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So, what you are looking at here is a cartoon from Whale and Milligan's paper and
science which is a new paper of exactly this kind of ATP, ADP cycling which is a
summary, in some senses, of decades of work that they have done. This demonstrates
those sort of hand-over-hand movement based on a hybrid of structures, some
imagination, some stochasticity and a lot of artistry. This is not exactly how a motor

moves, but this is definitely a conceptual picture that helps us think about it.

This is of course a single motor and this is supposed to be Kinesin. So, the initial stages,
it is sort of just landing. There it lands, one head lands, binds to an ATP exchanging out
the ADP. The other one lands, exchanging out the ADP once more, but at the same time
the previous one has digested or hydrolyzed its ATP to ADP leading to a conformational
change in a forward movement. So, all this is nice, but when you do this in experiment,

this is how we would actually evaluate it.

Much less exciting perhaps, in the sense that what you are looking at in the upper panel is
a movie from one of our older papers where we looked at single microtubule filaments
that were gliding on a surface that was coated with molecular motors that were pointing
upwards. This is otherwise called a gliding assay. And in fact, the context of these is in
fact clear in the most obvious cases in spindle assembly where you are looking in a single
one celled stage of the primary division of C elegans. when it divides from one to two

cells, forming in fact, a smaller cell in one end.



Now, the reason why I bring this up is of course, these are the so called cellular and
multimolecular applications of these concepts, but in order to make sense of it, in a
biophysics course, we really wanted to go back and look at the models. And one of the

most clear models for this has been the so-called thermal ratchet model, and that is the

discussion for today.

(Refer Slide Time: 02:34)

I ARTICLE

Thermodynamics and Kinetics of a

Brownian Motor

R. Dean Astumian

Nonequilbrium fluctuations, whether generated externally or by a chemical reacton far
from equilibrium, can bias the Brownian motien of a particle | an anisotropic medium

without thermal gradiants,

t force such as gravity, or @ macroscopic electric fleld,

Fluctuation-driven transport is one mechanism by which chamical anergy can directly
drive the motion of particles and macromolecules and may find application in a wide
varlaty of fields, including particle separation and tha design of molecular motors and

pumps.
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Professor: I am only going to probably discuss the first two figures because of how much
time we have left. I hope at least some of you have had a chance to go through the paper.

Those of you have not, after this please, do go through it because posting some questions

Brownian Motor

R. Dean Astumian

Noneguilibrium fluctuations, whether generated extemnally or by a chemical reaction far
from equilibrium, can bias the Brownian motion of a particle in an anisotropic medium
without thermal gracients, a net force such as gravity, or a macroscopic electric field.
Fluctuation-drivan ranspart is one mechanism by which chemical anergy can directly
drive the motion of partickes and macromolecules and may find application In a wide
variety of fields, including particle separation and the design of molecular motors and

pumps
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So, paper itself is a funny paper, it is an article but as you might have realized, this article
is a review of a lot of different things.

obvious that Brownian motion, so this is titled Thermodynamics and Kinetics of

Brownian Motor, and it is from 1997.
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Now, according to the basic background, it is



As the title might suggest, it is effectively putting two things together, Brownian and
Motor. We talked about motors, we know they are energy dependent. Since 1997, actually
things have progressed quite a lot. Having said that, the theory is in fact still a little
murky, and that is partly why we want to go back to the most basic theory and one of the

older papers that discussed something called a Brownian motor and its kinetics.

So, in fact as you probably should remember, the idea of a Brownian motor is in a way
contrary to the idea of Brownian motion itself, and this is what is illustrated here with the
idea that highlighted that a small particle in a liquid is subjected to random collisions
with solving molecules resulting in attic motion of Brownian motion has been described

periodically.

And we have spent the whole first quarter of this course discussing Brownian motion. So
I really do not want to elaborate on it. Suffice to say that Langevin, who also came up
with the same theory at about the same time, divided the forces acting on a molecule into
a fluctuating force, both in terms of its direction and magnitude and a viscous drag force

being the two primary motor forces acting on molecules.

So, if that be the case, then it is reasonable to ask how can we convert this into directed
motion which is what a motor seems to involve. And to answer that, we discuss some
things about biases in Brownian motion. Now, kind of like a biased coin, your biased
dice, something else to change. Otherwise, you are equal, probabilities are clear. You will

get non-directional transport.

Has any one of you read Feynman's electricity, or maybe you have to refer to it in your

introductory course, world of physics, sorry. Did any of you do that?
Student: Parts of it, but it is very huge, sir.

Professor: Yeah, I know. Did any of you come across the so-called Brownian ratchet of

flashing put in, something, something about ratchets? No?
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Student: Yeah, I have...
Professor: You remember this picture?
Student: Yes, yes. The ratchet and the pawl.

Professor: You remember this picture? Okay! Very good. Those of you who do not
remember, just let me remind you, actually, this should read not paw but pawl. This is a
Pawl, P-A-U-L, no, P-A-W-L, not Paul the boy but Pawl the device, and a toothed wheel.
which I hope you recognize by looking at this toothed wheel, that its teeth, if you look in
profile, if I were to draw this, my drawing is really bad that is why I take other people's
drawings instead, is not uniform like you would expect a normal toothed wheel to be, a

gear wheel for instance.

Instead, the profile of the wheel is such that the teeth are longer in one direction and
shorter in the other, tempering off sooner. This is what is then called a Ratchet. Those of
you who play badminton, sometimes called a Puna game, you may have recognized this
when in the old-fashioned badminton courts when you want to tighten your net. Either
way, what it does is it allows direction, movement in one direction and this is what the

pawl does, the job of the pawl is exactly that, but not in the other.



That is to say you can turn it in this way but in the opposing direction there is an
enormous penalty due to the presence of this latch or pawl, which itself is spring loaded.
So, you can keep turning it ahead but you cannot turn it backwards, got it? One
directional movement, that is one thing. And the second part is that if you want to
measure any kind of work being done in an energetic or thermodynamic sense, if you
remember last year, we talked quite a bit about this thought experiment of the osmotic

engine.

And we said that the osmotic engine can only do work if it actually lifts, a load or mass
over some height, h or whatever it is, against gravity, then only can we consider that to be
doing work. So, in that sense the thought experiment of Feynman was the following, if
you just have a ratchet and pawl, will it spontaneously, using the thermal bumping around
of molecules in the air that hit a vane, this is a vane or you can say a windmill or a
propeller or whatever you want to call it, vane is the technical term for this at least in the

Feynman diagram, diagram by Feynman, I am sorry.

In such a case, you could of course get a work done for free. I mean in other words you
have done nothing, there is random movement and that random movement is converted
into the external motion, this is your, back to our perpetual motion machines. So, does

anyone want to hazard a guess whether this would work?

Student: Considering the two chambers, then the effect the random motion has on the
pedals has the same effect on the pawl also. So, if it is able to turn the pawl, then it can

also cancel the effect of the power also, right?

Professor: Very good, have you read the Feynman Ratchet-Pawl mechanism explanation

or did you think of this right now?
Student: No, like there was another left...
Professor: Maxwell...

Student Like the Silicon Motors.

Professor: Silicon Motors?



Student: Like, they extendedly created this...

Professor: What are you, can you just, okay, so you read somewhere. Very good, very

good, I am glad to hear that.

(Refer Slide Time: 9:26)
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So, suffice to say, indeed, thank you Swaraj. So, I am just going to continue maybe where
I was. Suffice to say that only when T 1 is not equal to T 2, in other words when there is a

temperature gradient, then such a coupling of the Brownian motion with the Ratchet ball



mechanism can do work and this was proved, provided by Feynman, in theoretical work

and you can go back and refer to it.

But given that this basic concept can be made to work in the presence of a thermal
gradient, and this is very important right, that the two things are not isothermal, in other
words, then and only then will this work. And this is the reason that Astumian and
Company in the past have been motivated to look at Brownian motion and its conversion

to biased from emotion or what are called Brownian Motors.

(Refer Slide Time: 10:15)
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Professor: So, we will go to the first figure and look at what they represent here. What
you are looking in A at is the presence of two inter-digitating electrodes with a spacing of
10 micrometres between them and a small charged particle, this minus sign here, the
electron like object. That is your electron. And that this is along some one-dimensional

axis X and the question is will this geometry give us directional motion?

Now the assumption is that this charged particle is capable of moving randomly,
diffusing, in other words, thermally. A similar analogy is also made with a, so this was of
course electrical. So, what about biological? So, Astumian proposes that a 10 nanometre

structure, that is 10® meter structure, meaning to say, these are something like monomers,



often nanometres, and this is reasonable for you to assume that it is some kind of protein

structure.

I mean 8 nanometres is your dimeric size of a, of tubulin and 4 nanometres is
approximately the size of actin, G actin. So, this is a reasonable number. That they have a
charge, a polarity of delta plus and delta minus, which means that they are little, little
dipoles pointing in one direction. And this forming a linear chain allows you, given one
additional criterion, that the potential energy that is U of x here forms what is now called
a saw to thread potential. Does anyone want to try to explain what they understand of this
saw toothed? What is saw toothed potential? Perhaps I can leave this like. Yes, anybody,

anybody? What is saw toothed potential?

Student: Sir, it could be a potential having a curve like the sawtooth. Like, if we are
looking at the peaks, it will be the position where the positive electrodes are. And at one
part, the negative electrode is close to the positive electrode, then the gradient will be
higher. Like, the slope will be higher and negative. And in the other part, the electrodes
are somewhat more separated and the gradient will be lower. So, essentially having a

higher gradient on one side and a lower grade on another side.

Professor: Very good, thank you, Swaraj. Exactly. The idea is that, and I may have also
left out one word that I should have probably mentioned, this is indeed the illustration of
an isotropic saw toothed potential or a function. You could have an isotropic one. So
without saying that, it is not really obvious. An isotropic one, just to contrast the two, an
isotropic saw tooth would look something like this where the central point is right at half

the width of the tooth.

Whereas here, it is shifted to one side. As Swaraj correctly points out, that means that the
gradient in one direction is sharper than the gradient in the other direction, which also
means that since particles follow the minimum potential energy direction and transitions
down a shallower gradient are less like, or transition, climbing up a shallower gradient is
more likely than climbing up a steeper gradient, you can kind of imagine this might be

useful.



(Refer Slide Time: 14:22)

Done

= Astumian-thermalratchet (2 of 11)

Ul to the feaction can cause unidirece
thonal transport, This effect may be impor-
eant in the chemomechanical energy cone
venion of  biomolecular  motors and
pumps, proteins that convert energy from
i chemical reaction such as adenosine
triphasphate (ATP) hydrolysis 1o drive

b gty difterent sizes can move 1n ops
it directions, possibly providing the
basis for & continuaus separation proces.
Sevennl - technological hurdles - remai,
however, before a practical device can be
constructed.
In o weond example (Fig. 1B), a

iy T T
Ira hamac L
‘haafing potdntial energy profia. When e poliotish
18 00, the potential energy U of & partca s &
sawlooth fncton U, = i, with porcscaly
spooed wolly of positions L. The ansoiropy of
Uy rsults In two logs of the potential, one of
longth al. on which the force is ~AUfaL) + F,
andthe other of kngth (1 = il onwhvch ha force
18 31 = all] + F,,, When tho potenal s of,
thaenergy proflo s fat wiih farce F,,, everywher.
Thecurve below the fwo polantal profles shows &
Gaussian probatity functon resulting vom tum-
0 the potenial of a1 t = 0, wilh the paricke
stivting ol & = O, Tha resul s rasolved 0 tuo
camporants: tha downbil o) and tha difusie
spreading of the probatty distribution. For inter
madiate times, I s more [kely for a particl to be
Deotwoen L ond (1 + all, whorn It would by
rappectin the wall at L I the potential weee 1umd
0Bk on, 1han betwosn (u - 1L 0d [u - 2L
whart  would b ripoad 1 Ihe wel al =L il e
‘poteniial wero kumed back on, Thus, tuming the
potential on and off cyckcaly can cause maton (o
‘the right dospito the net forea (0 the et (8) Aver
age velocty of nspharical portiole with radhuar, =
2 m (sokd ine) and 1, = 5 wm (cashed g}
bcud by ycaly g on MsOiropE saw:

®

posed externally 1o dnve unidirectional
transport (20), Ultimately, it may be possie
He w conseruet microscopic motons and
pumps that wse nonequilibrium chemical
reactions as their fuel

The examples in Fig, 1 are provided 1o
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spaced wells at positions IL. The anisotropy of
Uy, results in two legs of the potential, one of
length &L on which the force is —AU/al) + F,
andthe other of length (1 = a)L on which the force
is AU/(1 - alL] + F,,. When the potential is off,
the energy profile is flat with force F,, everywhere,
The curve below the two potential profiles shows a
Gausslan probability function resulting from turn-
ing the potential off at t = 0, with the particle

slarting at x = 0. The fesU s resolved info two @

components: the downhil drift and the diffusive E 10
spreading of the probability distribution. For inter- 201 toy )
mediate times, it is more liely for a particle tobe v/_,
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trapped in the well at L if the potential were turned wog
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where it would be trapped inthe wellat ~L ifthe : st

potential were turned back on, Thus, tuming the H
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spaced wells at positions IL. The anisotropy of
Uy, results in two legs of the potentil, one of
length oL on which the force Is —AUAeL) +
and the other of length (1 — )L on which the force
s AU/(1 = alL] + F,,. When the potential is off,
the energy profile is flat with force F, everywhere.
The curve below the two potential profiles shows a
Gausslan probability function resulting from turn-
ing the potential off at t = 0, with the particle
starting at x = 0. The f@st s resolved into two
components: the downhil drit and the diffusive
spreading of the probability distribution, For inter-
mediate times, it is more likely for a particle to be
between oL and (1 + a)l, where it would be
trapped in the well at L if the potential were turned
back on, than between (« = 1)L and (¢ = 2)L,
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I8 AU/ = L] + F,,.. When the potential is off,
the energy profileis flat with force £, everywhere,
The curve below the two potential profiles shows a
Gaussian probability function resulting from turn-
ing the potential off at t = 0, with the particle
starting at x_= 0. The result 1s resolved into two
companents: the downhil_drift and the diffusive
spreading of the probability distribution, For inter-
mediate times, it is more likely for a particle to be
between L and (1 + a)L, where it would be
tr in the well at L if the potential were turned

bac than between (a = T)L and [o = 2L,
where it would be trapped in the well at =L if the
potential were turned back on. Thus, turning the
potential on and off cyclically can cause motion to
the right despite the net force to the left. (B) Aver-
age veloctty of a spherical particle with radius r,, =
2 pm (solid ling) and r, = 5 um (dashed line)
 Induced by cyclically tuming an anisotropic saw-
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tions; model of Josephsan junctions (25);

ind enenalied models of conputtion

(26). The details of the interactions giving
rise 1o the potential are not as critical as the
mechanisms by which spatial anisatropy
conspires with thermal noise to allow ener-
gy from external fluctuations or & nonequi«
librium chemical reaction to drive unidirec-
tional flow, Anisotropic potentials such as
that shown in Fig, 1C are known as rarchet
potentials, in analogy to macroscopic ratch-
ets such as i car jack that allow motion in
only one direction by a series of asymmetric
pears.

A Fluctuating Polential, or
“Flashing® Ratchet

To see how thermal nolse combined with
n extermally modulated anisotropic poren-
tial can lead to unidirectional transport,
consickr the madel (7, 27) shown in Fig,
A A particle sbject to viscous damping
moves along a irack where an anisotropic
potential with periadically spaved wells st
positiams I cyclically turms, or “flashes,” on
and off, To show that work can be done
ngainst an extemal force, the potential pro-

acting from right t lefi
I the extemal force is not 10 large, the
particle is pinned near the hatsom of one of
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A Fluctuating Potential, ar
“Flashing® Ratchet

Professor: So, going to the next figure we will see what they try to do in terms of
implementation because what you are looking at here is now a further complication of the
matter. Earlier our saw toothed potential was only in terms of the baseline being flat.

Here, in addition, you have a gradient which represents something like a downhill drift.

So, particles like this one here can, of course, at any given time land in the lowest
potential well. They can diffusively spread or they can go downhill, down this way,
which is where the gradient due to gravity is going to drive them. Gravity, or whatever

other radiant that they have set up as a base.

And so the energy potential with a so-called fluctuating potential is claimed in this
particular figure to be able to result in uphill transport, meaning net transport in this
direction. Now this is a little unusual. So part of the trick, if you want to call it, in this
flashing potential of fluctuating potential ratchet is that when the potential is on, there are

two states in it, on and off.

When the potential is on, the potential energy U on, is the saw toothed function minus x
of f external. That x times f external is representing the gradient. The periodically spaced
wells are at some position iL. That is, these guys here, 1 being some index 1, 2, 3, 4. The
anisotropy results in two legs of the potential, one at length alpha L on which the forces

delta U upon alpha L plus f external.



AU
At F
aL ext

And so, this is now the force, not the energy, that is why you dropped the x. And the other
is at length 1 minus alpha L on which the force is delta U upon 1 minus alpha times L

plus f external.

AU
(1—O(L) + Fext

So, when the potential is off, the energy profile is flat and there is only force of f external

everywhere.

So, if you remember, we went back and forth and we basically concluded in our own
course that we would rather stay with the analogy of, with the reference to energies, not
to forces. but suffice to say that this is not the approach used here. So, the Gaussian
probability function that results from turning the potential off at t is equal to 0 with

particles starting at x is equal to 0.

So the particles start here and this is resolved into two components, obviously. One is
diffuser, which means they will go in equally in all directions, this way as well as this
way, but it is also likely that they will go this way, leftwards, because of the whole
intrinsic downhill drift or the gradient. For intermediate times, we argue, that it is more

likely for a particle to be between alpha L and 1 plus alpha L.

Now, this is an interesting argument. Alpha L is the little bit over here ahead. Now if you
go back and look at the figure, alpha L is the peak of the potential gradient. The right
hand side of the drift, I am sorry, the, yeah, the right hand side of the initial position. The
idea is that this is effectively the distance that in an off state, it could travel, and 1 plus

alpha L is effectively the next point, the next trough.

So, why are they even claiming this? Because they claim that it would be trapped in the
well at L if the potential were turned back on. The idea is that because of this on and off
state, you can freeze the diffusion state temporarily and force things to fall into the
nearest potential minimum. So, everything that was at this point, is all going to fall here.
So, all of these particles will go here, whereas all these will go back to this minimum

point.



So, not much will move from 0. In fact, this will also go here and this will go here. So, in,
from your initial distribution, let us say we started not with x is 0 but a diffusive
distribution, then this part of the distribution that is the 0 to 1, 0 to alpha will all shift
right ward. The one that was left over here will also shift to the right, and this is what will

give you your net rightward current.

But in their calculations, when they do a, an explicit simulation, there is something tricky
also about it. And this is the fact that if they take two particle sizes, one which is bigger
which therefore has a smaller diffusion coefficient, and one which is smaller, therefore at
a higher diffusion coefficient, and remember from our analogy about, our entire exercise
is about diffusion coefficients and the spread of the, diffusive spread, that you should get
a higher velocity according to this flashing potential on off, as the time for which the
potential is off is increased from some 0 to some non-zero value reaching a maximum at

some approximately 2.5 seconds.

On the other hand, the 5 micron particle will indeed undergo negative velocity. And
positive and negative is in with respect to the X axis over here. Negative is this direction,
positive is this direction. So this should be sort of straightforward. This also means that
now if you take a mixture of particles, which is what is represented in C, bigger ones
which are 5 micron, assumed to be, and smaller ones which assumed to be 2 micron, set
up a potential which has the same electrode like nature which we talked about in figure 1,

have an overarching gradient.

Now, you can actually combine flushing potential, that is to say on off, on off, on off
potentials with a gradient to separate large and small particles, with the small particles
going up the gradient and large particles going down the gradient. And that is pretty cool.
So, in a way, with this clever use of a combination of Brownian motion with an external
gradient, which they call gravity here, and a flashing potential which is the bias, you can
actually separate particles. And this is kind of a cool application that they claim is

possibly implementable. Some of these have been implemented in the past.
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Professor: And there are some references in the literature, and there is some interesting
arithmetic for understanding this. So, for the last two figures in the remaining 15 minutes,
the basic mechanism of the flashing potential is illustrated with the shape and the addition

of the gradient being described, giving rise to velocities as a function of F max.

To conclude, in some senses, they look at the velocity as a function of kyT which is what
our thermal noise is, and they show that 4.1 which is somewhere here, which is our
thermal pico Newton nanometre, 4.1 pico Newton nanometer which is our ideal thermal
regime, is fairly close to a high velocity in terms of the absolute possible maximal

velocity which is seen at 8.

In a way, they refer to this optimum that may emerge with increased noise as something
that in the literature has been cited as stochastic resonance. And some of you may have
come across it in some other unrelated literature in physics or, physics in general. These
are some slightly esoteric phenomena. Suffice to say, the idea is that with increasing
noise, in other words, increasing randomness, you can actually get optimal directional

motion as they show in this particular case.
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Professor: In the final figure, they talk about possible implementation, biochemical
reaction and in the first 2 figures also, they have talked about this chemical product of
sulphur and hydrogen breaking up with the addition of an electron, which then they cite
as being a possible method by which such a flashing potential might be created, and the
fluctuations of charge might be generated due to reversibility. And there is a little bit of

more chemistry than I want to talk about today.
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I am going to end here, and simply say that there are umpteen number of experimental
data, particularly that they cite in terms of electrical circuits that are implemented but the
exciting part is that the biochemistry of such thermal and directional motion is something
that is probably more the domain for a chemical biology biochemistry and structural
biology course. But there are interesting models that come out of it, and we,
unfortunately, because of a shortage of time in this course, are not going to deal with

them.



So, for the moment, I actually, I am going to put a halt to this, and ask you if there are

any obvious questions at this stage, yes.

Student: Sir, could you explain the point of an isotropic function? Like how they, major, I

mean I do not know, what is, how do they get the value of alpha out there in the paper?

Professor: That is what they put in, right? In fact, as I was trying to, I know I rushed
things through but that was what also Swaraj very nicely explained. It is the very concept
of the saw toothed potential, in other words, anisotropic saw toothed potential. In other
words, if movement in one direction is more gradual, or it has a less steep energy
gradient, delta U, as compared to the other, then for generating such a, so if you want, so
let us take the counter example. If you did not have an anisotropic sawtooth, you would

have an isotropic sawtooth.

(Refer Slide Time: 26:48)
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Professor: And that would look something like this. So, the idea is to have an

approximately equal length here, and here. Saket, are you following?
Student: Yes, sir

Professor: So, you can say something like alpha is equal to, well, ratios of the halves,

actually, maybe I, how do I put this? So, alpha is equal to L, I have to call this something.



So L1, L1 by L2. If I now move my saw tooth, I am sorry, if [ create an anisotropy then I
am going to have to do something like this. I am going to move my potential in one
direction, while keeping the rest of the extent the same. So, in my symmetric case, L1 and

L2 were identical, whereas in my asymmetric case La and Lb are not identical anymore.

That is all we were talking about. But what this also means is that the gradient here and
the gradient here are not the same. In other words, going down this way is much steeper
than going down this way. Or, per unit, the distance travelled in y is more here than here.
And this means, and anyone who has been on top of a hill knows this, if you are a rock
and you are standing on top of this hill, and if the rock can fall either way, if it falls this
way, its velocity will be greater, one would assume, simply because it is moving through
a larger distance in this direction for the same x displacement. Did you get what I am

saying, Saket?
Student: Yes, sir.

Professor: And this, of course, with the consideration of the flashing potential, means that
when there is no gradient here, then they can equally, particles, Brownian particles can
move equally in all directions, both directions if it is along X. And now you turn back on
the potential, so, those that moved here, in the next few seconds, are going to try and
move here, and the rest are going to move here. But because this is a longer region, you
are more likely over time to get a frequency distribution something like this. In other

words, this is fatter than this. Means you will get net rightward movement.
And this is how this whole biasing is achieved, okay?
Student: Yes.

Professor: In other words, the bias in the gradient gives you the bias in the transport.



