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In its simplest form volume exclusion states the following that you either have a small

particle that you are trying to insert into a volume, which contains an available volume. This

is the blue part. In which case, the black molecules that already filled the region are having

inter molecular spaces, and that is where your tiny molecule is likely to fit in. Now, on the

other hand, if the excluded volume, by the molecules themselves are a certain radius beyond

their own sizes, like in this case, the molecule that can be added needs to be smaller, and a



comparable sized molecule in that sense, becomes almost impossible to add. So, in a way,

you have a size selection.

You see, that was the question we asked, how do you get size sieving? Well, tiny molecules

can go in large molecules, they experience an excluded volume between sizes of molecular

sizes and their interaction radii and prevent things from getting in, and this is a paper by

Minton from 2001.
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So, the volume available by definition then becomes the volume available to species i. And

its ratio to the total volume and this is in some senses, telling us in some senses the volume

available, whether the as the molecules volume increases that you need to add, this number

goes on to one potentially, and tells you about the so called possibility of adding something

in.
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So, coming back again to hemoglobin concentration and the osmotic pressure, this graph

essentially demonstrates increasing effective concentration and the role of hemoglobin on

osmotic pressure. But what does volume exclusion actually do? So it turns out that you can

actually exert forces. And this is quite interesting because so far we have talked about

entropic forces, we have talked about electrostatic forces in the passing with the Lennard

Jones potential, we have talked about forces that come out of mechanical properties, these are

very strange set of forces the exclusion volume excluding forces almost magical. So, the idea

is the following. If you have a large molecule or a small molecule in a structure, we can

simplify them as big blob, big circle and small circle.



Then, in a dilute system, they do not really interact with each other, it is not much of an effect

that we can observe. But if we now increase the small molecules in a large amount, then what

we appear to find is that the large molecules assuming that there is more than just one of them

in the system are more likely to aggregate together. The second example, demonstrates that

two rod-like solutions molecules in a solution are more likely to come together due to so

called the depletion forces.
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And, these excluded volume interactions can be treated geometrically to arrive at an exact

answer about the extent to which they act and when do they act. So, we consider R capital to

be the radius of the large disk, r small with the radius of the small disk in a two dimensional

geometry and z as the distance during the large disk and the surface being this solid line here.

And in such a case and I asked this rhetorical question, where does this volume exclusion

arises, is finally nothing but entropy.
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So, we can go back and ask if there are no conventional forces, like we were saying earlier.

Van der Waals electrostatic Et cetera, the free energy by entropy change alone due to

excluded volume G excluded is given by this expression, which looks a little complex.
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So, let us break it down. The first part is the negative term with the number of small molecule

particles N capital times kB T, which is your familiar scaling factor times the natural log of

the box volume, the volume we are studying minus the excluded volume that is lost due to the

presence of small molecule particles and it is plus the original box volume relative to the

volume of a unit cell number of units you means omega in the brackets on the right hand side.
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So, given this, when the excluded volume is much smaller than the box volume, we can

approximate ln(1+x) to approximately x and we end up so that ln in the brackets Vex by V

box becomes this 1 minus Vex by V box becomes this. So, the G excluded(Gex) become this.
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If two large particles overlap, the excluded volume increases the entropy of the small particle

N times kBT upon Vbox is the approximate ideal gas osmotic pressure small particles in a box.
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So, volume exclusion works in some senses by changing the number of possible

combinations by which we can arrange things. So, the Z term the Zustandssumme of

excluding volume interactions then particles included is,

𝑍
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Which of course, can simplify to.
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The fee energy for excluded volume then becomes,

𝐺 =− 𝑘
𝐵
𝑇𝑙𝑛 𝑍( )

And using Sterling’s approximation and assuming the Ω the number of site lattice sites is

much greater than N, which means, again the dilute limit, which is a little ironic because we

are considering crowding but the arithmetic works (1-N/Ω)Ω is approximately e-N and that

simplifies the whole expression of the excluded volume Zustandssumme and the difference in

free energies to be approximately (1-N/Ω)N.
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The second part which I mentioned earlier, namely depletion interactions. Concerning two

large spherical particles are coming together we determined something like an excluded

volume and this can be based on two large spheres of the same radius and a small sphere of

radius small r excluding volume has the radius R capital plus r small(R+r). So, I think this

small sphere radius should actually read the exclusion volume radius here.
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The overlap volume from the spherical caps is the cone minus volume of the cone spherical

cone minus the volume of the cone this little part here and so, volume and depletion. So, the

depletion interactions can be got at by combining volumes and forces to tell us that the total

excluded volume is V excluded in geometric terms,
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And the spherical cone, then, in fact,
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And D, if you remember was the distance between the two particles, volume cone and is sort

of simplifies and then the overlap simplifies and there is a bit of arithmetic I urge you to look

at this if you want to verify the answer, but the depletion force then comes down to
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And so, p which is n times kBT, in n which is N/Vbox and distance is 2R and distance is D

which is greater than 2R, which is the hard shell radius meaning to say the sum of the radii of

the two objects that the distance cannot be less than that particles can intersect. But in this

arithmetic that also cannot exceed R + r, it becomes an interesting program.



(Refer Slide Time: 10:09)

So, depletion measurements like this, were made and experiments to find out whether this is

real by calculating the free energy for increasing concentrations of DNA from top to bottom,

from 5 micrograms per ml to 25 micrograms per ml, showing that the interaction between

two beads results in lower and lower free energies of interaction of the beads. So, the beads

were the ones that were being measured DNA was the crowdant and the interaction was

followed.
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Entropic ordering, which was another topic I wanted to maybe just briefly mention is a

further aspect of this, which is that we always talk about entropy as a way to create this order.

But it turns out that entropy ordering also counter intuitively drives indeed the process of



order formation at high concentrations. And this is the free energy of it is given by p times

Voverlap, where spheres are ordered in a system containing filament rods. And these filament

rods in this particular case that were added were viral filaments, something like tobacco

mosaic virus.
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So, we have talked about volume exclusion, depletion interaction. And now we are going to

talk about how polymers are affected by crowding and the random walk model and the

random walk model, which we talked about last semester. If you remember, allows for

polymers to cross over onto themselves, it ignores in that sense self-avoidance. If N is the

number of segments and a is the persistence length, then for the size of macromolecules is

characterized and the root mean square, end to end distance is characterized scales at least,

. But there are competing effects that we know entropy, which will force the chain to𝑁𝑎2

become more compact and self-avoidance.
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Which will actually force it to become larger and swell it. So, if we consider these things,

then we probably need to revisit our random walk model for a more realistic scenario and that

involves, so called self-avoiding random walk, which considers the excluded volume

interactions and is based on simple geometric arguments of these rods, where the angle

between 2 rods is . And, a is the persistence length of the minimum rod length, the mutualθ

orientation angle defines the excluded volume which is given by

𝑣 = 2𝑑𝑎2𝑠𝑖𝑛θ

from geometry.
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And for d is much less than a, the averaging of overall orientations gives an estimate of𝑠𝑖𝑛θ

the exclude volume , the free energy of Gex is . And for N hard cylinder hard,π𝑎2 𝑑
2 𝑘

𝐵
𝑇𝑁ϕ

meaning they can pass through each other. From Onsager approach, you can get a closed

form solution for the packing density as a function of R being N times this sort of complex

looking geometric expression, which simplifies to,

ϕ 𝑅( ) = 𝑁 3𝑎2𝑑

8𝑅3
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And, the free energy difference between the random walk model and the self-avoiding walk is

such that the radius of the flory radius, unlike the characteristic random walk radius, scales as

a function of , N being the number of segments with the pre-factor that is determined by a𝑁
3
5

and d. So, just let us remind ourselves what were a and d? a was our single rod length

minimal rod length, which we call the persistence length and d is the diameter the thickness

of this. So, in a way of parameter that we have not considered so far in the random walk

formalisms that we had been looking at.
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So, random walk versus self-avoiding random walk means that while the random walk scales

as N1/2 or under root of N, self-avoiding walks scales as the fifth power and the third root of



N, for short polymers random walk is still valid. For long polymers this begins to break

down.
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And, this becomes relevant when we start looking at some of the more complex phenomena,

like protein folding in the presence of crowding were denaturation and refolding of protein in

a dilute solution does not result in the same processes, that it results in a concentrated

solution where aggregation can result. And this becomes relevant when we then indeed talk

about protein folding. And this was the last figure in McGuffee and Elcock and I encourage

you to look at it, I might have a chance to discuss it in one of the live sessions. It is not that

important, just suffice to say that when proteins are in vivo, and they are folding, it is not at

all surprising that they are in a concentrated solution.

So, what prevents aggregation? And the answer to that question is basically chaperones. Or

you could argue in a sort of biologist’s perspective of why are they, why do chaperones exist

well? Because at concentrated solutions, proteins and their folding tend to aggregate and

keeping them apart, allowing for folding in a manner that is consistent with the structure that

one would hope to achieve is important.
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The last bit, I want to talk about diffusion in crowded environments. And again, like in the

railway station and all, railway, train entry analogy of the Bombay local. If a particular

already occupies a space, then the probability of hopping left or right is now scaled by the

volume fraction occupied by the crowdant. And in other words, if that volume fraction is let

us say half, then you are multiplying 0.5 by 0.5. And this is what makes things a little more

interesting.
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And, therefore diffusion crowded environments then becomes

⟨X2 ⟩τ = a2pright + a2pleft +0pstay = a2(1-ϕ)



, which effectively means that after N steps, N which is t by and MSD N times largerτ

becomes N times larger. And the diffusion coefficient for a random walker becomes D, D0,

which is your so called dilute limit or no crowdant condition, multiplied by (1-ϕ), or ,𝑎2

2 τ

which is our definition as we have used. The mean square displacement fact then𝑎2

2 τ

becomes a2/τ, which is t upon 2 or half t sorry 2 d t times (1-ϕ), my mistake.
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So, proof, is there any proof for all this? Well, if you now look at the natural log of the

diffusion coefficient, measured the effective diffusion controlled by the optimal diffusion

coefficient, the ideal diffusion coefficient, then you find that they follow a trend that fits this

expression. This is a slightly scary looking one with a bunch of constants. But it effectively

implies that as the concentration increases, the diffusion coefficient goes down, we talked,

when he talked about diffusion earlier, we emphasize the fact that it is a constant, and it is a

physical reality and you can measure it and it is true.

But when you have concentrations of crowdants, which now begin to resemble what we see

inside the cell, things get very strange. So, this is another way of saying that we have to keep

in mind, whenever we make these measurements, inside cells, a lot more is going on. And

this is really proof of that the expression was fit by Muramatsu and Minton in 1988. And this

is what the equation looks like.
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In fact, self-diffusion and crowding tells you that, in addition to other things crowding, you

can also have self-diffusive. In other words, self-crowding, higher concentrations of the

molecule that you are looking at, result in lower diffusion coefficient of the material itself.
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So, in summary, we have talked a bit about the role of binding probability under the influence

of crowdants in the ligand receptor system, we talked about two kinds of situations that one

where the crowdant and the ligand are of the same size versus one where there is a offset or

ratio between the crowdant size and the ligand size. And we got two expressions for

probability, I would like you to go back and look at them. We then talked about how osmotic

pressure depends on crowding, we delve a little bit into excluded volume interactions.



Entropic ordering due to viral rods, for which there is some experimental evidence the theory

is a bit trickier, self-avoiding walks which gives you a different scaling of polymers, if you

consider volume exclusion in random of polymer.

And, we talked very briefly about how it might influence protein folding in the need for

chaperones. And finally, we ended with diffusion in a crowded environment.
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So, for the next set of lectures, I am going to talk to you about rate equations and cellular

dynamics and how they relate to cytoskeleton in polymerization, molecular motors and the

biophysics of development and that will complete this course. Thank you very much.


