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Hi, welcome back. I am going to continue from where we last left off and discuss what goes
ahead of what we talked about last time, namely the kinetic gas theory in average molecular
velocities, if you remember, we calculated these for lysozyme. We then discussed that if

molecules cannot actually move like bullets in a ballistic fashion, then they are more likely to be



performing some kind of collisions, that there is no independence of the individual molecule

walking, and that it might describe something called a drunkards walk or a random walk.

And we discussed the statistics of the random walk because some very nice properties come
without assuming anything physical, the point of raising random, drunkards walking, besides the
entertainment value, is that the statistical properties are independent of the underlying
phenomena and this is a beautiful process because you can see that we did not have to say
anything about whether it is an old drunkard, a male drunkard, a female drunkard, a non binary
drunkard, child drunkard, grandpa drunkard, it does not matter whether it is molecule of
polymer, we then ended with saying that if the step size average is not, not one, but in fact,
Kuhn’s length A, then the mean squared, this end to end distance, position at the end, becomes

equal to NAZ,

Because it was in fact, we ignored that one in the simple arithmetic. And I ended with a question
about rubber elasticity, which is due for Thursday, I would like to come back to that in a while.
So, for today, I want to talk to you about random of polymers and probabilistic arrangements,
average distributions of polymers, persistence length, and relating coolant persistence length to
each other, ending with radius of gyration, which is again a part of your assignment for next
week and I hope you are eagerly looking at it at least you had a look at it, if you have questions,

Thursday is the right time for you to discuss it with me.

If there are any clarifications, obviously, I cannot give you the answers, but I can help you get to

them.
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So, let us go ahead. So, I mentioned to you that rubber elasticity has an unusual property and this
is sort of seen in this diagrammatic view, that it consists of many hybrids or polymers in other
words, which can be either stretched to extend them or when they are released, they retract and
they become relaxed again, which in the case of polymers is a more compact form. So, we are
trying to say that as the stretch is released, those the force stretch is released, the retraction
actually results in an entropy increase. And that is related to the idea that when you stretch, we
expect the polymer to warm up. And when you release it, retract it, we expected to cooled out for

Thursday, I would like all of you to please bring a rubber band, so that we can test this out.

The idea is that there is something happening to the temperature of the material when we stretch
it. And when we relax it and that is exactly the part of my question to you, for a written reply as
an assignment. Indeed, metal springs are considered to be enthalpic machines and rubber bands
are considered to be entropic machines or entropic strings. And this hopefully gives you the hint

to the answer, but without hopefully revealing the whole answer.
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So, indeed, what is the special property that makes random walk polymers so unusual? I said this
last time also that if we consider a one dimensional or even a three dimensional discretized,
polymer meaning to say we consider a little rod segments, which let us say in one dimension, for
simplicity, they flip one way, choose another segment, clip another way, and so on and so forth
independently, flipping a coin effectively, where you either left or right random walk and in 3D

you have more degrees of freedom.

These rigid segments then we call kuhn segments, which are inflexible in the sense that they are
of a fixed length, and they do not bend or turn but they are connected by flexible hinges and this
is why this model is also called freely jointed chain. It is like your necklace, I mean, some of you
have these beautiful necklaces with segments, the segments may be little beads or cylinders, and
the cylinders have little complete flexible joints. Here for simplicity, we assume only 90 degree

swaps in 3D.
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So if we consider now coming back to the one dimensional case, a chain of really joint chain of 3
segments, then we have a whole bunch of possibilities that we can arrange this polymer in. So,
we can either have them as taking 3 steps to the right, 3 steps to the left, 1 step to the right, 1 step
to the left 1 step to the right, so 2 steps to the right, 1 steps to the left. But in that sequence, then
we have 1 step to the left 2 steps to the right. So still 2 steps to the right, but slightly different
arrangement, as you see. 2 steps to the right and 1 step to the left, and so on and so forth. So, if
we are to find out the multiplicity that arises, the possible confirmations that arise out of a certain
number of steps to the right, then we have a very easy recourse to going back to our binomial

coefficient to count the number of ways we can arrange it.

So, let us ask the first question, when we take the top case here, when you take 3 steps to the
right, how many ways are there of arranging it? When you take 3 steps to the left, how many
ways are there of arranging it? When we take 1 step to the right, 1 step to the left, 1 step to the

right, how many ways are there have arranged it and so on and so forth.
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And as you will see, the answer to that question comes as 1 for all right steps or all left steps, and
the multiplicity increases when they are not just all 3 steps are not right or left, necessarily. I this

is again, intuitive, but I would like you to ponder on it.
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Polymer End-to-End Length Probability
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So, the polymer end to end probability that is to say, what is the density distribution after all
these steps are taken, you know when what we talked about initially was just the discretized

version, we took steps left took steps right we kind of did the calculation. But what if you



calculated average, if you do this 100,000 times there are hundreds of segments rounds of
polymers, what will the probability overall departure from the origin B. In that case, we come

back to the binomial coefficient times 1/2".

And that is solved or resolved by arriving at an approximate Gaussian distribution of the
probability or end to end distance, I want you to stare at this expression down below, where P of

end to end distance R for N steps, meaning N segments. So, we have gone from drunkards to

rigid rods kuhn segments is equal to 1 upon the segment length a into the under root term~/21N,
N being the number of steps or segments and all this product of exponential in negative half r*

end to end distance upon NA?, you can see this here.

1 . 2 Na*

P(R; N) - a\2ntN
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Probability for End-to-End Distance
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Now, this is indeed a Gaussian and indeed, if you plug this for a 100 segment polymer, you
exactly get a Gaussian and you can, in fact, compare it to the standard Gaussian distribution,
which you hopefully done in biostatistics or high school or I do not know where, it in fact tells
you that the term a that we have been referring to a segment length can be easily mapped to

sigma and N in that case, disappears in the Gaussian distribution. The numerator with the

exponential term has the equivalent of sigma is equal to ax/ﬁ and that is how that N disappeared

by the way.

And p or x — pis R it is the mean displace distance from initial position, assuming x is 0 all of
that squared. This by the way, that Gaussian distribution comes from the central limit theorem,
which I suspect you have had to study at some point. And because of that I am not going to
elaborate on it but I am going to ask you, when we meet on Thursday, what is the central limit

theorem.
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So, in 3 dimensions, this was 1 dimension, obviously, this equation becomes a little more

elaborate

ram- (7))

2nNa"

it is 3/2nNa’ so because of that Na?, we have to take 1 by 2 in the power 3 to the power 3 because

of 3 dimensions.
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The interesting part of this is that the highest probability, as you also saw in this graphic for 1
dimensional system, the highest probability highest density of finding end to end distances is 0.
So, and this is true of a random walk, also, which is another way of saying that the drunkard is
not going to get very far. Now, they will most likely position that drunkard will be at his the
lamppost or the fibers, the polymers in a rubber are most likely to be compact, this is a very

strange way of looking at things.

Because in our normal spring mass system in the spring, the reason why we say they are going to
reach a certain position is because the spring, atomic springs have a certain resting length. And
that is the energy that we described using Lennard Jones potential of inter atomic interactions.
Here, this is purely statistical and this is the beauty of it. And this is why I had spent so much

time talking also about the osmotic engin but let us go ahead, not backwards.
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So, we now come to a term, which we will refer to as persistence length and we have talked
about this earlier, I am going to do a slightly more detailed effort at trying to get at it. So,
persistence length by definition is supposed to be the length over which a polymer is essentially
straight. And it considers local rigidity that tangents to the polymer T of s1, T of s2, at distances

sl and s2 in a freely jointed chain.
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So, let us see what we can do about it. So, we just talked about random walk polymers, statistics
and average probability distributions and we want to continue with persistence length. And in
order to do that, we want to maybe discuss very briefly the so called ergodic theorem, which tells
us that nearly every microstate approaches the arbitrarily close to the all of the true states of the
corresponding ensemble in the course of time and a system that follows this therefore, is then

following the ergodic theorem.

And I encourage you to look at your physical chemistry and statistical mechanics textbooks to
refer to it again. And the second thing we also rely on for kind of getting at the persistence length
is the Boltzmann's postulate the time average of faults and postulate that the time average of an
isolated system is the average over all states in the microcanonical ensemble. And as I sort of
mentioned in the slide, the persistence length of a system of a polymer in this case is based on
taking tangents to the polymer along its length with increasing distance between the tangents or

the tie points at which the tensions are taken.

So, if we call this tangent t at 0, then we can call this tangent at t at s, where s is nothing but the
contour length between the 2 positions and this can be s1, s2, and so on and so forth where the
contour length becomes s2, which is of course, the whole length from here to here. Whereas, this
one is just sl. So, we define t as the tangent and s as the control distance or controlling

separating 2 points on an arc, this arc is nothing but the one that defines the polymer.
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In such a case, the question we ask ourselves is, what is the nature of the tangent tangent
correlation and what is its functional form, nature of the correlation between the tangents, in
other words functional form. Now, some of you already know this perhaps, and either way we
are going to guess and the guess we are going to make is, if we are going to say well, we took the
tangent at some initial position T + s and we tried to find its correlation its product with t at T,

where T is just some point on the contour.

Then, indeed the tangent is a unit vector and T + s is the length of the curve from t so that we
have a nonzero start point. In such a case, if you want to infer what this g(s) becomes, then we
have possibly two cases that we want to consider. One case is that s is equal to 0 and the other
that s is equal to s is much much greater than the region over which the polymer is straight, in
other words, it is very winding, so, we are considering a very winding polymer, then if this was T
and s was very very long, then we would probably be referring to something like this much much

greater than the region over which the polymer is straight.

And when s is 0, then it is essentially like taking the tangent at the same position I have drawn it

in slightly different directions just for clarity.

g(s) = (t() - t(t + 5))



This would imply that g(s) which is nothing but the dot product of two vectors averaged I
sometimes have been skipping the vector signs, but bear in mind I did not that was not
intentional. So, t* or t of T dot product with the t* of (s +1) or (T + s) averaged for angle of 0 is
nothing but the product of the 2 magnitudes of the vectors times cos0, cos0 of 0 is 1 therefore, it

is nothing but 1.

In the case that the two angles the two angles are not correlated they are not 0, then they can be
all kinds of angles. So, essentially these two vectors at tcan be be T and T + scan take any

value various angles. I am assuming 180 degree mirroring that would mean that on an average, |
have about -;& and then that makes my cos0 cos cos-pz—i which is nothing but 0, 0 multiplied by

everything 0. So, this is the two the nature of this g(s) qualitative nature. So, the question
becomes what function satisfies this condition that when s is 0, the value is 1 and s is much much

larger and it decays it is 0.
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And the function that fulfils these requirements is surprising or not very surprisingly nothing but
the exponential where we say that the coefficient of the exponent, the decay, exponential decay is
in fact, the persistence length it is like saying that the correlation, like we said goes from 1 to 0
for increasing s, such that it is a continuous function with a characteristic decay length of

persistence length. And that is in a way our idea of how we can intuitively understand the



meaning of the exponential. There are more formal derivations, and I am not going to do those.
The second as maybe line of evidence is that when there are two adjacent segments, then and
they are buffeted by thermal effects that is diffusion, then the correlation function g(sl) + g(s2)
should effectively due to the fact that they are independent of each other be the sum of s1 and s2
and this property is also satisfied by the exponential where

exp(X + Vexp(X) + exp(Y)
exponential of X plus Y can be written indeed as exponential of X plus exponential of Y sum of

exponentials.
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So, all this being as it is we can indeed now write the tangent tangent correlation

—|[s,—S
s,

<tA(51)' tA(sz)) =e *

as the product the dot product of the two tangents t"(s1) times t"(s2) averaged as e to the

power minus magnitude of the distance between these two segments divided by Cp at some
constant which indeed is the characteristic length. So, we can summarize say that when L is
equal to when s is equal to L, then indeed g(s) is 0. And when s is equal to 0, then g(s) is equal to
1. In other words, when the segments that we are looking at the contours are the identical

contour, then that correlation term is 1.

Just to give you a sense of the order of magnitude and I may have discussed this in the bending
rigidity measurements, but let us take a biopolymer that we all are very familiar with DNA sets it
always catches everyone's imagination and we take it from a virus the lambda phage then, the
number of bases of the lambda phage genome is 48,490 base pairs. The contour length, L is
number of base pairs mutiplies 0.34 nanometers per base pair which turns out to be 16.4866

micrometres.

By experiments it has been found that the persistence length of DNA is equal to 50 nanometers
which in base pairs terms is 147.05 base pairs which we can approximate to 150 base pairs. In

other words 150 base pairs of DNA are effectively straight are persistent. And this is where we



want to perhaps relate the 2 terms that we have now brought up. One is indeed what I have been
mentioning right now which is persistence length and the other is the one we started with that is

Kuhn'’s length. So, the question is persistence and Kuhn’s length, how are they related?
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So, if we assume an actual rod sort of cylinder maybe bent at times, but then the end to end
distance of rod can just simply be given as the integral over the whole length of every segment of

that length times the tangent to that system.

R, =(Jds-t"s)

So, when ds is small, so, this assumption is the ds are small segments. And the tangents are at
every successive segment length of s, then the average squared end to end distance for such a rod

can also be written as,

Rz_e) = (J ds,t"(s,)f ds,t*(s,))

the integral over length L, ds, for some segment s1 times the unit vector of the tangent at that

position integrated over the same thing for the segment second segment.



And this becomes relevant when our structure is not any more a straight rod because then this
just simply holds true and is nothing more to it what when there is a random of polymer. So, for

freely jointed chain or random or polymer t"*(s1) times t”(s2) we said by definition is equal to,

sl
CORTVERE

e to the power minus magnitude of the difference between the two segments by Cp in negative

exponential terms.
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So, we want to try to do something with this expression above. And for that we split the integral

into 2 conditions, one where sl is greater than s2, and for obvious reasons where the opposite is
true sl is less than s2. Since we assume that these have equal contributions we can just simply

rewrite the R, squared averaged distance as

—S—S
fs,~<.|

(R )—Zfds fds

77

two times a common integral 0 to L ds;, s1- s2 the difference in the limit that the control length is
much greater than Cp which is reasonable we can subtract As from the upper and lower limits

over here and end up with something that looks like this, which is

(Rj_e) = 2[ ds[ dAse *

But because and this is all because [ — As is approximately equal to L and true when L is much
much greater than persistence length leaving us with an simplification of end to end distance

squared average
R2 = 2L
( e—e> Ep

But, we know that L is proportional to N that is from random walks statistics L is equal to, sorry

L is proportional to N and R? the end to end distance is proportional to N because as I was trying



to write not L but R? is equal to Na’. Therefore, R* average end to end is equal to La this is

obvious this is the contour length is equal to from ZLEp here therefore a is equal to ZEP.

So, this answers our question, what is the relationship between Kuhn’s length and persistence

length?
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So, we wanted to define one more term so that was the radius of gyration R; and we know that
the R and this is also in the tutorial in the assignment the squared value of Rg is nothing but the

average of the over all segments, all positions or if you have to prove what atoms than atoms.



2
A G e
(R =2 (R -R_))
So what is R¢y? It is nothing but the position vector corresponding to the center of mass. By
definition, Ry, the vector Ry is equal to,

— 1o
Rcm_ NZRi

in other words it is nothing but the average vector. So, you are subtracting you are finding the
deviation square deviation of the average vector from every atom and averaging it, it turns out
that you can write this the average radius of gyration or the root mean square radius of gyration

for a random walk polymer as

and I leave this for you to try to prove if you want to test it suffice to say we are going to use this
number as a result. In order to find some order of magnitude estimates of radius of gyration we
can indeed use the fact that experimentally measured values of Cp for DNA are 147 base pairs

which is 150 base pairs approximately which is approximately 15 nanometers.
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And for proteins, this is approximately a nanometer. So, we return to a concept from persistence
length and radius of gyration to a Flory temperature before which I have now basically taken

from the textbook a plot of the solution to the radius of gyration arithmetic by substituting L the
. . 1
length of the polymer as 0.34 nanometers times base pairs therefore — /N prpfor DNA alone

and here you are looking at a log log plot of the radius of gyration on the y axis base pair lengths
on the x axis. And on this log log plot these data sets seem to fall on a straight line with lambda

phase at the lower limit and human chromosome one at the upper limit.
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There is an issue with the fact that the end to end distance is related in real polymers to a scaling
factor referred to as the Flory temperature because real polymer chains are known to interact
with the solvent and the strength of interaction determines the attraction and repulsion. So,
intermediate temperatures where the chains are in an ideal conformation where attractive and
repulsive monomer interactions cancel out is then referred to as Flory temperature Paul Flory
was again a Nobel laureate for his fundamental achievements in the physical chemistry of

macromolecules in some sense is a pioneer of polymers.
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So, the flexibility of ideal chains can be considered with very simple non-biological chains such
as polyethylene which have canonical 68 degrees between each chain position and the torsion
angles determine flexibility number of bonds and bond lengths are then geometrically

determined.
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max 2



geometrically n times the length of each rigid segment % which is the angle between every

segment.
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And then the ideal bond vector relations gives us back for a freely jointed chain which has no
correlation between bond vectors distant ones of <R* = nL? which is recovering our random

walk of feely jointed chain statistics.
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But for so called real chain bond vectors, there is a scaling factor of C, which is Flory's
characteristic ratio, indeed an infinite chain has n infinitely long obviously and then the mean

square end to end distance of that becomes

(RYy~C_-n-l"
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Bond-Lengths and Kuhn Lengths

¢ R, stretched length of the polymer
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* |: bond length
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(R)=N-d=aR,=Cnl

Indeed the bond and Kuhn lengths are also then slightly modified by this Flory’s characteristic

ratio.
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I said that you can get at a order of magnitude of persistence length with DNA but you can also
get at a radius of gyration for DNA and remember we said that random of polymers of freely
jointed chains always want to come to the center. In other words they are highly dense at the
center the probability of their density is highest in center it decays in a Gaussian fashion in 1D,
2D and 3D. So, it is interesting to note that when you when in the image down below in an
electron micrograph the cell was lysed and the DNA was stained in electro micrograph then the
with a persistence length of 50 nanometers the radius of gyration comes to 5 microns and
remember we always talk about the scale of an E. coli cell this is about 2 microns it is the longest

size of a non-dividing cell in our dividing cell you can claim 4 microns.

In effect, circularly the DNA that comes out of a burst E. coli cell is much larger than the cell
itself, what this should tell you that not just an eukaryotes but even in prokaryotes somehow the
DNA is packed, packed and organized so that it can nicely fit in and perform its functions despite

being packed so tightly.
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And this is now a simple list of sequence lengths and of human DNA just to remind you that

these vary quite a lot and individual chromosomes, yes individual chromosomes of the human

genome at least have 3, 6, 10 to the power 9 by spares order of magnitude lengths 0.1, 0.2 or

even higher in some cases.
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And this is quite fascinating because if I told you that the genome length of bacteria has a radius

of gyration of 5 microns as a free polymer and you should be able to see this on the scale bar also



by the way this is not just speculation or theory this is coming all sort of experiments in other

words reconciliation experiments in theory.
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Detormined
Saquence Length Length*
Chromasome  (In base pairs) (i base pairs)
1 245203098 216712608
2 231043673
] 193607218
4 101610823 00500623
5 160067205 17752402
6 170740841 66680540
7 166431209 154540200
] 146000734 141004337
[ 134808810 118187714
10 136480874 3710866
i 134076784 420
12
1
"
L} 81117088
18 60995000 79890791
1 01691218 71480085
" 1753510 74583
19 4376086 55780800
20 63644868 50424000
n 46070537 33024742
2 49470072 382081
X 47600064

¥ 50661007 22761007
o rw/chromosomy

So in the same way the human genome is going to be much longer you are free to calculate this

and I am going to ask you this question on Thursday, what is the average R of the human

genome? You will have to make some assumptions but I would like you to do this arithmetic

anyway.
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As it turns out DNA in eukaryotes and especially in humans which has been very well studied is
tightly packed and you are tightly packing it but when you segregate it, it kind of decondenses or
rather it condenses even further and it has to be correctly segregated and the cycles of
compaction decompaction you have to do it right, I mean you need to get it in the correct place
because as you see in the image over here the blue marker indicates what happens when you do
not correctly segregate it and you end up with more than one copy of a chromosome this indeed

is an is an unfortunate case of a disease called down syndrome.
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So, chromatin organization is indeed seen to involve the packing of I mean this noodles Chinese
noodle style appearance of DNA into increasingly more complex structures so when we return
we are going to discuss, what these complex structures are? What are their dimensions? What
consequences do they have for our understanding of human genome and its organization? And
how far are we with a complete understanding of packing with a connection back to polymer

theory. So, thank you very much for listening and I am going to stop.



