
Cellular Biophysics
Doctor Chaitanya Athale

Department of Biology
Indian Institute of Science Education and Research, Pune

Python Programming – Part - 01

(Refer Slide Time: 00:16)

Hi, welcome to BIO315. Today, we are going to make a slight interlude, a slight diversion

from what we have been talking about between order of magnitude estimates, numbers,

quantification, technique, microscopy and on the way to starting with the cytoskeleton. So,

today, I want to talk to you a little bit about an introduction to someone whom you already

know, Python. Those of you who have done your BSMS coursework here, have already been

exposed to Python programming. And I am going to very briefly touch upon this, just as a

reminder to you of what you have relatively done.



(Refer Slide Time: 01:08)

So, in a sense it is always important to ask this question? What? Who? How? What is a

computer program? So, typically every child now learns computer programming. So

collection of instructions, recipe of something, who executes it, by the computer, specified by

a human. How is it done? Human language to language of computer, a conversion, which has

grammar and vocabulary. And there are some examples of such languages. And you are

familiar with C, C++. Some of you have used MATLAB, Octave, Fortran, Python, new

languages keep getting created.

As you know, languages are defined as either high level or low level depending on whether

the difference between human language and computer language is greater or smaller. In other

words, computers are stupid logic objects. They need to be told how to do it, we have a more

complex set of logical instructions, we need to convert those from our human language into

computer language. And in that sense, Python is a high-level language. Programs could

indeed be a script or a collection of scripts.



(Refer Slide Time: 02:25)

So, one of the most obvious reasons to program is indeed to simplify your task. This is

especially relevant in quantitative biology where a lot of what we do can be labour intensive,

time consuming. and much more importantly, because we are not lazy, is that those

measurements or quantifications might be error prone or subjective. Meaning, if person A

does it and then person B does it, you get different answers.

So, programming is critical in automating tasks, providing in some sense universality to the

method, at least transiently, and improving our confidence in the reproducibility of the

method that has been used. You, at the same time, you will also need to program in order to

collect data to analyse it and make clear representations.

Now, data analysis is one of the first few things that we are going to be doing. And the

purposes of data analysis are to make data comprehensible to observe trends, find out

whether there are, find out what the quantitative and qualitative measures are, perform

statistical analysis, and finally do what many of us implicitly do in our minds as humans, that

is we fit a model.

In other words, when we see that the sun has risen, we expect the intensity of light to increase

and then stay steady for at least 5 to 10 hours. This is our day-to-day experience and this is

based on a model that we have developed of how the sun increases, stays steady and goes

away. So, for that, we always need to propose a hypothesis, construct it and test it.

And this is often the feature of statistical testing. But interestingly enough, one can extend

this to the larger question of physical methods and the role of computation in it. So, for today



we are going to, in a way, also motivate a little bit of what we really want to do with this

which is even beyond model fitting, beyond simple statistics to predict what is going to

happen in the future.

And to do this we are going to model something, we are going to model the simplest cases,

obviously, to start with. And we can even, in future, do numerical analysis and use those

model predictions as we have been sort of off and on talking in the course, to verify by

comparing against data.

So, what is your code? It can be anything. It can be your personalized calculator that you set

up to do a shortcut. It can be an automated plotting script, it can be a regression analysis

code, it can perform statistical analysis or it can be much more sophisticated like it could

predict the birth, growth, division and death of bacterial cells, for instance.

All of that modelling and simulation is based on a hypothesis. And in some senses, that is one

of the crucial aspects which form, in many places, the foundation of entire courses on the

nature of modelling or mathematical and computational modelling. We will not have time to

delve into that much depth. But I think that you will see the connection between what we do

in the theoretical aspects of quantitative biology and biophysics, cellular biophysics, and what

we can do to connect it to what you learn in programming.

(Refer Slide Time: 06:19)

So, I chose Python, and I mentioned this also in one of my posts on the course. There are

many reasons to choose a particular programming language. And one can always say why



Python? Because one can of course easily justify this question, simple syntax, readable, few

lines of code to do things. It is powerful in that sense.

Declarations are on the fly. In other words, variables do not, unlike in C or Fortran that

maybe some of you have used before, and even if you have not used, declaration of variables

is something like saying, I pre-allocate a bucket in which I am going to put some data. And

you can imagine that today if I tell you, one week from now you have a quiz, you are more

comfortable, so is a compiler.

But analogies apart, there are also some minor issues about syntax that are different from

Python, like those semicolons. And the more interesting advantage is not just simplicity but

power because linked with two very prominent scientific and numerical computing libraries

SciPy and NumPy, respectively, Python has become a very serious tool for scientific

computing over the last 20 years. In addition to this, there is an active community and a

support system and there are forums, there are help files. So, getting started is a lot easier.

And remember the purpose of introducing Python, then bringing this into a cellular

biophysics course is not to make you programmers that Infosys or Wipro or IBM is going to

hire, it is as a tool that you can use to answer scientific questions. You can of course become

a better programmer. That is, your upper bound is not limited by anything we do here, but this

is to ensure that the minimum is satisfied.

(Refer Slide Time: 08:17)

So, a few basics about Python, we are going to be using the so called Jupyter platform. Now

because of the current conditions you are going to be using the Google code collaboratory for



testing and running your codes and saving it and submitting it. But ordinarily, one would

normally be installing it locally on your drive, and there are distributions such as Anaconda

and command line, Jupyter interfaces.

Suffice to say that Jupyter bundles by SciPy NumPy and MATLAB, the three tools that you

will need to actually get your work together for this course. The interesting part is that the

interface is through the browser. And with pre-installed libraries, Python really becomes very

powerful.

(Refer Slide Time: 09:09)

So, let us start off with some very, very simple things. What are the data types for numbers,

strings and what are lists tuples and a dictionary.

(Refer Slide Time: 09:18)



So, lists are these equivalences in square bounding boxes of numbers. They could be integers,

they could be floats, they could be decimal numbers in other words. Calling that x, x is equal

to square bracket something, tells you the type of variables that are stored in it. You must

notice that the index, in other words, the counting scheme like in most parts of India and in

many parts of the western world goes from left to right. Not in Japan, not in Arabia, left to

right.

The smallest number is on the left, 6 in this case in this list. It is indexed, in other words, it is

called, referred to, its address is at position 0. First number is 0. First position is 0. It is also

sometimes called base 0. This is emphasized by if you were to actually type in this array list

and call x square bracket 0 versus x square bracket 1, you get two different answers.

Try them out for yourself. len is a short form for length. This command calls up the length of

the array. If you do minus 1, the negative index begins from the right. So you go from instead

of right to left, you go from left to right. Range is a built-in function which produces a simple

list.

(Refer Slide Time: 10:52)



On the other hand, conditional statements, typical being IF ELSE, allow you to set up a

condition that says if some status condition is satisfied, perform such and such task, else do

not perform it or go ahead. The classic loops that you see in programming languages are also

found in Python, for, while and some slightly unusual, called do while.



(Refer Slide Time: 11:19)

Some of the most common mistakes that you will find yourself making when your code will

not run, relate to indentation meaning to say, how many spaces you give from the left margin

to your code so that a block of code falls into a common point. In addition, you may also

have missing semicolons, after if statements or else statements, false statements and while

statements.

(Refer Slide Time: 11:51)

And we are going to talk about a few of these things by running through some examples

because given the simplicity of Python, the nicest thing we can do is actually learn by doing.

Thank you very much, and we will continue with the next module.


