense, the indices are wrapped around. You go around and you go minus 1,

minus 2, minus 3, etc, etc.

That is not base 0, yes, you are right. The first three elements for instance or the first n

elements are 0 to something, that is why the colon, the semicolon. And I hope you remember

this that that we had used the colon earlier to give an open-ended range, also everything from

something to something else.



(Refer Slide Time: 12:55)

Range is a built-in function which allows you to create a series of numbers in a, let us find

out what kind of structure. It is a range and the size of the range is indeed its length. And for

each value in that range, we can actually iterate, in other words, we can pass values to the for

loop, it will just simply go through every element from 1 to 10 with a step of 1 to list it out.

Now, you notice that 10 is a non-inclusive limit, in other words, it stops 1 minus that or 1

increment above.

So you can say here we have range, smallest value, largest value, minus increment, and

increment. Meaning to say, increase by 3, increase by 2, increase by n, that value minus the

largest value is what the last value of the, I am sorry, plus the increment will be as it is output,

okay. So, in other words if I want to range from 1 to 10, actually including 10, then I need to

add 1 here, and then I will get my 1 to 10.



(Refer Slide Time: 14:47)

So, combining ranges and lists cannot be useful, so I can say x double star 2 for x in range 6,

so x in range 6 is like we did here. So let us look at this.Range 6 is 0 to 6 with increments of

1. x double star asterisks 2 is square of that. So 0 is 0, 1 is 1, 2 is 4, 3 is 9, 4 is 16, 5 is 25,

familiar to you. So it is a very quick way to get us a range containing some arithmetically

manipulated values.

Sets are a container which then sort and repeat the values keeping tabs are not as unique.

Now here, you see a set which is 1, 2, 3, 1, 3, 4, 5, 10, 11, 4, 5. What you should hopefully

notice is there are a few redundant numbers meaning to say repeated numbers. So, when I just

print the values, what do you think I get?

So, if I, if it was an ordinary list, then I would get everything, yes, which is this. But set finds

the unique values in that, and puts it out. In other words, the length of the set 1, 2, 3, 4, 5, 6, 7

is 7, but the length of the list is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11. So I can even maybe create a

list and attribute it to set and try and find the so-called unique values.



(Refer Slide Time: 16:45)

You can also mix subtypes, strings, integers, and floats, and combine them. So, for instance, I

want to combine the word string with an integer and a float, and let us see if it works. So,

string gives string, string, string, b plus p, p plus q, which is string plus integer gives me

what? Let us see. An error. So that does not exactly work.

q plus r gives me a command, which does indeed work, q plus r, so integer, and string can be

added, I am sorry, integer and float can be added, but a string cannot be added to either an

integer or a float, as we saw earlier. Try it out yourselves if you do not want to believe me.

And this is the beauty of it, I want you to be able to try these things out.

(Refer Slide Time: 18:13)



Now, what you see in the last bit, I want to talk about over here, are for loops, and if else

loops and while statements. In other words, something that iterates. So, for statements are

given as x in values something. So, in some either a range or a list or something. This will

allow you to print that value. If else statements need to be structured as some criterion, some

good comparison.

If x is less than 0, do something, elif not else, if but l, if x is greater equal to something,

colon, print 0, lf, and then so on and so forth, or while statements which are a little more

dangerous, unless you use them carefully, where you initialize your value i is equal to 1,

while i is less than something, print I, and incremented so that it stops, just 1 shot of that. So,

this is also, these are the standard loop, looping syntaxes which you have seen probably in

various places.

(Refer Slide Time: 19:18)

What if we want to access some values 1 by 1 that are in an array? Remember, we created a

list, I am sorry, a list somewhere called values. So, we said values are a range from so and so

to, so and so. So let us see if we can access each of those values using our for loop. And low

and behold by just simply saying v for v in values which is that list that we gave it from

range, using the function range, we could actually access each 1 by just simply invoking an

element in that. Iteratively, the iterator for ‘For’ actually is very clever in that sense in

Python.



(Refer Slide Time: 20:05)

So, now if something else and while statements can be easily structured. You think of it

logically, pick a number between something, create some integer value of that number,

meaning to say, make it into a type that we can deal numerically, you can either create it as

integer, try creating a float out of it, and see what happens. And, if that value that you input

you yourself or your friend who you pass this code on to, is less than some criterion, print

less, greater than some criterion, equal, or you want to say invalid input, that is what you do.

(Refer Slide Time: 21:02)

So, let us see if this runs, pick a number between 1 and 10, it has to be integer according to

my definition, so I picked 4, it is indeed less than 10, sum of 1 until that number is what I

calculated using my while. So, while the counter is less than or equal to n, where n is some



cut off a set point value, then just count the number of increments. So how many values until

I reach my criteria.

There are many Pythons, packages, so scipy, numpy, and other pys, and you can read more

about them on scipy.org, for scipy, and numpy is a part of the core packages, has numerous

functionalities, numpy, scipy, library, matplotlib, consoles, and data structure, and data import

output, packages like pandas.

(Refer Slide Time: 22:08)

So, we are going to start with the most simple exercise of a stochastic problem. And you

remember I said we can do two things, we are going to basically analyze data, and we are

going to simulate processes. For the analysis part, I would like you to focus on a stochastic

problem of coin flipping, and I will talk about it next.


